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ABSTRACT 

 The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for 

the evolution of slowly varying wave packets in nonlinear dissipative media. A 

front (shock) is a transient layer between a plane-wave state and a zero background. 

We report exact solutions for domain walls, i.e., pairs of fronts with opposite 

polarities, in a system of two coupled CGLEs, which describe transient layers 

between semi-infinite domains occupied by each component in the absence of the 

other one. For this purpose, a modified Hirota bilinear operator, first proposed by 

Bekki and Nozaki, is employed. A novel factorization procedure is applied to 

reduce the intermediate calculations considerably. The ensuing system of equations 

for the amplitudes and frequencies is solved by means of computer-assisted algebra. 

Exact solutions for mutually-locked front pairs of opposite polarities, with one or 

several free parameters, are thus generated. The signs of the cubic gain/loss, linear 

amplification/attenuation, and velocity of the coupled-front complex can be 

adjusted in a variety of configurations. Numerical simulations are performed to 

study the stability properties of such fronts. 
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1. Introduction  

 Weakly nonlinear waves in spatially extended nonlinear dissipative systems 

frequently obey several ubiquitous evolution models, a well-known example being 

the complex Ginzburg-Landau equation (CGLE) for the slowly varying amplitude 

A of the wave,
1 – 8)

  

                                iAt + pAxx + q|A|
2
A = iγA ,                                                       (1)  

with complex dispersion and nonlinearity coefficients p and q, and real linear gain 

coefficient γ. Imaginary parts of p and q, with proper signs, account for the 

diffusive and nonlinear losses respectively. Another genetic model is represented 

by a system of nonlinearly coupled CGLEs, see eqs. (5) and (6) below. 

 The CGLE is not integrable, and hence the powerful tools associated with its 

conservative counterpart, the nonlinear Schrödinger equation (NLSE), are not 

applicable. Nevertheless, several techniques which produce analytical solutions for 

solitary pulses have been developed. Unlike the celebrated solitons, where only 

dispersive and nonlinear effects need to be mutually balanced, solitary pulses in the 

CGLE must in addition maintain the equilibrium between energy gain and loss. 

Consequently, solitary pulses are usually represented by isolated exact solutions of 

the CGLE and related equations,
9)

 rather than continuous families, with the latter 

more typical for solitons in the NLSE.  
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The Hirota bilinear method is a well established method for obtaining multi-

soliton expressions in integrable nonlinear evolution equations.
10)

 To extend the 

usage of this method to the CGLE, a modified bilinear operator, pioneered by 

Bekki and Nozaki, is needed.
11)

 The aim of the present work is to develop special 

techniques, in conjunction with the Bekki-Nozaki operator, with the aim of 

producing exact solutions for the system of coupled CGLEs, see eqs. (5) and (6) 

below. 

Our analysis deals with front solutions, also known as ‘domain walls’, 

‘kinks’ and ‘shocks’ in other contexts. A front is a sharp transition between a 

plane-wave state and a zero background in the asymptotic fields. Front solutions 

have been previously investigated in several settings, including those based on 

coupled equations. In particular, the interaction of fronts was studied in a system 

consisting of a real Ginzburg-Landau equation coupled to a mean field.
12) 

Sometimes the term ‘front’ refers to ‘phase fronts’, which separate domains of 

different phase-locked states. In that case, the Benjamin-Feir (modulation) 

instabilities may lead to explosion of the front.
13)

 Fronts propagating into an 

unstable medium were considered too.
14, 15) 

The transition from localized pulses to 

fronts was studied in a CGLE with a combined cubic-quintic nonlinearity.
16) 

Substantial progress has been achieved in obtaining exact solutions for 

systems in which one equation is linear.
17 – 20)

 In this work, we consider a fully 
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nonlinear system of coupled CGLEs. Such nonlinear systems are relevant in many 

applications in hydrodynamics,
21 – 24) 

optics,
25) 

oscillatory media,
26)

 and plasma 

physics.
27)

  

It is instructive to first consider the simplest version of the system arising in 

thermal convection. Here nonlinearly coupled real Ginzburg-Landau equations for 

the local amplitudes, A and B, of two interacting families of static rolls with 

different orientations, are governed by
22 – 24) 

          ( ) AABgAAA
xxt

++−=
2

0

2

,                                                                   (2a) 

          ( ) BBAgBBB
xxt

++−=
2

0

2

,                                                                    (2b) 

where g0 > 0 is a real coefficient accounting for the interaction. An exact solution 

for domain walls for this system is available solely for g0 = 3:  

          















−=
















+=

2
tanh1

2

1
,

2
tanh1

2

1 x
B

x
A .                          (2c) 

For g0 close to unity, an approximate solution could be found analytically.
22)

 

          Coupled complex Ginzburg-Landau equations will describe the interaction of 

counter-propagating waves in the convection in binary fluids.
21)

 In fact, in addition 

to terms written below for eqs. (5) and (6), those equations may also include terms 

denoting the presence of opposite group velocities. Domain walls exist in the latter 

case too. Actually, they represent sources or sinks of two families of waves 
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traveling in the opposite directions.
23)

 Solutions for such domain walls between 

traveling waves were found in an approximate form too.
23, 24)

                                            

Our goal in this work is to report on several families of exact solutions for 

domain walls in systems of two coupled CGLEs, established analytically for the 

first time. These new solutions are obtained by a novel factorization procedure, 

which will reduce the algebraic manipulations involved in the intermediate 

calculations considerably.
 

 The paper is structured as follows. The modified Hirota operator pioneered 

by Bekki and Nozaki is reviewed, and the nonlinear model is introduced in Section 

2. Reductions from the corresponding ‘trilinear’ to ‘bilinear’ equations are 

presented in Section 3. The new families of solutions are produced in Sections 4 

and 5. Numerical simulations are performed to investigate the stability properties 

of the fronts (Section 6), and conclusions are drawn in Section 7.     

 

2. The modified Hirota operator and the coupled CGL model 

(A) The modified Hirota operator 

 The generalized Hirota operator, introduced by Bekki and Nozaki,
11, 28)

 is 

defined by 

          ( ) ( ) ( )
xx

M

M

xz
xfxG

x
z

x
fGD

′=

′⋅







′∂

∂
−

∂

∂
=⋅

,
 ,                (3)  
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where z may be complex and M is a positive integer. Eq. (3) with z = 1 reduces to 

the ordinary Hirota operator.
10)

 The ordinary operator is meant if only one 

subscript is used:  

Dx ≡ D1, x . 

One can easily verify the following differentiation rule: 

            )exp()exp(
,

bxaxD
N

xm
⋅ ))exp(()( xbamba

N +−= ,                         (4) 

for complex constants a, b, m and integer N.  

 

(B) The coupled CGL model 

The subject of this work is the system of coupled CGLEs for slowly varying 

amplitudes A and B, 

            ,)(
1

2

2

2

11
AiABqAqApiA

xxt
γ=+++                                                        (5) 

          .)(
2

2

2

2

12
BiBAqBqBpiB

xxt
γ=+++                                                 (6) 

Complex coefficients p1,2 and q1 have the same physical meaning as the 

counterparts in the single component case, eq. (1), while q2 accounts for the 

nonlinear coupling. 

To apply the Hirota method, we perform the transformations  

            
mf

tiG
A

)exp(
1

Ω−
= ,            

n
f

tiH
B

)exp(
2

Ω−
=                                              (7) 
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where G and H are complex functions, f is real, while m and n are the following 

complex numbers with imaginary parts α and β: 

                    m = 1+iα,         n = 1+iβ.                                                            (8) 

The application of the modified Hirota bilinear operator (1) makes the governing 

model, eqs. (5) and (6), tantamount to a system of two ‘trilinear’ equations: 

fGCiDpiDf
xmtm

⋅−−Ω++ ][
111

2

,1,
γ  

0
2
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2
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2

1

2

1 =
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⋅+

−+ HHqGGqfC
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G x  ,         (9) 

fHCiDpiDf
xntn

⋅−−Ω++ ][
222

2

,2,
γ  

0
2

)1( *

2

*

1

2

2

2

2 =








+++
⋅+

−+ GGqHHqfC
ffDnnp

H x  .                    (10) 

In many conventional treatment of the energy conserving NLSEs, the second terms 

inside the brackets in eqs. (9) and (10) are set to be zero, reducing them to bilinear 

equations.
29)

 Here we, instead, assume that these second terms will be properly 

factorized, and need not vanish. We shall restrict our attention to cases where C1 = 

C2 = 0 in this paper, leaving the more general case for future studies. 

 

3. Fronts of opposite polarities    

 To look for fronts of opposite polarities for eqs. (5, 6), which interpolate 

between asymptotic domains carrying the plane-wave background in either 

component and the vanishing field in the other one, a suitable expansion scheme is 

This is the pre-published version.
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  )exp( tkxgG ω−= ,   hH = ,  )exp(1 tkxf ω−+= ,          (11) 

where g and h are complex constants, while k and ω are real. Examining the limits 

of eq. (7) as x → ±∞ will reveal that eq. (11) does represent a pair of fronts with 

opposite polarities. However, even with the apparently simple ansatz in eq. (11), 

the necessary manipulations of eqs. (9), (10) still lead to an oppressive amount of 

algebra.  

An important simplification is to insist that the terms in the curly brackets of 

the trilinear eqs. (9) and (10) be factorized properly, i.e., we search for constant σ1, 

σ2 such that (for the case of C1 = C2 = 0) 

( ) 2

2

2

1

2

1

2

1
HqGq

ffDmmp
x ++

⋅+
−  

( )[ ] ( )[ ]tkxtkxhq ωσω −+−+= exp1exp1
1

2

2
,               (12) 

( ) 2

2

2

1

2

2

2

1
GqHq

ffDnnp
x ++

⋅+
−  

( )[ ] ( )[ ]tkxtkxhq ωσω −+−+= exp1exp1
2

2

1
.               (13) 

With these simplifications, the trilinear system now reduces to bilinear equations 

after dividing by the common factor f as defined by eq. (11).  

In this paper we restrict our attention to real σ1, σ2, leaving possibilities of 

complex values of these constants for future studies. By applying the 

differentiation rule (4) repeatedly, one finally arrives at the following algebraic 

constraints: 

This is the pre-published version.
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( ) ( ) 2

21

2

1
11 hqkmmp σ+=+− ,                 (16) 

( ) ( ) 2

12

2

2
11 hqknnp σ+=+− ,                 (17) 

,2

12

2

21
qq σσ =                             (18) 

and for easy reference, symbols p1, p2, q1, q2 first appeared in eqs. (5, 6); symbols 

m, n, in eq. (8); symbols h, k, ω, in eq. (11); and σ1, σ2, in eqs. (12, 13). Some 

details of the derivation of eqs. (14 – 18) are given in the Appendix. 

The other parameters, Ω1, Ω2 (angular frequencies of the envelope), g 

(amplitude of one waveguide) and γ1, γ2 (linear gain/loss) in eqs. (5 – 7) are 

determined by further auxiliary constraints: 

–iω + p1k
2
 + Ω1 – iγ1 + q2|h|

2
 = 0,  Ω2 – iγ2 + q1|h|

2
 = 0,  |g|

2
 = (σ1σ2)

1/2
|h|

2
,       (19) 

once the other parameters are found from eqs. (14 – 18). From the last equation in 

eq. (19) it follows that σ1 and σ2 should either be real numbers of the same sign, or 

complex conjugate of each other. 

The actual algebraic manipulations constitute a major undertaking and are 

accomplished by means of a computer software. Eqs. (14 – 18) consist of five 
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complex (or ten real) equations for seven real unknowns: |h|
2
, k, α, β (see eq. (8)), 

σ1, σ2, ω and four complex parameters p1, p2, q1, and q2. Consequently, either 

● three real constraints must be additionally imposed upon p1, p2, q1, and q2; or 

● any solution of eqs. (14 – 18) can have a maximum of 7 + 4 · 2 – 10 = 5 degrees 

of freedom (or arbitrary parameters) in principle.    

Two such families of solutions are presented in the following sections, 

utilizing particularly simple choices of three real constraints imposed on p1, p2, q1, 

and q2. 

 

4. The first family of exact solutions (purely imaginary q1, q2) 

To obtain solutions in an explicit form, we make simplifying assumptions. 

For the first family of exact solutions, we take  

                     q2 = q1 = qr + iqi .                                                                        (20) 

The first equality of eq. (20) is equivalent to two real constraints, and the third one 

is taken as  

                   qr = 0     or     
i

iqqq ==
21

 (with arbitrary 
i

q ) .                       (21) 

Various exact solutions obtained by means of the Maple software package are 

tabulated below. 

A set of solutions with four degrees of freedom, or four arbitrary parameters 

qi, p2r, p2i, k
2
, is given by  
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i
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2
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22

1
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=

αα
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k

i
p .              (28) 

The parameters in eqs. (22 – 28) should be selected such that real solutions 

can be obtained, e.g., the discriminant of quadratic eq. (23) must be positive. 

As a summary, expressions (7), (8), (11), (19), and (22 – 28) yield an exact 

solution to the coupled CGLEs, eqs. (5, 6), if eq. (21) holds.  

The sign of qi may be arbitrary. We present the following examples: 

 

Example A 

As a simple particular case, we highlight the one given by eqs. (22 – 28) for 

qi > 0 and  
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p2 = –9 + 7i .                                       (29) 

In this case, the exact solution is  

18

55

18

355
1

i
p += m ,                           (30) 

3,35 =±= βα ,                           (31) 

i
q

k
hk

2
22

21

15
,10,

3

23
==== ωσσ .                                   (32) 

 

Example B 

Similarly, in the particular case of eqs. (22 – 28) for qi < 0, which 

corresponds to a cubic gain, an exact solution with p2 still taken as per eq. (29) is  

ip
93

143

31

2113
1

−±= ,                           (33) 

3

2
,

3

212
−=±= βα ,                           (34) 

i
q

k
h

k

4

39
,

2

13
,

27

53
2

2
2

21
−=−=== ωσσ .           (35) 

The validity of these solutions is verified by the direct substitution into the 

underlying eqs. (5), (6).  
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Example C 

As an example of CGLEs with three free parameters (pr, qi, k
2
), we take eqs. 

(22 – 28) with p2 purely real, i.e.  

p2 = pr  (real), 
i

iqqq ==
21

,                                                                    (36)       

14=α , 2m=β ,     3
21

== σσ ,                                                          (37) 

2

2
kp

r±=ω , 
( )

215

414
1

r
pi

p
+−

±=  = p1r + ip1i,                                        (38) 

i

r

i

r

q

kp
g

q

kp
h

22

9
,

22

3 2
2

2
2

±=±= ,                                                                (39) 

215

14 2

1

kp
r±=Ω ,    

230

23 2

1

kp
r±=γ ,    0

2
=Ω ,    

22

3 2

2

kp
r±=γ ,                    (40) 

and the merit of eqs. (36 – 40) is an elegant simplification of system (5, 6). The 

amplitude functions 

1412

22

)]2/exp(1[

)2/exp(

215

14
exp

i

r

rr

tkpkx

tkpkx
t

kp
igA

++









=

m

m
m ,                            (41) 

212 )]2/exp(1[ i

r
tkpkx

h
B

m

m+
= ,                                                           (42)  

solve the coupled CGLEs, 

( ) ( ) A
kp

iABAiqA
pi

iA r

ixx

r

t

230

23

215

414 2
22

±=++
+−

± ,                              (43) 

( ) B
kp

iBBAiqBpiB r

ixxrt

22

3 2
22

±=+++ ,                                                    (44) 
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with signs of pr and qi taken to make the right hand side of eq. (39) positive. 

      Expressions (41, 42) constitute an exact solution of two coupled, nonlinear 

partial differential eqs. (43, 44) with three arbitrary parameters (k
2
, pr and qi). 

Regarding the choice of signs in the symbol ‘±’, either the upper or the lower sign 

must be taken throughout the entire set of eqs. (36 – 44) in a consistent manner. 

For the ‘+’ sign in eqs. (43, 44), if pr < 0, linear damping is present in both 

components, and diffusion spreading will occur in component A. These two factors 

will contribute to the attenuation of the wave envelopes. However, eq. (39) will 

dictate that qi < 0, which implies the existence of a cubic gain, and this will sustain 

the front.  

Examples of front patterns propagating to the right and left are shown in 

Figures 1 and 2 respectively. The intensities of the plane-wave background 

supporting the fronts, which are |g|
2
 and |h|

2
 in the present case, depend on the 

precise structure of the solution. For solutions eqs. (36 – 42) of eqs. (43), (44), |A|
2
 

is generally larger than |B|
2
, and the difference is more profound for large k (Figure 

3). 

  

5. The second family of exact solutions (purely real q1, q2) 

 Another family of exact solutions is obtained by taking purely real q1, q2:  
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1
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2 ±=== ε
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qq  .                        (45) 

In this case, a solution for eqs. (14 – 18) with four degrees of freedom, i.e., 

arbitrary qr, p2r, p2i (relation (22) still being valid) and k
2
, is  
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2
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]32)[1(3

σ

σ

αα

αασεω

++
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Again the parameters must be chosen so as to make real solutions possible, e.g., 

the quadratic equations written above for β and α
2
 must not lead to complex roots. 

In this case, eqs. (7), (8), (11), (19), and (45 – 50) furnish an exact, analytical 

solution for the coupled-CGLE system, eqs. (5), (6). 

As a simple numerical example, consider 
r

qq =
1

, where 0<
r

q  (arbitrary) 

and p2 = 1 + 3i, we obtain 

r
qq

5

59
2

±= , ip
3

5
5

1
+±= ,                                                                    (51) 

This is the pre-published version.



 

 17 

5

5
m=α , 1−=β ,     

9

5
1

=σ ,    9
2

=σ ,                                                        (52) 

22k=ω , 
r

q

k
h

2
2

−= ,                                                                                   (53) 

and with g, Ω1, Ω2, γ1, γ2 given by eq. (19). Calculations similar to those presented 

in Section 4 can be performed, but will not be pursued here. 

 

6. Stability of domain walls 

 The stability of wave profiles is of crucial importance, since it determines if 

such patterns can be observed in an experiment. The stability of domain walls was 

studied by numerical simulations of perturbed wave profiles. The spatial derivative 

in x in eqs. (5), (6) was approximated by a Crank–Nicholson scheme, i.e. a semi–

implicit, second-order central difference operator. The time derivative was handled 

by means of a simple forward Euler operation. The typical number of grid points in 

the spatial domain was around 2000. The time step was adjusted until consistent 

results were obtained when the number of temporal grid points doubled. The linear 

and nonlinear gain/loss was treated explicitly.  

 As the number of parameters in eqs. (5, 6) is vast (complex p1, p2, q1, q2, real 

γ1, γ2), we shall demonstrate some simple examples of stability versus instability. 

As a typical case, we choose the first family of exact solutions of eqs. (5), (6), as 

given by eqs. (41), (42). With pr = 1, qi = 1, k = 0.01, and the positive sign for ω 
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taken in eq. (38), random amplitude disturbance of 1% was imposed on the fronts. 

Figure 4 shows that the initially perturbed patterns can persist for a reasonable 

amount of time. 

 With pr = 1, qi = –1, k = 0.1, and the negative sign for ω taken in eq. (38), 

random amplitude disturbance of 1% was again imposed on the fronts. In sharp 

contrast with the previous case, apparently exponential growth is observed, starting 

around t = 30 (Figure 5). For this particular choice of the parameters, stability is 

more likely attained for smaller values of k. 

 To verify the numerical simulations, as well as to provide a deeper insight of 

the underlying physics, an order-of-magnitude balance was examined too. If one 

considers eq. (5) at the onset of the exponential growth, one can simplify the 

dynamics through the following assumptions: 

● the term |B|
2
 is nearly zero there (while |A| corresponds to a nonzero plane wave, 

as required by the definition of the ‘domain wall’); 

● the term Axx can be neglected as the wave profile is nearly flat there. 

As such the dynamics of the growth (‘imaginary part’ of (5)) is governed by 

                                          At = – qi |A|
2
A + γ1A,                                                      (54)  

and thus the right-hand side of (54) will provide one estimate of the ‘time 

derivative of A’, which we shall call the ‘theoretical growth rate’ here.  
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In terms of numerical simulations, if superscripts denote the discretized time, 

a simple forward Euler scheme will provide a leading order approximation of the 

time derivative: 

                        (A
n+1 

– A
n
)/∆t .                                                                    (55) 

From the numerical data obtained in the simulations, we compute (55) directly and 

term this quantity the ‘numerical time derivative’ of A. Figure 6 shows the 

comparison between the ‘theoretical growth rate’ versus this ‘numerical time 

derivative’ at a typical spatial location (x = 260). The agreement is remarkable. 

Thus we conclude that the numerical simulations provide a very reasonable 

description of the nonlinear dynamics, and simple scenarios for stability and 

instability of ‘domain walls’ have been demonstrated. 

 

7. Conclusions 

 In this work, we have presented exact analytical solutions for domain walls, 

i.e., pairs of mutually locked fronts with opposite polarities, in a system of 

nonlinearly coupled CGLEs (complex Ginzburg-Landau equations). Due to the 

presence of amplification and attenuation, the analysis of CGLEs is substantially 

more involved than the energy conserving nonlinear Schrödinger equation.
30 – 32)

  

The efficiency of the Bekki-Nozaki modified Hirota bilinear operator in 

solving such systems has been demonstrated before in various settings, such as 
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inhomogeneous media which correspond to CGLEs with variable coefficients,
33)

 

and interactions of solitary pulses and fronts.
34)

 Here we have focused on 

configurations with fronts featuring opposite polarities in both components of the 

CGLE system. The equations for the wave profiles were solved by means of 

computer-assisted algebraic manipulations.  

 Exact solutions have been obtained for special cases where either 

● the cross- and self-phase modulation terms are absent (purely imaginary q1 = q2 

in eqs. (5), (6), which implies that the nonlinearity is dissipative), or 

● the opposite case when cubic amplification/dissipation is absent (real q1 = q2).  

 Several aspects of the present analysis can be further enhanced. More 

general exact solutions may be feasible with other combinations of parameters, e.g., 

purely imaginary p1, p2 will yield differential operators of the reaction-diffusion 

type. An obviously important issue which calls for additional analysis is the 

modulation stability of the plane–wave background.
35)

 A related issue is the 

numerical simulation of the subsequent development of any possible modulation 

instability. Bifurcations and symmetries of the front patterns can also be 

investigated in future studies.
36)

 

The scheme for the generation of exact solutions for ‘localized pulse – front’ 

and ‘fronts of opposite polarities’ complexes can also be extended to other two-
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component nonlinear evolution equations with complex coefficients,
37, 38) 

and 

would be promising in the applications to science and engineering disciplines.
39, 40) 
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Appendix 

Some details on the derivation of eqs. (14 – 18) are now given. From 

elementary calculus one can readily establish (G, f are complex functions, m is a 

complex number): 
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Hence with eqs. (5 – 7), one can deduce the validity of eqs. (9, 10). The 

crucial argument of this paper is the factorization process eqs. (12, 13). It is 

sufficient to illustrate the details for one of the CGL equation system eqs. (9, 10), 

say eq. (9), as calculations for the other component are similar. If f is given by eq. 

(11), the ordinary Hirota derivative can be simplified through identity eq. (4) as 
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well. One now equates the constant term, coefficients of exp[kx – ωt] and 

exp[2(kx – ωt)] of eq. (12), and deduces that 

q1|g|
2
 = σ1q2|h|

2
 , 

– p1m(m+1)k
2
 = (1 + σ1)q2|h|

2 
. 

The second expression above is eq. (16) in the main text. 

Applying eq. (12) to eq. (9), one factor of f can be cancelled throughout the 

equation, and we have 

0)]exp(1[][
1

2

211

2

,1,
=ω−σ++⋅γ−Ω++ tkxhGqfGiDpiD

xmtm
, 

which is a bilinear equation. Using the basic principles in simplifying these 

modified Hirota derivatives of exponential functions as described in eq. (4), one 

now arrives, on considering the coefficients of exp[kx – ωt] and  exp[2(kx – ωt)],   

                   0
)1(

)2( 1

*
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1
=

−σ
+−+ω

m

hhq
mkpi ,                                                 (A3) 

                  0
*

211

2

1
=+γ−Ω++ω− hhqikpi . 

Using eq. (16) to eliminate p1 in eq. (A3) will produce equation eq. (14) of the 

main text. The other members in eqs. (14 – 18) are derived in a similar manner. 
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Figures Captions 

(1) Figure 1: Fronts moving to the right (eqs. (41, 42), pr = 2, qi = 1, k = 1, with the 

positive sign for ω in eq. (38)), Top: |A|
2 
versus x and t, Bottom: |B|

2 
versus x and t. 

(2) Figure 2: Fronts moving to the left (eqs. (41, 42), pr = 2, qi = –1, k = 1, with the 

negative sign for ω in eq. (38)), Top: |A|
2 
versus x and t, Bottom: |B|

2 
versus x and t. 

(3) Figure 3: (Color Online) Intensities |A|
2
, |B|

2 
of eqs. (41, 42) versus k, for pr = 1, 

|qi| = 1.  

(4) Figure 4: Numerical simulation showing a stable evolution of perturbed fronts 

given by eqs. (41, 42), with random disturbance of 1% amplitude being imposed 

on the fronts (pr = 1, qi = 1, k = 0.01, with the positive sign for ω taken in eq. (38)). 

(5) Figure 5: Numerical simulation showing an unstable evolution of perturbed 

front A given by eqs. (41, 42), with random disturbance of 1% amplitude being 

imposed on the fronts (pr = 1, qi = –1, k = 0.1, with the negative sign for ω taken in 

eq. (38)). 

(6) Figure 6: (Color Online) Comparison between the theoretical growth rate, eq. 

(54), and the numerical time derivative, eq. (55), versus time t for the unstable 

front A at a typical point, x = 260 (solid line: theoretical growth rate, dashed line: 

numerical time derivative of A).  
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