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Abstract. We present in this work a new flag major index fmajr for the wreath
product Gr,n = Cr o Sn, where Cr is the cyclic group of order r and Sn is the
symmetric group on n letters. We prove that fmajr is equidistributed with the length
function on Gr,n and that the generating function of the pair (desr, fmajr) over Gr,n,
where desr is the usual descent number on Gr,n, satisfies a “natural” Carlitz identity,
thus unifying and generalizing earlier results due to Carlitz (in the type A case),
and Chow and Gessel (in the type B case). A q-Worpitzky identity, a convolution-
type recurrence and a q-Frobenius formula are also presented, with combinatorial
interpretation given to the expansion coefficients of the latter formula.

1. Introduction

Let n > 1 and let Sn be the symmetric group on n letters. It is a classical result of
Carlitz [7] that

(1)
Sn(t, q)∏n
i=0(1− tqi)

=
∑
k>0

[k + 1]nq t
k,

where Sn(t, q) :=
∑

σ∈Sn
tdes(σ)qmaj(σ), des(σ) and maj(σ) are respectively the descent

number and major index of σ ∈ Sn, and [n]q is a q-integer. See Section 2 for definitions
of undefined terms.

When q → 1, the Carlitz identity (1) becomes

Sn(t)

(1− t)n+1
=
∑
k>0

(k + 1)ntk,

which is the rational generating function of the usual Eulerian polynomial Sn(t) :=∑
σ∈Sn

tdes(σ). Note here that An(t) = tSn(t), where An(t) is the classical Eulerian
polynomial enumerating Sn by the number of increasing runs.

Generalizations of the Carlitz identity to other Coxeter families have also been made by
various authors. See, e.g., [1, 2, 8] for the type B case, and [4] for the type D case. One
can consider more generally the wreath product, which is denoted by Gr,n in this work.
Along this direction, Bagno and Biagioli [5] recently gave a generalized Carlitz identity
for Gr,n. Since the classical Carlitz identity reduces to the rational generating function
of Sn(t), one may insist that a generalization of (1) ought to enjoy this property. In
the type B case, only the generalized Carlitz identity due to Chow and Gessel [8] has

2000 Mathematics Subject Classification. Primary: 05A15; Secondary: 05A19, 05A05, 05E05,
05E10.

Key words and phrases. Wreath product, descent, flag major index, q-Eulerian polynomial, Carlitz
identity.

1

This is the pre-published version.



2 C.-O. CHOW AND T. MANSOUR

this feature, whereas in other cases, the concerned generalized Carlitz identity all have
the factor [k + 1]nq in place.

Steingŕımsson had shown in [11] that

(2)
Gr,n(t)

(1− t)n+1
=
∑
k>0

(rk + 1)ntk,

where Gr,n and Gr,n(t) are respectively denoted by Srn and D(t). A “natural” Carlitz
identity for Gr,n, if it exists, ought to have the factor [rk+1]nq in place. Since G1,n = Sn

and G2,n = Bn, such a natural Carlitz identity will specialize to give the classical one for
Sn when r = 1, and the one for Bn when r = 2, where Bn is the nth hyperoctahedral
group. It is the purpose of this work to show that such a natural Carlitz identity exists.
More precisely, we show that the joint distribution of (desr, fmajr), where desr is the
usual descent number for Gr,n and fmajr is a new notion of flag major index to be
defined in Section 3, yields a natural q-version of (2). See Theorem 9 below.

The organization of this paper is as follows. In Section 2, we collect certain notations
and results that we will need. In Section 3, we introduce fmajr, prove a combinatorial
formula for it, and show that fmajr is equidistributed with the length function on Gr,n.
In Section 4, we define a class of q-Eulerian polynomials Gr,n(t, q) on Gr,n and prove
certain properties of them, including the generalized Carlitz identity. In Section 5,
we prove further properties of Gr,n(t, q), including a convolution-type recurrence and a
q-Frobenius formula with combinatorial interpretion given to the expansion coefficients
of the latter formula, and conjecture a separation property of the real zeros of Gr,n(t, q)
crucial for establishing the real-rootedness of Gr,n(t, q). We conclude the present work
in the final section by defining the notion of r-Euler-Mahonian of a pair of statistics
on Gr,n and mentioning one further line of research.

2. Notations and preliminaries

In this section we collect some definitions, notations, and results that will be used in
subsequent sections of this paper. Let N = {0, 1, 2, . . .} be the set of all nonnegative
integers, P = {1, 2, . . .} the set of all positive integers, Z the set of all integers, Q the
set of all rational numbers, and C the set of all complex numbers.

The cardinality of a finite set S is denoted by #S. For any n ∈ Z, define [n] to be the
interval of integers {1, 2, . . . , n} if n > 1, and ∅ otherwise.

Here, we adopt those notions concerning the wreath product due to Steingŕımsson [11].
Let r, n ∈ P and let Sn denote the symmetric group on n letters. Any element π of Sn is
represented as the word π(1)π(2) · · · π(n). Let Cr := Z /rZ be the cyclic group of order
r, whose elements are represented by those of {0, 1, 2, . . . , r − 1}. Let Gr,n := Cr oSn

be the wreath product of the symmetric group Sn by the cyclic group Cr. Elements of
Gr,n are represented as π×z, where π = π(1)π(2) · · · π(n) ∈ Sn and z = (z1, z2, . . . , zn)
is an n-tuple of integers such that zi ∈ Cr for i = 1, 2, . . . , n. The product of elements
π × z and τ × w of Gr,n is defined as: (π × z) · (τ × w) = πτ × (w + τ(z)), where
πτ = π ◦τ is evaluated from right to left, τ(z) = (zτ(1), zτ(2), . . . , zτ(n)) and the addition
is coordinatewise modulo r.

It is easy to see that e = 12 · · ·n × (0, 0, . . . , 0) is the identity element of Gr,n, where
12 · · ·n is the identity element of Sn.

This is the pre-published version.



CARLITZ IDENTITY 3

Definition 1. An integer i ∈ [n] is called a descent of p = π× z ∈ Gr,n if zi > zi+1 or
zi = zi+1 and π(i) > π(i+ 1), where π(n+ 1) := n+ 1 and zn+1 := 0. Denote by Dr(p)
the descent set of p = π × z ∈ Gr,n and by desr(p) := #Dr(p) the number of descents
(also called the descent number) of p.

For example, let p = 436512× (3, 1, 0, 2, 2, 3) ∈ G4,6. Then D4(p) = {1, 2, 4, 6} so that
des4(p) = 4.

Let q and t be two commuting indeterminates. We denote by Q[q] the ring of poly-
nomials in q with rational coefficients and by Q[[q]] the corresponding ring of formal
power series in q with rational coefficients. For i ∈ P, the q-integer [i]q is defined as
[i]q := 1 + q + q2 + · · · + qi−1; we also define [0]q := 0. For n ∈ N, the q-factorial [n]q!

is defined as [n]q! := [1]q[2]q · · · [n]q. For 0 6 k 6 n, the q-binomial coefficient

[
n
k

]
q

is

defined as [
n
k

]
q

:=
[n]q!

[k]q![n− k]q!
.

We shall need a q-version of derivative. Define the Eulerian differential operator
δr,t : Q[[t, q]]→ Q[[t, q]] by

δr,tf(t, q) :=
f(tqr, q)− f(t, q)

t(qr − 1)
,

where f(t, q) ∈ Q[[t, q]]. It is easy to see that δr,tt
n = [n]qrtn−1 and as q → 1, δr,tt

n →
ntn−1, the usual derivative of tn. A product rule for δr,t is as follows, whose proof is
omitted.

Lemma 2. We have

δr,t(A(t, q)B(t, q)) = δr,t(A(t, q))B(tqr, q) + A(t, q)δr,t(B(t, q)),

where A(t, q), B(t, q) ∈ Q[[t, q]].

A realization of the q-binomial theorem [3, Theorem 2.1] needed for the proof of The-
orem 9 is the following identity

(3)
∑
k>0

[
k + n
n

]
q

tk =
1

(1− t)(1− tq) · · · (1− tqn)
,

which becomes the following binomial formula when q = 1:∑
k>0

(
k + n

n

)
tk =

1

(1− t)n+1
.

3. Flag major index for Gr,n

The group Gr,n is generated by s0, s1, . . . , sn−1, where

s0 = 12 · · ·n× (r − 1, 0, . . . , 0),

and for i = 1, 2, . . . , n− 1,

si = 1 · · · (i− 1)(i+ 1)i(i+ 2) · · ·n× (0, 0, . . . , 0).
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4 C.-O. CHOW AND T. MANSOUR

These generators satisfy the following commutation relations:

(sisi+1)
3 = e where 1 6 i < n,

(sisj)
2 = e where |i− j| > 1,

s0si = sis0 where 1 < i < n,

(s0s1)
2r = e.

Using the number-theoretic fact that for k = 1, 2, . . . , r, k(r − 1) ≡ r − k (mod r), we
have that sk0 = 12 · · ·n × (r − k, 0, . . . , 0) so that s0 is of order r. When r = 1, s0 is
precisely the identity element e.

For j = 1, 2, . . . , n, let

tj = sj−1sj−2 · · · s2s1s0

= j12 · · · (j − 1)(j + 1) · · ·n× (r − 1, 0, 0, . . . , 0).

It is clear that t1, t2, . . . , tn form a set of generators in a distinguished flag of subgroups
of Gr,n:

G1 ⊂ G2 ⊂ · · · ⊂ Gn = Gr,n,

where Gi
∼= Gr,i for i = 1, 2, . . . , n.

Each element p = π × z of Gr,n has a unique representation as a product

(4) p = tkn
n t

kn−1

n−1 · · · tk22 t
k1
1 ,

where 0 6 kj < rj for j = 1, 2, . . . , n.

Definition 3. For each p = π × z ∈ Gr,n, the flag major index of p is defined as

fmajr(p) = k1 + k2 + · · ·+ kn.

The unique representation (4) of elements of Gr,n insures that fmajr : Gr,n → N is well
defined. It is known that the degrees of Gr,n are r, 2r, . . . , nr and that the Poincaré
polynomial PGr,n(q) of Gr,n is given by

PGr,n(q) :=
∑
p∈Gr,n

q`(p) = [r]q[2r]q · · · [nr]q,

where ` is the length function on Gr,n. See, e.g., Geck and Malle [9, Theorem 1.4,
Table 1] and [10, §1.11]. A crucial property of fmajr is its equidistribution with ` on
Gr,n, as follows.

Theorem 4. We have ∑
p∈Gr,n

qfmajr(p) = [r]q[2r]q · · · [nr]q.

Proof. By (4), every p = π × z ∈ Gr,n can be written as p = tkn
n · · · t

k2
2 t

k1
1 , where

k1, . . . , kn are uniquely determined integers satisfying 0 6 kj < rj for j = 1, 2, . . . , n.
Also, fmajr(p) = k1 + · · ·+ kn. Thus,∑

p∈Gr,n

qfmajr(p) =
n∏
j=1

rj−1∑
kj=0

qkj = [r]q[2r]q · · · [nr]q,

as desired. �
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CARLITZ IDENTITY 5

It makes perfect sense to define the major index of p ∈ Gr,n as:

maj(p) :=
n∑
i=1

iχ(i ∈ Dr(p)),

where χ(P ) = 1 or 0 depending on whether the statement P is true or not. Note
here that Dr(p) includes n if it is a descent of p. In contrast to other previously
considered cases, this makes a difference. The following combinatorial formula makes
the computation of fmajr simple.

Theorem 5. We have that for each p = π × z ∈ Gr,n,

(5) fmajr(p) = rmaj(p)−
n∑
i=1

zi.

Denote the right side of (5) by majr,n(p).

Lemma 6. For any p = π × z ∈ Gr,n with π(n) 6= 1 or zn 6= 1, we have majr,n(tnp) =
majr,n(p) + 1.

Proof. Let p = π(1) · · · π(n) × (z1, . . . , zn) ∈ Gr,n and let i0 ∈ [n] be the unique index
such that π(i0) = 1. Then

tnp = (π(1)− 1) · · · (π(i0 − 1)− 1)n(π(i0 + 1)− 1) · · · (π(n)− 1)

× (z1, . . . , zi0−1, r − 1 + zi0 , zi0+1, . . . , zn).

Let j ∈ [n] \ {i0 − 1, i0}. We have j ∈ Dr(tnp) ⇐⇒ zj > zj+1 or zj = zj+1 and
π(j)− 1 > π(j + 1)− 1 ⇐⇒ j ∈ Dr(p). For descents at positions i0 and i0 − 1, there
are two cases to consider.

Case 1: zi0 = 0. Since n > π(i0 + 1)− 1 and r − 1 + zi0 = r − 1 > zi0+1, i0 ∈ Dr(tnp);
since π(i0) = 1 and zi0 = 0 6> zi0+1, i0 6∈ Dr(p); since π(i0−1)−1 < n and zi0−1 6 r−1,
i0− 1 6∈ Dr(tnp); since π(i0− 1) > π(i0) = 1 and zi0−1 > zi0 = 0, i0− 1 ∈ Dr(p). Thus,
we have Dr(tnp) = {i ∈ Dr(p) : i 6= i0}∪{i0} and Dr(p) = {i ∈ Dr(p) : i 6= i0}∪{i0−1}
so that maj(tnp) = maj(p) + 1 and hence

majr,n(tnp) = rmaj(tnp)−
∑

16i6n,i6=i0

zi − (r − 1 + zi0)

= r(maj(p) + 1)−
n∑
i=1

zi − (r − 1)

= majr,n(p) + 1.

Case 2: 0 < zi0 < r. Since n > π(i0+1)−1 and π(i0) = 1 < π(i0+1), i0 ∈ Dr(tnp)⇐⇒
r−1+zi0 ≡ zi0−1 > zi0+1 ⇐⇒ zi0 > zi0+1 ⇐⇒ i0 ∈ Dr(p); since π(i0−1)−1 < n and
π(i0− 1) > 1, i0− 1 ∈ Dr(tnp)⇐⇒ zi0−1 > zi0 − 1⇐⇒ zi0−1 > zi0 ⇐⇒ i0− 1 ∈ Dr(p).
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6 C.-O. CHOW AND T. MANSOUR

Thus, we have Dr(tnp) = Dr(p) so that maj(tnp) = maj(p) and hence

majr,n(tnp) = rmaj(tnp)−
∑

16i6n,i 6=i0

zi − (zi0 − 1)

= rmaj(p)−
n∑
i=1

zi + 1

= majr,n(p) + 1.

In any case, we have majr,n(tnp) = majr,n(p) + 1. �

Proof of Theorem 5. Induction on n. Since Dr(1 × (z1)) = {1} (resp., ∅) if z1 > 0
(resp., z1 = 0), by (5) we have that fmajr(1× (z1)) = r− z1 (resp., 0). Also, 1× (z1) =
tr−z11 (resp., t01) if z1 > 0 (resp., z1 = 0) so that majr,n(1 × (z1)) = r − z1 (resp., 0) if
z1 > 0 (resp., z1 = 0). Thus, the case n = 1 holds.

Assume now that the result holds for n − 1 (with n > 2) and let p = π × z ∈ Gr,n.
There exist 0 6 kn < rn and p′ ∈ Gr,n−1 such that p = tkn

n p
′. By definition of fmajr,

we have fmajr(p) = fmajr(p
′) + kn. Since p′ = τ ×w can be identified as the element

τ̃ × w̃ of Gr,n, where τ̃(i) = τ(i) and w̃i = wi for i = 1, 2, . . . , n − 1, τ̃(n) = n and
w̃n = 0, by definition of majr,n, we have majr,n(p′) = majr,n−1(p

′). By induction, we
have fmajr(p

′) = majr,n−1(p
′) and hence

fmajr(p) = fmajr(p
′) + kn = majr,n(p′) + kn = majr,n(tkn

n p
′) = majr,n(p),

where the next to last equality follows from iterations of Lemma 6. This finishes the
induction and the proof. �

4. Carlitz identity for Gr,n

We establish in this section the Carlitz identity for Gr,n. The following definition is
crucial to the present work.

Definition 7. The q-Eulerian polynomial Gr,n(t, q) of Gr,n is defined by

Gr,n(t, q) =
∑
p∈Gr,n

tdesr(p)qfmajr(p) =
n∑
k=0

Gr,n,k(q)t
k,

where Gr,n,k(q) =
∑

desr(p)=k q
fmajr(p).
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CARLITZ IDENTITY 7

The first four members of Gr,n(t, q), computed according to Theorem 9(ii), are listed
as follows.
Gr,1(t, q) = 1 + q[r − 1]qt,

Gr,2(t, q) = 1 + q([r − 1]q[r + 1]q + [2r − 1]q)t+ qr+2[r − 1]2qt
2,

Gr,3(t, q) = 1 + q([2r − 1]q[r + 1]q + [r + 1]2q[r − 1]q + [3r − 1]q)t

+ qr+2([r − 1]2q[2r + 1]q + [2r − 1]2q + [r − 1]q[r + 1]q[2r − 1]q)t
2

+ q3r+3[r − 1]3qt
3,

Gr,4(t, q) = 1 + q([4r − 1]q + [r + 1]3q[r − 1] + [3r − 1]q[r + 1]q + [r + 1]2q[2r − 1]q)t

+ qr+2([r + 1]q[2r − 1]q[3r − 1]q + [r − 1]q[r + 1]q[2r − 1]q[2r + 1]q

+ [2r − 1]2q[2r + 1] + [r − 1]q[r + 1]2q[3r − 1]q

+ [3r − 1]2q + [r − 1]2q[2r + 1]2q)t
2

+ q3r+3([r − 1]2q[2r − 1]q[2r + 1]q + [r − 1]q[r + 1]q[2r − 1]2q

+ [r − 1]3q[3r + 1]q + [2r − 1]3q)t
3

+ q6r+4[r − 1]4qt
4.

To facilitate the proof of Theorem 9, we gather in the next lemma several simple results,
whose proofs are omitted.

Lemma 8. The following hold:

(i) [rk + 1]q = 1 + q[r]q[k]qr ;
(ii) [rn− 1]q − [r]q[k]qr = qrk[rn− rk − 1]q;
(iii) [rk + 1]q[n]qr = [rj + 1]q[k + n− j]qr + qrj+1[r(n− j)− 1]q[k − j]qr .

The main theorem of this section is the following.

Theorem 9. The following hold:

(i) for k = 1, 2, . . . , n− 1,

Gr,n,k(q) = [rk + 1]qGr,n−1,k(q) + qrk−(r−1)[r(n− k) + (r − 1)]qGr,n−1,k−1(q);

(ii) for n > 1,

Gr,n(t, q) = (qt[rn− 1]q + 1)Gr,n−1(t, q) + q[r]qt(1− t)δr,t(Gr,n−1(t, q));

(iii) [rk + 1]nq =
n∑
j=0

Gr,n,j(q)

[
k + n− j

n

]
qr

;

(iv)
Gr,n(t, q)∏n
i=0(1− tqri)

=
∑
k>0

[rk + 1]nq t
k;

(v)
∑
n>0

Gr,n(t, q)∏n
i=0(1− tqri)

xn

n!
=
∑
k>0

tk exp([rk + 1]qx).

Proof. (i) Let p = π × z ∈ Gr,n−1, where π = π(1) · · · π(n − 1) ∈ Sn−1 and z =
(z1, . . . , zn−1) ∈ Cn−1

r . It is convenient to define π(0) := 0, π(n) := n + 1, z0 := 0 and
zn := 0. For 0 6 i 6 n− 1, denote by

pi+1,j = π(1) · · · π(i)nπ(i+ 1) · · · π(n− 1)× (z1, . . . , zi, j, zi+1, . . . , zn−1)
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8 C.-O. CHOW AND T. MANSOUR

the element of Gr,n obtained by inserting (n, j) to p = π × z ∈ Gr,n−1, where j ∈ Cr.

Since π(i) < n > π(i + 1) for 0 6 i < n − 1, we have from the definition of descents
that if i ∈ Dr(p), then zi > zi+1 so that

i ∈ Dr(pi+1,j) and i+ 1 6∈ Dr(pi+1,j)⇐⇒ zi > zi+1 > j,

both i, i+ 1 ∈ Dr(pi+1,j)⇐⇒ zi > j > zi+1,

i+ 1 ∈ Dr(pi+1,j) and i 6∈ Dr(pi+1,j)⇐⇒ j > zi > zi+1;

if i 6∈ Dr(p), then zi 6 zi+1 so that

i ∈ Dr(pi+1,j) and i+ 1 6∈ Dr(pi+1,j)⇐⇒ zi+1 > zi > j,

both i, i+ 1 6∈ Dr(pi+1,j)⇐⇒ zi+1 > j > zi,

i+ 1 ∈ Dr(pi+1,j) and i 6∈ Dr(pi+1,j)⇐⇒ j > zi+1 > zi.

Suppose that Dr(p) = {i1, i2, . . . , ik−1}< and that the last descent of p is not equal to

n − 1. The set of non-descent positions is
⋃k−1
s=0{is + 1, . . . , is+1 − 1}, where i0 := −1

and ik := n.

One may obtain elements of Gr,n having k descents as follows.

For s = 1, 2, . . . , k − 1 and zis > j > zis+1, we have

Dr(pis+1,j) = {i1, . . . , is, is + 1, is+1 + 1, . . . , ik−1 + 1}

so that fmajr(pis+1,j) = fmajr(p) + r(k − s+ is)− j. Summing over s and j, we get

qfmajr(p)

k−1∑
s=1

zis−1∑
j=zis+1

qr(k−s+is)−j = qfmajr(p)
{

(qr(k+i1−1)−zi1
+1 + · · ·+ qr(k+i1−1)−zi1+1)

+ (qr(k+i2−2)−zi2
+1 + · · ·+ qr(k+i2−2)−zi2+1)

+ · · ·

+ (qr(ik−1+1)−zik−1
+1 + · · ·+ qr(ik−1+1)−zik−1+1)

}
.

(6)

For s = 0, 1, . . . , k − 1, l = is + 1, . . . , is+1 − 1 and j > zl+1, we have

Dr(pl+1,j) = {i1, . . . , is, l + 1, is+1 + 1, . . . , ik−1 + 1}

so that fmajr(pl+1,j) = fmajr(p) + r(k − s + l) − j. (When l = ik − 1 = n − 1, since
π(n − 1) < n < π(n) = n + 1, n is a descent of pn,j ⇐⇒ j > zn = 0. The sum over j
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below when l = n− 1 is modified accordingly.) Summing over s, l and j, we get

qfmajr(p)

k−1∑
s=0

is+1−1∑
l=is+1

r−1∑
j=zl+1

qr(k−s+l)−j

= qfmajr(p)
{[

(qr(k−1)+1 + · · ·+ qrk−z1) + (qrk+1 + · · ·+ qr(k+1)−z2)

+ · · ·+ (qr(k+i1−3)+1 + · · ·+ qr(k+i1−2)−zi1−1) + (qr(k+i1−2)+1 + · · ·+ qr(k+i1−1)−zi1 )
]

+
[
(qr(k+i1−1)+1 + · · ·+ qr(k+i1)−zi1+2) + (qr(k+i1)+1 + · · ·+ qr(k+i1+1)−zi1+3)

+ · · ·+ (qr(k+i2−4)+1 + · · ·+ qr(k+i2−3)−zi2−1) + (qr(k+i2−3)+1 + · · ·+ qr(k+i2−2)−zi2 )
]

+ · · ·

+
[
(qr(ik−1+1)+1 + · · ·+ qr(ik−1+2)−zik−1+2) + (qr(ik−1+2)+1 + · · ·+ qr(ik−1+3)−zik−1+3)

+ · · ·+ (qr(ik−2)+1 + · · ·+ qr(ik−1)−zik−1) + (qr(ik−1)+1 + · · ·+ qrik−1)
]}
.

(7)

For s = 0, 1, . . . , k − 1, l = is + 1, . . . , is+1 − 1 and j < zl, we have

Dr(pl+1,j) = {i1, . . . , is, l, is+1 + 1, . . . , ik−1 + 1}
so that fmajr(pl+1,j) = fmajr(p) + r(k− 1− s+ l)− j. (When l = 0, there is not any j
satisfying 0 6 j < zl = 0. Thus, the middle sum below starts from l = 1 when s = 0.)
Summing over s, l and j, we get

qfmajr(p)

k−1∑
s=0

is+1−1∑
l=is+1

zl−1∑
j=0

qr(k−1−s+l)−j

= qfmajr(p)
{[

(qrk−z1+1 + · · ·+ qrk) + (qr(k+1)−z2+1 + · · ·+ qr(k+1))

+ · · ·+ (qr(k+i1−2)−zi1−1+1 + · · ·+ qr(k+i1−2))
]

+
[
(qr(k+i1−1)−zi1+1+1 + · · ·+ qr(k+i1−1)) + (qr(k+i1)−zi1+2+1 + · · ·+ qr(k+i1))

+ · · ·+ (qr(k+i2−3)−zi2−1+1 + · · ·+ qr(k+i2−3))
]

+ · · ·

+
[
(qr(ik−1+1)−zik−1+1+1 + · · ·+ qr(ik−1+1)) + (qr(ik−1+2)−zik−1+2+1 + · · ·+ qr(ik−1+2))

+ · · ·+ (qr(ik−1)−zik−1+1 + · · ·+ qr(ik−1))
]}
.

(8)

Summing (6), (7) and (8) and noting rik − 1 = rn− 1, we obtain

(9) qfmajr(p)(qrk−r+1 + qrk−r+2 + · · ·+ qrn−1) = qfmajr(p)qrk−(r−1)[r(n− k) + (r − 1)]q.

By adapting the above arguments, one can show that (9) still holds when the last
descent of p is equal to n− 1. Summing now over all p = π × z ∈ Gr,n−1 having k − 1
descents, the second term on the right side of the recurrence relation follows.

This is the pre-published version.



10 C.-O. CHOW AND T. MANSOUR

Suppose now Dr(p) = {i1, . . . , ik}< and that the last descent of p is less than n−1. The

set of non-descent positions is
⋃k
s=0{is+1, . . . , is+1−1}, where i0 := −1 and ik+1 := n.

One may obtain elements of Gr,n having k descents as follows.

For s = 1, 2, . . . , k and zis+1 > j, we have

Dr(pis+1,j) = {i1, . . . , is, is+1 + 1, . . . , ik + 1}

so that fmajr(pis+1,j) = fmajr(p) + r(k − s)− j. Since ik + 1, . . . , ik+1 − 1 = n− 1 are
non-descent positions, zik+1 6 · · · 6 zn−1 = 0 so that there is not any 0 6 j < r − 1
satisfying 0 6 j < zik+1 = 0. Summing over s and j, we get

(10) qfmajr(p)

k−1∑
s=1

zis+1−1∑
j=0

qr(k−s)−j = qfmajr(p)
{

(qr(k−1)−zi1+1+1 + · · ·+ qr(k−1))

+ (qr(k−2)−zi2+1+1 + · · ·+ qr(k−2)) + · · ·+ (qr−zik−1+1+1 + · · ·+ qr)
}
.

For s = 1, 2, . . . , k and j > zis , we have

Dr(pis+1,j) = {i1, . . . , is−1, is + 1, . . . , ik + 1}

so that fmajr(pis+1,j) = fmajr(p) + r(k − s+ 1)− j. Summing over s and j, we get

(11) qfmajr(p)

k∑
s=1

r−1∑
j=zis

qr(k−s+1)−j = qfmajr(p)
{

(qr(k−1)+1 + · · ·+ qrk−zi1 )

+ (qr(k−2)+1 + · · ·+ qr(k−1)−zi2 ) + · · ·+ (q + · · ·+ qr−zik )
}
.

For s = 0, 1, . . . , k, l = is + 1, . . . , is+1 − 1 and zl+1 > j > zl, we have

Dr(pl+1,j) = {i1, . . . , is, is+1 + 1, . . . , ik + 1}

so that fmajr(pl+1,j) = fmajr(p) + r(k − s)− j.
Since ik + 1, . . . , ik+1 − 1 = n− 1 are non-descents, zik+1 6 · · · 6 zik+1−1 = zn−1 = 0 so
that there is not any 0 6 j < r satisfying zl+1 > j > zl for l = ik + 1, . . . , ik+1 − 2 =
n − 2. On the other hand, since π(n − 1) < n < π(n) = n + 1 and n − 1 6∈ Dr(p),
0 = zn−1 6 j > zn = 0 so that n − 1 6∈ Dr(pn,j) for any 0 6 j < r − 1. Moreover,
n 6∈ Dr(pn,j)⇐⇒ j = 0.

Thus, for s = k, only l = ik+1 − 1 = n − 1 and j = 0 gives rise to an element pn,0 of
Gr,n having Dr(pn,0) = Dr(p) and fmajr(pn,0) = fmajr(p).

Summing over s, l and j, we get

qfmajr(p)

k∑
s=0

is+1−1∑
l=is+1

zl+1−1∑
j=zl

qr(k−s)−j

= qfmajr(p)
{

(qrk−zi1
+1 + · · ·+ qrk) + (qr(k−1)−zi2

+1 + · · ·+ qr(k−1)−zi1+1)

+ · · ·+ (qr−zik
+1 + · · ·+ qr−zik−1+1) + 1

}
,

(12)
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where successive terms on the right correspond to s = 0, 1, . . . , k. Summing (10), (11)
and (12), we get

(13) qfmajr(p)(1 + q + q2 + · · ·+ qrk) = qfmajr(p)[rk + 1]q.

By adapting the above arguments, one can show that (13) still holds when the last
descent of p is equal to n− 1. Summing now over all p = π × z ∈ Gr,n−1 having k de-
scents, we obtain the first term on the right side of the recurrence relation. Combining
both terms, (i) follows.

(ii) Multiplying the recurrence relation in (i) by tk followed by summing over k > 1,
and using Lemma 8, we have

∑
k>1

Gr,n,k(q)t
k

=
∑
k>1

{[rk + 1]qGr,n−1,k(q) + qrk−(r−1)[r(n− k) + (r − 1)]qGr,n−1,k−1(q)}tk

=
∑
k>1

[rk + 1]qGr,n−1,k(q)t
k +

∑
k>0

qrk+1[rn− rk − 1]qGr,n−1,k(q)t
k+1

=
∑
k>1

(1 + q[r]q[k]qr)Gr,n−1,k(q)t
k +

∑
k>0

q([rn− 1]q − [r]q[k]qr)Gr,n−1,k(q)t
k+1

=
∑
k>0

(qt[rn− 1]q + 1)Gr,n−1,k(q)t
k − 1 + q[r]qt(1− t)

∑
k>0

[k]qrGr,n−1,k(q)t
k−1

= (qt[rn− 1]q + 1)Gr,n−1(t, q)− 1 + q[r]qt(1− t)δr,t(Gr,n−1(t, q)).

Since Gr,n,0(q) = 1, transposing the 1 to the left side, (ii) follows.

(iii) Induction on n. Since Gr,1(t, q) = 1 + q[r − 1]qt, we clearly have

[
k + 1

1

]
qr

Gr,1,0(q) +

[
k
1

]
qr

Gr,1,1(q) = [k + 1]qr + q[r − 1]q[k]qr

= [rk + 1]q

so that the case n = 1 holds. Suppose now that

[rk + 1]n−1
q =

n−1∑
j=0

Gr,n−1,j(q)

[
k + n− 1− j

n− 1

]
qr
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holds, where n > 2. Multiplying both sides by [rk + 1]q, we have

[rk + 1]nq =
n−1∑
j=0

Gr,n−1,j(q)

[
k + n− 1− j

n− 1

]
qr

[rk + 1]q

=
n−1∑
j=0

Gr,n−1,j(q)

[
k + n− 1− j

n− 1

]
qr

× [rj + 1]q[k + n− j]qr + qrj+1[r(n− j)− 1]q[k − j]qr

[n]qr

=
n−1∑
j=0

[rj + 1]qGr,n−1,j(q)

[
k + n− j

n

]
qr

+
n−1∑
j=0

qrj+1[r(n− j)− 1]qGr,n−1,j(q)

[
k + n− 1− j

n

]
qr

=
n−1∑
j=0

[rj + 1]qGr,n−1,j(q)

[
k + n− j

n

]
qr

+
n∑
j=1

qrj−(r−1)[r(n− j) + (r − 1)]qGr,n−1,j−1(q)

[
k + n− j

n

]
qr

=
n∑
j=0

Gr,n,j(q)

[
k + n− j

n

]
qr

,

where the second equality follows from Lemma 8(iii). This finishes the induction and
the proof of (iii).

(iv) Multiplying (iii) by tk followed by summing over k, we have∑
k>0

[rk + 1]nq t
k =

∑
k>0

n∑
j=0

Gr,n,j(q)

[
k + n− j

n

]
qr

tk

=
n∑
j=0

Gr,n,j(q)t
j
∑
k>j

[
k + n− j

n

]
qr

tk−j

=
Gr,n(t, q)∏n
i=0(1− tqri)

,

where the last equality follows from (3).

(v) Multiplying (iv) by xn/n! followed by summing over n > 0, we have∑
n>0

Gr,n(t, q)∏n
i=0(1− tqri)

xn

n!
=
∑
k>0

tk
∑
n>0

([rk + 1]qx)n

n!
=
∑
k>0

tk exp([rk + 1]qx).

�

Theorem 9(iii) is a q-Worpitzky identity. When q = 1, Theorem 9(i) and (iv) specialize
to give [11, Lemma 16, Theorem 17], and Theorem 9(v), upon replacing x by x(1− t)
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followed by multiplication by (1− t), becomes∑
n>0

Gr,n(t)
xn

n!
= (1− t)

∑
k>0

tke(rk+1)x(1−t) =
(1− t)ex(1−t)

1− terx(1−t)
,

which is [11, Theorem 20].

5. Further properties of Gr,n(t, q)

We present in this section further properties ofGr,n(t, q). A convolution-type recurrence
relation for Gr,n(t, q) is as follows.

Proposition 10. We have for n > 1,

Gr,n(t, q) =
n∑
i=1

(
n− 1

i− 1

)
qri−(r−1)[r]n−i+1

q tGr,i−1(t, q)G1,n−i(tq
ri, qr)+(1−tqrn)Gr,n−1(t, q).

Proof. By Lemma 8 and Theorem 9(iv), we have∑n
i=1

(
n−1
i−1

)
qri−(r−1)[r]n−i+1

q tGr,i−1(t, q)G1,n−i(tq
ri, qr)∏n

j=0(1− tqrj)

=
n∑
i=1

(
n− 1

i− 1

)
qri−(r−1)[r]n−i+1

q t

(
Gr,i−1(t, q)∏i−1
j=0(1− tqrj)

)(
G1,n−i(tq

ri, qr)∏n
j=i(1− tqrj)

)

=
n∑
i=1

(
n− 1

i− 1

)
qri−(r−1)[r]n−i+1

q t

(∑
k>0

[rk + 1]i−1
q tk

)(∑
l>0

[l + 1]n−iqr (tqri)l
)

=
∑
m>0

tm+1
∑
k+l=m

06k,l6m

qrl+1[r]q

n∑
i=1

(
n− 1

i− 1

)
(qr(l+1)[rk + 1]q)

i−1([r]q[l + 1]qr)n−i

=
∑
m>0

tm+1
∑
k+l=m

06k,l6m

qrl+1[r]q(q
r(l+1)[rk + 1]q + [r]q[l + 1]qr)n−1

=
∑
m>0

tm+1q[r]q

m∑
l=0

qrl[rm+ r + 1]n−1
q

=
∑
m>0

tm+1q[r]q[m+ 1]qr [rm+ r + 1]n−1
q

=
∑
m>0

[rm+ 1]nq t
m −

∑
m>0

[rm+ 1]n−1
q tm

=
Gr,n(t, q)− (1− tqrn)Gr,n−1(t, q)∏n

i=0(1− tqri)
.

This finishes the proof. �

A combinatorial proof of the preceding proposition is also possible. See, e.g., [6, The-
orem 3.6], [8, Theorem 4.4] for samples of arguments in the type B case.

The following is a q-Frobenius formula for Gr,n(t, q).
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Proposition 11. We have

Gr,n(t, q)∏n
i=0(1− tqri)

=
n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)
,

where the polynomial Srn,k(q) in q satisfies the recurrence relation

(14) Srn+1,k(q) = [rk + 1]qS
r
n,k(q) + qrk−(r−1)[r]qS

r
n,k−1(q).

Proof. For k = 0, 1, . . . , n, the polynomials

θk(t) = tk(1− tqr(k+1))(1− tqr(k+2)) · · · (1− tqrn)

in t are linearly independent and of degree n so that Gr,n(t, q) =
∑n

k=0Cn,k(q)θk(t) for
some polynomial Cn,k(q) in q. Now define Srn,k(q) = Cr

n,k(q)/[k]qr ! so that

(15)
Gr,n(t, q)∏n
i=0(1− tqri)

=
n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)
.

Applying the Eulerian differential operator δr,t to (15), we have

δr,t

(
Gr,n(t, q)∏n
i=0(1− tqri)

)
=

[rn+ r]qGr,n(t, q) + [r]q(1− t)δr,t(Gr,n(t, q))

[r]q
∏n+1

i=0 (1− tqri)

so that

q[r]qtδr,t

(
Gr,n(t, q)∏n
i=0(1− tqri)

)
=
qt[rn+ r]qGr,n(t, q) + q[r]qt(1− t)δr,t(Gr,n(t, q))∏n+1

i=0 (1− tqri)
.

Since 1 + qt[rn+ r − 1]q = (1− tqrn+r) + qt[rn+ r]q, by Theorem 9(ii), we have

(16)
Gr,n+1(t, q)∏n+1
i=0 (1− tqri)

=
Gr,n(t, q)∏n
i=0(1− tqri)

+ q[r]qtδr,t

(
Gr,n(t, q)∏n
i=0(1− tqri)

)
.
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Since [rk]q = [r]q[k]qr , replacing both sides of (16) by (15), we have

n+1∑
k=0

[k]qr !Srn+1,k(q)t
k∏k

i=0(1− tqri)

=
n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)
+ q[r]qtδr,t

( n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)

)

=
n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)
+ q[r]qt

( n∑
k=0

[k]qr ![rk + r]qq
rkSrn,k(q)t

k

[r]q
∏k+1

i=0 (1− tqri)
+

n∑
k=0

[k]qr ![k]qrSrn,k(q)t
k−1∏k

i=0(1− tqri)

)

=
n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)
+

n∑
k=0

[k]qr ![rk + r]qq
rk+1Srn,k(q)t

k+1∏k+1
i=0 (1− tqri)

+
n∑
k=0

q[r]q[k]qr ![k]qrSrn,k(q)t
k∏k

i=0(1− tqri)

=
n∑
k=0

[k]qr !Srn,k(q)t
k∏k

i=0(1− tqri)
+

n+1∑
k=0

[k − 1]qr ![rk]qq
rk−(r−1)Srn,k−1(q)t

k∏k
i=0(1− tqri)

+
n∑
k=0

q[r]q[k]qr ![k]qrSrn,k(q)t
k∏k

i=0(1− tqri)

=
n+1∑
k=0

[k]qr !{(1 + q[r]q[k]qr)Srn,k(q) + qrk−(r−1)[r]qS
r
n,k−1(q)}tk∏k

i=0(1− tqri)

=
n+1∑
k=0

[k]qr !{[rk + 1]qS
r
n,k(q) + qrk−(r−1)[r]qS

r
n,k−1(q)}tk∏k

i=0(1− tqri)
,

where the second equality follows from an application of Lemma 2. Equating the
coefficients of tk/(1− t)(1− tqr) · · · (1− tqrk), we get

Srn+1,k(q) = [rk + 1]qS
r
n,k(q) + qrk−(r−1)[r]qS

r
n,k−1(q).

Since Srn,0(q) = 1 for n > 0, the above recurrence implies that Srn,k(q) is a polynomial
in q. This finishes the proof. �

The values of Srn,k(q) for n = 1, 2, 3, 4 are as follows:

Sr1,1(q) = q[r]q,

Sr2,1(q) = q[r]q([r + 1]q + 1),

Sr2,2(q) = qr+2[r]2q,

Sr3,1(q) = q[r]q([r + 1]2q + [r + 1]q + 1),

Sr3,2(q) = qr+2[r]2q([2r + 1]q + [r + 1]q + 1),

Sr3,3(q) = q3r+3[r]3q,

Sr4,1(q) = q[r]q([r + 1]3q + [r + 1]2q + [r + 1]q + 1),

Sr4,2(q) = qr+2[r]2q([2r + 1]2q + [2r + 1]q[r + 1]q + [r + 1]2q + [2r + 1]q + [r + 1]q + 1),

Sr4,3(q) = q3r+3[r]3q([3r + 1]q + [2r + 1]q + [r + 1]q + 1),

Sr4,4(q) = q6r+4[r]4q,

and Srn,0(q) = 1 for all n.

The polynomials Srn,k(q) have a combinatorial characterization. Let S be a set of
positive integers and ζ be a primitive rth root of unity. An r-signed partition of S is a
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collection π = (B1, . . . , Bk) of subsets of
⋃r−1
j=0 ζ

jS with min |B1| 6 · · · 6 min |Bk| and

such that {ζjBi : i ∈ [k], 0 6 j < r} is a partition of
⋃r−1
j=0 ζ

jS, where ζjS = {ζjs : s ∈
S} and |S| = {|s| : s ∈ S}.
We call B1, . . . , Bk the blocks of π and say that π has k blocks. We also let

C(π) =
∑

x∈
⋃k

i=1Bi

(r − j)χ(x ∈ ζjS).

A partial r-signed partition of S is an r-signed partition of some subset of S. Denote
by Πr,⊆(S, k) the set of all partial r-signed partitions of S having k blocks, and let

Sr([n], k, q) =
∑

π∈Πr,⊆([n],k)

qm(π),

where

m(π) = r

k∑
i=1

(i− 1)
n∑
ν=1

χ

(
ν ∈

r−1⋃
j=0

ζjBi

)
+ C(π).

Proposition 12. We have Srn,k(q) = Sr([n], k, q).

Proof. It suffices to show that Sr([n], k, q) satisfies (14) and the initial condition. The
case n = 1 is trivial. So, we let n > 1 and π = (B1, . . . , Bk) ∈ Πr,⊆([n], k). If {ζjn} is a
block of π, then {ζjn} = Bk and removing it from π yields a partial r-signed partition τ
of [n−1] into k−1 blocks with C(π) = C(τ)+r−j and m(π) = m(τ)+r(k−1)+(r−j).
If {ζjn} $ Bi for some i ∈ [k], then removing ζjn from Bi yields a partial r-signed
partition τ ′ of [n − 1] into k blocks with C(π) = C(τ ′) + r − j and m(π) = m(τ ′) +
r(i− 1) + (r − j).
If none of ζ0n, ζ1n, . . . , ζr−1n lies in any block of π, then π ∈ Πr,⊆([n− 1], k). Thus,

Sr([n], k, q) =
r−1∑
j=0

∑
τ∈Πr,⊆([n−1],k−1)

qm(τ)+r(k−1)+(r−j)

+
k∑
i=1

r−1∑
j=0

∑
τ ′∈Πr,⊆([n−1],k)

qm(τ ′)+r(i−1)+(r−j) +
∑

π∈Πr,⊆([n−1],k)

qm(π)

= qrk−(r−1)[r]qSr([n− 1], k − 1, q) + (q[r]q[k]qr + 1)Sr([n− 1], k, q)

= [rk + 1]qSr([n− 1], k, q) + qrk−(r−1)[r]qSr([n− 1], k − 1, q).

This finishes the proof. �

We now address the real-rootedness of Gr,n(t, q). The following conjecture, which
generalizes [8, Conjectures 4.6, 4.8] for types A and B cases, and has been verified
computationally for 1 6 r, n 6 20 and for q = 0.2, 0.4, . . . , 10, if true, would imply
Gr,n(t, q) interlacing Gr,n+1(t, q), hence the simple real-rootedness of Gr,n(t, q) for all
n > 1.
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Conjecture 13. Let r, n > 1 and q > 0. Suppose that Gr,n(t, q) is simply real-rooted
and let trn,1(q) < trn,2(q) < · · · < trn,n(q) < 0 be these real zeros. Then trn,i(q) satisfy the
following separation property:

trn,i+1(q) > min(qr, q−r)trn,i(q), i = 1, 2, . . . , n− 1.

6. Concluding remarks

In case r = 1, 2, Gr,n are respectively the symmetric group Sn and the hyperoctahedral
group Bn, which are finite Coxeter groups. It is well known that for finite Coxeter
groups, statistics equidistributed with the length function are termed Mahonian. For
r > 2, Gr,n is no longer a Coxeter group. However, the coincidence of distribution of a
statistic with the Poincaré polynomial serves as the defining condition for the statistic
to be Mahonian.

Analogous to types A and B cases, we define a sequence of polynomials {Pr,n(t, q)} in
two variables to be r-Euler-Mahonian if Pr,n(t, q) satisfies any part of Theorem 9. We
further define that a pair of statistics (stat1, stat2) on the wreath product Gr,n to be
r-Euler-Mahonian if ∑

p∈Gr,n

tstat1(p)qstat2(p) = Gr,n(t, q).

It is clear that 1- and 2-Euler-Manhonian pairs are exactly the types A and B Euler-
Mahonian pairs, respectively. Bagno and Biagioli [5] recently consider the descent
representations of Gr,p,n and obtain, by a specialization of the multigraded Hilbert
series of the ring C[x1, x2, . . . , xn] of complex polynomials in x1, x2, . . . , xn by exponent
partitions, a generalized Carlitz identiy for Gr,n, namely,∑

g∈Gr,n
tfdes(g)qfmaj(g)

(1− t)(1− trqr)(1− trq2r) · · · (1− trqnr)
=
∑
k>0

[k + 1]nq t
k,

where fdes(g) and fmaj(g) are the flag descent number and flag major index of g ∈
Gr,n. The latter flag major index is different from the one defined in Section 3 here.
In light of the present work, it would be interesting to find the multigraded Hilbert
series corresponding to our choice of (desr, fmajr) and to realize Theorem 9(iv) as a
specialization of it. This will be the subject of further research.
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