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A RECURRENCE RELATION FOR THE “INV” ANALOGUE OF
¢-EULERIAN POLYNOMIALS

CHAK-ON CHOW

ABSTRACT. We study in the present work a recurrence relation, which has long been over-
looked, for the g-Eulerian polynomial Adesinv(¢ q) = Y ves, tdes(@) ¢inv()  wwhere des(o)
and inv(o) denote, respectively, the descent number and inversion number of o in the Sym-
metric group &, of degree n. We give an algebraic proof and a combinatorial proof of the
recurrence relation.

1. INTRODUCTION

Let G,, denote the symmetric group of degree n. Any element o of &,, is represented by
the word o090, where o; = (i) for i = 1,2, ..., n. Two well-studied statistics on &,
are the descent number and the inversion number defined by

des(o ZX 0; > 0it1),

inv(o) := Z x(oi > 05),

1<i<j<n

respectively, where 0,11 := 0 and x(P) = 1 or 0 depending on whether the statement P is
true or not. It is well-known that des is Eulerian and that inv is Mahonian. The generating
function of the Euler-Mahonian pair (des, inv) over &, is the following ¢g-Eulerian polynomial:

des,inv des(o) mV o)
A? =Yt

0’€6n

It is clear that A, (t,1) = A, (), the classical Eulerian polynomial. Let z and ¢ be commuting
indeterminates. For n > 0, let [n], := 1+ q+¢*+ - -+ ¢" ! be a g-integer, and [n],! :=
[1]4[2], - - - [n]4 be a g-factorial. Define a g-exponential function by

e(zq) =) .

>0 [n]q!

Stanley [6] proved that

. 1-—1¢
(1) Ades,lnv l’ t: q Ades inv t q — )
;} ]q! 1 —te(x(1—1t);q)
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Alternate proofs of (1) have also been given by Garsia [4] and Gessel [5]. Désarménien and
Foata [2] observed that the right side of (1) is precisely

(1 — Y —t)”-l[qf—;q!> ,

n>1

and from which they obtained a “semi” g-recurrence relation for A%V (¢ ), namely,

Ages,inv(t’ q) — t(l . t)nfl + Z |:7Z:| A?es,inv (t, q>t(1 _ t)nflfi.

1<i<n—1 q
The above g-recurrence relation is “semi” in the sense that the summands on the right involve
two factors one of which depends on ¢ whereas the other does not. We shall establish in the
present note that a “fully” g-recurrence relation for A4V (¢, q) exists such that both factors
of the summands depend on ¢ (see Theorem 2.2 below). In the next section, we derive this
recurrence relation algebraically. In the final section, we give a combinatorial proof of this
recurrence relation.

2. THE RECURRENCE RELATION

We derive in the present section the recurrence relation by algebraic means.

Let Q denote, as customary, the set of rational numbers. Let x be an indeterminate, Q|x]
be the ring of polynomials in = over Q, and Q[[x]] the ring of formal power series in = over
Q. We introduce an Eulerian differential operator 9, in x by

5. (f(a)) = 14D =0,

qr — x
for any f(z) € Q[¢[[z]] in the ring of formal power series in x over Q[q]. It is easy to see

that

.(2") = [n]qx”_17

so that as ¢ — 1, 0,(2") — na™ !, the usual derivative of 2. See [1] for further properties

of 6.
LEMMA 2.1. We have 0,(e(x(1 —t);q) = (1 — t)e(x(1 —1t);q).
Proof. This follows from
oy elgz(1—1t);q) —e(z(1 —t); q)
5z(e(x<1_t>7Q) - (q—l)x
_ Z g (1 —t)" —a™(1 —¢t)"
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THEOREM 2.2. Forn > 1, AYSInV(¢ q) satisfies

es,inv n es,inv n es,inv es,inv
@ AR = 0 )+ 7] A AR )
1 q

S
—

B
Il

Proof. From (1) we have that

Ades,inv(x7t; q> o (1 o t)
1—1t);q) = .
(3) te(z(1 —t); q) Ao (1 1 q)

Applying d, to both sides of (1), and using Lemma 2.1, (1) and (3), we have

des,inv x" o (1 _t) 1 1
2 A T = e (rmi—5g T
t(1 —t)d.(e(x(1 —1);q)
[1—te(z(1 —1);q)][1 —te(qz(1 —t); q)]
t(1 —t)%e(z(1 —1);q)
(1 —te(z(1 —1);q)][1 — te(qz(1 —t); )]
= [A%™ (2,8 q) — (1 — £)]A*>"™ (qa, £ q).

Extracting the coefficients of 2", we finally have

n

es,inv n es,inv es,inv n es,inv
A ) = 3 |1 o= - 0 - ora e
q

k=0

S
—

n es,inv n es,inv es,inv
= (L+1q") A= (tq) + M A (1 ) A (1 ).
1 q

e
Il

The identity (2) is a g-analogue of the following convolution-type recurrence [3, p. 70]

n—1
n
Apa(t) = (1 + )AL (L) + kZ:; (k) Ak (1) Ax(t),
satisfied by the classical Eulerian polynomials A, (t) :== > & 190,

3. A COMBINATORIAL PROOF

We give a combinatorial proof of Theorem 2.2 in the present section.

Recall that elements of G,,.1 can be obtained by inserting n + 1 to elements of G,,. Let
o=o0y--0, €6,. Denote by 0, =01+ 0p(n+1)oks1--0n, 0 <k < n. It is easy to see
that

des(o,9) =des(o) + 1, inv(oyg) = inv(o) + n,

des(oy,) = des(o), inv(oy,) = inv(o),
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and for 1 < k< n—1,
des(oyx) = des(oy - - - 0y) + des(0p41 -+ 0n),
inv(oiy) =inv(oy -+ - og) +inv(ogsr - - - 0p)
+n—k+#{(r,s): 0. >0, 1 <r<kk+1<s<n}

Let S = {oy,...,01}. Then the partial permutations oy ---0; € &(5) and o1+ 0, €
S([n] \ S), where &(S) denotes the group of permutations of the set S. It is clear that the
product &(5) x &([n]\ S) is a subgroup of &,, isomorphic to & x &,,_,. Also, the quotient
S,/ (6 x &,_) = ([Z]) (see [8, p. 351]), where ([Z}) denotes the set of all k-subsets of [n],
which is in bijective correspondence with the set of multipermutations &({1%,2"7*}) of the
multiset {1%, 2"%} consisting of k copies of 1’s and n — k copies of 2’s.

Define a multipermutation w = wyws - - - w, € &({1%,2"7*}) by

1 ifiGS:{Jl,...,Uk},
w; = .
2 ifien)\S={0k1,...,00}

< n. It is clear that (4, 7) is an inversion of w if and only if i = o4, j = o, for
k,k+1<s<nand o, > o, so that

Let 1 <i<y
some 1 < r <

#{(r,s): 0p > 05,1 <r <k, k+1<s<n}=inv(w).

As S ranges over ([Z]), w so defined ranges over &({1*,2"7*}). Putting pieces together and
using the fact [7, Proposition 1.3.17] that

Z qinv(w) _ |:Z':| q ’

weS({1k2n—k})
we have

(4)
Ades inv (t, (])

n+1

— des(04x) ,inv(o4x)
>3 sty

k=0 c€6,

(1 + tq )Ades Jinv t q + Z Z tdes(al-..ak)+des(ak+1~--Un)qinv(01--~ak)+inv(ak+1-~~an)+n—k3+inv(w)

010 ECk
Oht1 on€S, _1
weBS({1%,2n~k})

n—1
— (1 + tqn)14;iles,inv(t7 q) + qnfk Z qinv(w) Z 2fdes(ﬂ')qinv(‘r) Z tdes(ﬂ)qinv(ﬂ)
k=1 we@({lk,Z”—k}) TEGK €S, _k
n—1
n es,inv n— n es,inv es,inv
= (L+tg")AX™(t,q) + Y ¢ M ALt q) AR (t ),
k=1 q

~~

which is equivalent to (2) (by virtue of the symmetry of the g-binomial coefficient).
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