- 1 Title: Using squat testing to predict training loads for lower-body exercises in elite
- 2 Karate athletes.
- 3 Running title: Squat prediction of training loads
- 4

5

Abstract

6	The purpose of this study was to determine the relationship between squat loads
7	and 2 bilateral and 2 unilateral stepping lower-body exercises in predominantly
8	unilateral movement elite athletes (Karate). Equations to predict loads for lower-body
9	exercises based on the squat load were also determined. Fourteen male elite Karate
10	athletes (age = 22.6 ± 1.2) performed 6 repetition maximum (RM) of the following
11	free-weight bilateral exercises: back half squat, deadlift, leg press and unilateral
12	stepping exercises; lunge and step-up. Results showed that 6 RM squat load was
13	significantly ($p < 0.001$) correlated with deadlift (r = 0.86), leg press (r = 0.76), lunge
14	(r = 0.86) and step-up $(r = 0.92)$. Linear regression showed that the 6 RM squat load
15	was a significant predictor for deadlift, leg press, lunge and step-up (\mathbb{R}^2 range from
16	0.57 to 0.85, $p < 0.001$). The following 6 RM prediction equations were determined: a)
17	Deadlift = squat load $(1.12) - 16.60 \text{ kg}$, b) Leg press = squat load $(1.66) + 16.10 \text{ kg}$, c)
18	Lunge = squat load $(0.61) + 9.39$ kg, and d) Step-up = squat load $(0.85) - 10.36$ kg.
19	Coaches and fitness professionals can use the 6 RM squat load as a time effective and
20	accurate method to predict training loads for both bilateral and unilateral lower-body
21	exercises with quadriceps as the prime mover. Load prescriptions for unilateral
22	exercises should take into account the type of athletic population.

- 23 Keywords: load estimates, resistance, strength, unilateral, bilateral
- 24

25 INTRODUCTION

26 The squat is one of the most frequently prescribed exercises in high performance 27 athletic training (12, 13, 15, 32). The multiple repetitions measurement in the back 28 half squat has been found to be highly repeatable with an intra-class correlation 29 coefficient of 0.95 (25), and is highly correlated with 1 repetition maximum (RM) 30 values (r > 0.96) (23). In addition, previous studies have found that muscular strength 31 in the back half squat had a high association with jump (38), sprint (38), power (4) 32 and sport performance (28) in elite athletes. To prescribe strength training programs, 33 the determination of exercise loads can be achieved objectively by calculating a 34 percentage from the maximal strength represented by 1 RM, or subjectively by trial 35 and error (13, 15, 32). The latter method can be employed but is inaccurate, varies 36 between subjects, and does not conform to the guidelines of the National Strength and 37 Conditioning Association (3, 15, 36).

The prediction of 1 RM from multiple repetitions measurement offers a practical advantage over 1 RM testing in that only core exercises that recruit large muscle groups and multiple joints are suggested for 1 RM measurement. In contrast, exercises such as the deadlift are not recommended because the weak stabilizing muscles of the lower back would become highly fatigued after several testing sets, and maintaining a correct body position throughout the test would be difficult (3). In addition, unilateral exercises such as lunges and step-ups place unequal loading on the limbs and are not

45	recommended for the 1 RM test (3). In this regard, the multiple repetitions
46	measurement has an advantage over the 1 RM because the former measurement can
47	be made on both the assistance and unilateral exercises (14, 23).
48	Ebben et al. (14) reported high explained variance between 6 RM loads of squat
49	and other lower-body exercises (\mathbb{R}^2 ranged from 0.62 to 0.81) among collegiate
50	athletes and recreationally active students. However, Ebben et al. (14) suggested that
51	the prediction equations from their study could only be generalized to similar
52	populations. Karate for example, is a martial art that places emphasis on unilateral
53	striking patterns. While 1 RM testing typically involves core exercises such as squat,
54	bench press, cleans and other large muscle group bilateral activities, it is not known if
55	the regression equations and correlations derived from Ebben's study for collegiate
56	and recreationally active individuals could specifically apply to elite athletes in whom
57	unilateral actions are emphasized. Furthermore, Ebben's results showed that the
58	lowest correlations occurred between squats and unilateral actions such as lunges (\mathbb{R}^2
59	= 0.62), step-ups (R^2 = 0.71) and single leg knee extensions (R^2 = 0.67). The greatest
60	correlation occurred between the bilateral squat test and the bilateral deadlift test (R^2 =
61	0.81). Hence, Karate athletes with their unilateral striking emphasis may require
62	substantially different correlation and regression equations between the 6 RM bilateral
63	squat and unilateral actions such as the lunge and step-up.

64	Stability is a mitigating factor in the production of force during a resisted action.
65	A number of studies report decreased force output in less stable conditions (5, 6, 10,
66	21, 22, 26). Lunges and step-ups are performed with unilateral stepping actions
67	reducing the area of support and decreasing stability as compared to bilateral actions
68	such as squats, leg presses and deadlifts with wider support bases. Behm et al. (8)
69	reported a significant correlation between the maximum skating speed and static
70	balance scores in young ice hockey players. Athletes who participate in team sports
71	that emphasize stability such as ice hockey or in individual sports such as Karate that
72	require great stability when kicking, striking or evading a blow, may express a
73	different relationship between more stable resistance activities such as 6 RM squats
74	and leg presses as compared to more unstable resisted activities such as lunges and
75	step-ups.

The unique nature of Karate athletes who use unilateral striking actions under relatively unstable conditions suggests that previous prediction equations that were based upon individuals using predominately stable bilateral actions may not be appropriate for this type of population. Therefore the purpose of this study was to determine the relationship between 6 RM loads of bilateral and unilateral exercises such as the bilateral squat, deadlift and leg press versus the unilateral stepping actions of lunges and step-ups in a group of elite athletes (Karate) in whom the emphasis is

83	placed on stability and unilateral actions. It was hypothesized that significant
84	correlations exist between the bilateral squat and the unilateral stepping actions of the
85	lunge and the step-up and that these correlations would exceed the reported
86	correlations of collegiate and recreationally active individuals (11). This study also
87	aimed to create prediction equations, based on the squat load, to determine the loads
88	for lower-body exercises in these types of athletes (elite athletes with a unilateral
89	striking emphasis).
90	
91	METHODS
92	Experimental Approach to the Problem
93	To test the hypothesis that a correlation exists between the 6 RM of squat and
94	other bilateral and unilateral low-body exercises, tests of deadlift, inclined leg press
95	(bilateral), lunge and step-up (unilateral stepping actions) capacity were undertaken.
96	Athletes performed five exercises in three visits separated by a 48-hour period. The
97	exercise order during the testing day was counterbalanced in order to limit exercise
98	order effect on performance (35). All athletes were instructed not to participate in
99	resistance training 48 hours before testing. The present exercises were selected
100	because these are frequently used in resistance training performed by high
101	performance elite athletes (12, 13, 15, 32) and could be quantified by external loads

102	(14). The 6 RM was chosen in order to compare findings with those reported in a
103	previous study (14). Furthermore, assistance type and unilateral exercises such as
104	lunge and step-up are not commonly tested for 1 RM because the high external
105	loading can place athletes at risk of injury (3). These exercises were included in this
106	study since one of the objectives was to investigate if correlations between squats and
107	unilateral type exercises were high in unilateral predominant athletes. The 6 RM squat
108	load was the predictor variable of the other four exercises.
109	
110	Subjects
111	Fourteen male elite Karate athletes participated in the study during the
112	pre-competition preparation phase. All of these were national senior athletes from
113	Malaysia, and three were world championship medalists. Their age, body mass, height,
114	and body mass index are reported in Table 1. All athletes were properly informed of
115	the experimental risks and benefits of this study and signed an informed consent
116	document before the investigation. The study was conducted according to the
117	Declaration of Helsinki, and the study was fully approved by the Clinical Research
118	Ethics Committee.

120 Measurements

121	Prior to any exercise in the first visit to the sport science laboratory, skinfold
122	thickness was measured with a Harpenden skinfold caliper (British Indicators Ltd.,
123	UK) at 7 sites (biceps, triceps, subscapular, supraspinale, abdomen, front thigh, and
124	medial calf) following the protocol recommended by International Society for
125	Advancement of Kinanthopometry (24). Skinfolds in all athletes were taken by the
126	same nutritionist trained in anthropometric measurements. Body density was
127	determined according to the equation of Withers et al. (39), while the percentage body
128	fat was calculated from body density using the Siri's equation (33) (Table 1).
129	All athletes performed a 10 min warm-up including dynamic and static stretching.
130	After the warm-up, athletes performed one warm-up set of 6 repetitions at ~ 65% to
131	75% of their perceived maximal load of each exercise. Athletes were familiar with the
132	exercise technique as they regularly trained using these movements. Loads were
133	assessed by having the athletes perform the 6 RM tests for the back half squat,
134	bent-knee deadlift, lunge, step-up on a box (0.37 or 0.40m height depending on the
135	athletes), and 45^0 inclined leg press (Figure 1). The techniques and guidelines of these
136	exercises were described by the second author in this study and followed the
137	instructions of National Strength and Conditioning Association (11). Athletes
138	performed each exercise at their volitional velocity which was approximately 2s in
139	both concentric and eccentric phases. All athletes attained at least six repetitions of

140	the 6 RM loads, and 4 min of recovery was allowed between exercises (14). Strong
141	verbal encouragement was given to each athlete during all test sessions. The second
142	author in this study, who is a Certified Strength and Conditioning Specialist (CSCS),
143	monitored all test sessions to ensure proper exercise technique and safety. Exercise
144	testing was performed over 3 days with 48 hours of recovery between testing. The
145	exercise order during the testing day was counterbalanced in order to limit exercise
146	order effect on performance (35).
147	**** insert Figure 1 about here ****
148	

149 Statistical Analyses

Values are presented as mean ± SEM. Pearson's product moment correlation 150 151 coefficient was used to examine the relationship between squat and the other four 152 exercises. Linear regression analysis was used to develop the prediction equations for 153 each of the four exercises with squat load being a predictor. The prediction equations for each of the exercises were cross-validated using the predicted residual sum of 154 155 squares (PRESS) statistic, as previously recommended and described in the literature (18). The significant level was defined as $p \leq 0.05$. Ten athletes were instructed to 156 perform the reliability test seven days after the initial tests. Intra-class correlation 157 158 coefficient (ICC) across tests showed that the 6 RM tests were highly repeatable (ICC) 159 *>* 0.95).

160 RESULTS

161	The 6 RM loads for the squat, deadlift, leg press, lunge and step-up are reported
162	in Table 1. Results showed that 6 RM squat load was significantly correlated with the
163	four lower-body exercises: deadlift (r = 0.86, $p < 0.001$), leg press (r = 0.76, $p < 0.001$)
164	0.001), lunge (r = 0.86, $p < 0.001$) and step-up (r = 0.92, $p < 0.001$). In addition, linear
165	regression (Figure 2) showed that 6 RM squat load was a significant ($p < 0.001$)
166	predictor for the deadlift, leg press, lunge and step-up. The respective prediction
167	equation was presented in Table 2. Results of the cross-validation procedure using the
168	PRESS statistic indicated that the predicted and actual loads were similar (Table 2).
169	
170	**** insert Table 1 about here ****

- 171 ****insert Table 2 about here****
- 172 **** insert Figure 2 about here ****
- 173

174 DISCUSSION

The first major finding in the present investigation was that high correlations existed between the 6 RM load of the bilateral squat and lower-body exercises (both bilateral and unilateral) in high performance Karate athletes who predominantly

178	perform unilateral movement (Table 1). The present study also found that the 6 RM
179	squat load was a significant ($p < 0.001$) predictor for the deadlift, leg press, lunge and
180	step-up (Figure 2). Moreover, linear regression equations were developed to
181	determine the loads for the four lower-body exercises based on the squat load. Our
182	results agreed with the findings reported by Ebben et al. (14) in that high explained
183	variance (R^2) was observed between squat and the lower-body exercises (Figure 2).
184	Ebben et al. (14) reported that the squat accounted for 81%, 62%, and 71% of
185	variance for deadlift, lunge, and step-up, respectively. Furthermore, it has been
186	previously reported that the squat accounts for 55% of the variance in leg press (36), a
187	value that is in close agreement with that observed (57%) in the present study (Figure
188	2).

189 However, in contrast to the findings of Ebben et al. (11) in collegiate athletes and 190 recreationally active students, the present elite Karate athletes had heavier predicted 191 loads in the lunge (70.39 kg vs. 66.82 kg) and the step-up (74.64 kg vs. 53.32 kg). It therefore appears that elite Karate athletes demonstrate superior performance in these 192 193 unilateral exercises. This finding could be explained by an emphasis in training on 194 performing unilateral striking actions. Indeed during sparring/fighting, Karate athletes 195 perform mainly unilateral single-leg actions such as frontal (i.e. mae-geri), lateral (i.e. 196 yoko-geri) and circular (i.e. mawashi-geri) kicks that heavily challenge balance, core

197 muscles and single-leg muscle strength/power (9, 17, 19, 20, 30). Stronger trunk/core 198 muscle groups are necessary during unilateral exercises in stabilizing the body (7) 199 during Karate performance (1, 9, 16, 19, 29, 30, 37) and may have contributed to 200 greater stability and force output during lunges and step-ups. Therefore, the 6 RM 201 prediction equations must be specific to the population. For example, 6 RM may be under-estimated in elite unilateral-emphasis athletes when performing unilateral 202 203 exercises and not induce a sufficient training effect while measures may be 204 over-estimated in lower-level performers thereby increasing the risk of 205 musculoskeletal injury. 206 Nevertheless, given the same 6 RM squat load, (e.g. 100 kg), these results 207 showed that elite Karate athletes have a similar predicted load in a bilateral activity

such as the deadlift as compared with collegiate and recreational athletes (95.40 kg vs.

209 97.92 kg) (14). Thus the high emphasis on stability or balance in Karate provides high

210 correlations for both more (bilateral) and less (unilateral) stable resisted activities.

Leg extensions which are open kinetic chain exercise (31) were used by Ebben et al. (11) to examine the prediction ability of 6 RM squat loads, whereas in the present study, a leg press was employed. Leg extension has been reported to induce higher shear force at the knee joint which stresses the anterior cruciate ligament (ACL) (31). Moreover, a higher proportion of motor unit synchronization has been observed

216	between vastus medialis obliquus (VMO) and vastus lateralis in exercises such as the
217	leg press, indicating better coordination within the quadriceps (27, 34), and greater
218	improvements in muscular strength and functional performance (2, 40).
219	Finally, the measurements of the present study were performed in Karate athletes.
220	The present results may not be representative of other high performance athletic
221	groups and additional work on the use of squat testing to predict training loads for
222	lower-body exercises is therefore necessary.
223	
224	PRACTICAL APPLICATION
225	Previous studies have shown that some strength and conditioning coaches
226	prescribe training loads for their high performance elite athletes via the subjective trial
227	and error method due to limited time allocated to training/testing (13, 15, 32).
228	However, this method is inaccurate and does not conform to the guidelines of
229	National Strength and Conditioning Association (3). The squat is a major core
230	strengthening exercise performed by elite athletes (12, 13, 15, 32), but other forms of
231	lower-body exercises with quadriceps as the prime mover induce different training
232	effects on quadriceps, hamstrings and gluteus muscles. The results of the present

study demonstrate that coaches and fitness professionals when calculating 6 RM loads

for unilateral type exercises such as lunges and step-ups should be cognizant of the

235	type of athlete involved. Previously published predictions of 6 RM loads for lunges
236	and step-ups based on collegiate and recreational athletes (11) were substantially
237	lower than the loads predicted in the present study in elite athletes who predominantly
238	use unilateral movements. Thus the use of these equations has to be specific to the
239	individual athletic population, otherwise loads could be either under-estimated in elite
240	athletes and not induce a sufficient training effect, or over-estimated in collegiate and
241	recreational athletes increasing the risk of musculoskeletal injury. Karate and other
242	martial art coaches and athletes should consider using these simple prediction
243	equations when prescribing resistance training exercises in order to reduce training
244	and testing time and ensure sufficient training effects.

246 REFERENCES

247	1. Anderson, K, and Behm, DG. Trunk muscle activity increases with unstable squat
248	movements. Can J Appl Physiol 30(1): 33-45, 2005.
249	2. Augustsson, J, Esko, A, Thomee, R, and Svantesson, U. Weight training of the thigh
250	muscles using closed vs. open kinetic chain exercises: a comparison of
251	performance enhancement. J Orthop Sports Phys Ther 27(1): 3-8, 1998.
252	3. Baechle, TR, Earle, RW, and Wathen, D. Resistance training. In: Essentials of
253	Strength Training and Conditioning. Baechel, TR, and Earle, RW, eds. 3rd ed.
254	Champaign, USA: Human Kinetics, 2008. pp. 381-412.
255	4. Baker, D, and Nance, S. The relation between strength and power in professional
256	rugby league players. J Strength Cond Res 13(3): 224-229, 1999.
257	5. Behm, DG, and Anderson, K. The Role of Instability with Resistance Training. J
258	Strength Cond Res 20: 716-722, 2006.
259	6. Behm, DG, Anderson, K, and Curnew, RS. Muscle force and activation under stable
260	and unstable conditions. J Strength Cond Res 16: 416-422, 2002.
261	7. Behm, DG, Power, KE, and Drinkwater, EJ. Muscle activation is enhanced with
262	multi- and uni-articular bilateral versus unilateral contractions. Can J Appl
263	Physiol 28: 38-52, 2003.
264	8. Behm, DG, Wahl, MJ, Button, DC, Power, KE, and Anderson, KG. Relationship

- 265 between hockey skating speed and selected performance measures. *J Strength*
- 266 *Cond Res* 19: 326-331, 2005.
- 267 9. Cesari, P, and Bertucco, M. Coupling between punch efficacy and body stability for
- 268 elite karate. *J Sci Med Sport* 11(3): 353-356, 2008.
- 269 10. Drinkwater, EJ, Pritchett, E, and Behm, DG. Effect of Instability and Resistance
- 270 on Unintentional Squat Lifting Kinetics. Int J Sports Physiol Perform 2:
- 271 400-413, 2007.
- 272 11. Earle, RW, and Baechle, TR. Resistance training and spotting techniques. In:
- 273 Essentials of Strength Training and Conditioning. Baechel, TR, and Earle, RW,
- eds. 3rd ed. Champaign, USA: Human Kinetics, 2008. pp. 325-376.
- 275 12. Ebben, WP, and Blackard, DO. Strength and conditioning practices of National
- Football League strength and conditioning coaches. *J Strength Cond Res* 15(1):
 48-58, 2001.
- 13. Ebben, WP, Carroll, RM, and Simenz, CJ. Strength and conditioning practices of
- 279 National Hockey League strength and conditioning coaches. *J Strength Cond*280 *Res* 18(4): 889-897, 2004.
- 281 14. Ebben, WP, Feldmann, CR, Dayne, A, Mitsche, D, Chmielewski, LM, Alexander,
- P, and Knetgzer, KJ. Using squat testing to predict training loads for the
 deadlift, lunge, step-up, and leg extension exercises. J Strength Cond Res

- 284 22(6): 1947-1949, 2008.
- 285 15. Ebben, WP, Hintz, MJ, and Simenz, CJ. Strength and conditioning practices of
- major league baseball strength and conditioning coaches. *J Strength Cond Res*19(3): 538-546, 2005.
- 288 16. Ekstrom, RA, Donatelli, RA, and Carp, KC. Electromyographic analysis of core
- 289 trunk, hip, and thigh muscles during 9 rehabilitation exercises. *J Orthop Sports*
- 290 *Phys Ther* 37(12): 754-762, 2007.
- 17. Hibbs, AE, Thompson, KG, French, D, Wrigley, A, and Spears, I. Optimizing
 performance by improving core stability and core strength. *Sports Med* 38(12):
 995-1008, 2008.
- 18. Holidays, D, Ballard, JE, and Mckeown, BC. PRESS-related statistics: regression
 tools for cross validation and case diagnosis. *Med Sci Sports Exerc* 27:
 612-620, 1995.
- 297 19. lide, K, Imamura, H, Yoshimura, Y, Yamashita, A, Miyahara, K, Miyamoto, N,
- and Moriwaki, C. Physiological responses of simulated karate sparring
 matches in young men and boys. *J Strength Cond Res* 22(3): 839-844, 2008.
- 300 20. Kibler, WB, Press, J, and Sciascia, A. The role of core stability in athletic function.
- 301 *Sports Med* 36(3): 189-198, 2006.
- 302 21. Kornecki, S, and Zschorlich, V. The nature of stabilizing functions of skeletal

303 muscles. J Biomech 27: 215-225, 1994.

304	22. Koshida, S, Urabe, Y, Miyashita, K, Iwai, K, and Kagimori, A. Muscular outputs
305	during dynamic bench press under stable versus unstable conditions. J
306	Strength Cond Res 22: 1584-1588, 2008.

- 307 23. LeSuer, DA, McCormick, JH, Mayhew, JL, Wasserstein, RL, and Arnold, MD.
- 308 The accuracy of prediction equations for estimating 1-RM performance in the 309 bench press, squat, and deadlift. *J Strength Cond Res* 11(4): 211-213, 1997.
- 310 24. Marfell-Jones, M, Olds, T, Stewart, A, and Carter, L. *International standards for*

311 *anthropometric assessment*. ISAK: Potchefstroom, South Africa, 2006.

- 312 25. Marques, MC, Tillar, R, Vescovi, JD, and Gonzalez-Badillo, JJ. Changes in
- 313 strength and power performance in elite senior female professional volleyball
- 314 players during the in-season: a case study. J Strength Cond Res 22(4):
- 315 1147-1155, 2008.
- 26. McBride, J, Cormie, P, and Deane, R. Isometric squat force output and muscle
 activity in stable and unstable conditions. *J Strength Cond Res* 20: 915-918,
 2006.
- 319 27. Mellor, R, and Hodges, PW. Motor unit synchronization of the vasti muscles in
 320 closed and open chain tasks. *Arch Phys Med Rehabil* 86(4): 716-721, 2005.
- 321 28. Rahmani, A, Viale, F, Dalleau, G, and Lacour, JR. Force/velocity and

322	power/velocity relationships in squat exercise. Eur J Appl Physiol 84(3):
323	227-232, 2001.
324	29. Ravier, G, Dugué, B, Grappe, F, and Rouillon, JD. Impressive anaerobic
325	adaptations in elite karate athletes due to few intensive intermittent sessions
326	added to regular karate training. Scand J Med Sci Sports 19(5): 687-694.,
327	2009.
328	30. Ravier, G, Grappe, F, and Rouillon, JD. Application of force-velocity cycle
329	ergometer test and vertical jump tests in the functional assessment of karate
330	competitor. J Sports Med Phys Fitness 44(4): 349-355, 2004.
331	31. Ross, MD, Denegar, CR, and Winzenried, JA. Implementation of open and closed
332	kinetic chain quadriceps strengthening exercises after anterior cruciate
333	ligament reconstruction. J Strength Cond Res 15(4): 466-473, 2001.
334	32. Simenz, CJ, Dugan, CA, and Ebben, WP. Strength and conditioning practices of
335	National Basketball Association strength and conditioning coaches. J Strength
336	Cond Res 19(3): 495-504, 2005.
337	33. Siri, WE. Body composition from fluid spaces and density: analysis of methods.
338	In: Techniques for measuring body composition. Brozek, J, and Henshel, A,
339	eds. Washington, USA: National Academy of Science, 1961. pp. 223-244.
340	34. Stensdotter, AK, Hodges, PW, Mellor, R, Sundelin, G, and Hager-Ross, C.

- 341 Quadriceps activation in closed and in open kinetic chain exercise. *Med Sci*342 *Sports Exerc* 35(12): 2043-2047, 2003.
- 343 35. Thomas, JR, Nelson, JK, and Silverman, J. *Research methods in physical activity*.
- 344 5th ed. Champaign, IL.: Human Kinetics, 2005.
- 345 36. Willardson, JM, and Bressel, E. Predicting a 10 repetition maximum for the free
- 346 weight parallel squat using the 45 degrees angled leg press. J Strength Cond
- 347 *Res* 18(3): 567-571, 2004.
- 348 37. Willson, JD, Dougherty, CP, Ireland, ML, and Davis, IM. Core stability and its
- relationship to lower extremity function and injury. *J Am Acad Orthop Surg*13(5): 316-325, 2005.
- 351 38. Wisloff, U, Castagna, C, Helgerud, J, Jones, R, and Hoff, J. Strong correlation of
 352 maximal squat strength with sprint performance and vertical jump height in
- 353 elite soccer players. *Br J Sports Med* 38(3): 285-288, 2004.
- 354 39. Withers, RT, Craig, NP, Bourdon, PC, and Norton, KI. Relative body fat and
 anthropometric prediction of body density of male athletes *Eur J Appl Physiol*
- 356 56(2): 191-200, 1986.
- 40. Witvrouw, E, Lysens, R, Bellemans, J, Peers, K, and Vanderstraeten, G. Open
- 358 versus closed kinetic chain exercises for patellofemoral pain. A prospective,
- 359 randomized study. *Am J Sports Med* 28(5): 687-694, 2000.

361 ACKNOWLEDGEMENT

362	We would like to thank Miss Neng Azhanie Azman from the Nutrition Center,
363	National Sports Institute of Malaysia for obtaining the skinfold measurements in the
364	present study. The authors have no conflicts of interest that are directly relevant to the
365	content of this article. Results of the present study do not constitute endorsement of
366	the product by the authors or the NSCA.
367	
368	Competing interests and grant support: None declared.
369	
370	
371	Figure Legend:
372	Figure 1. Illustration of starting position (90 degree at knee joint) during the 45
373	degree inclined leg press.
374	Figure 2. Linear regression of the deadlift, leg press, lunge, and step-up using the

375 squat as a predictor.