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Abstract. We show that the Lebesgue spaces for defining BMO can
be replaced by p-convex rearrangement-invariant quasi-Banach function
spaces associated with Ap-weighted measures.

1. Introduction

In this paper, we apply the notion of p-convexity to study the character-
izations of BMO by rearrangement-invariant quasi-Banach function spaces
(r.-i.q-B.f.s) on (Rn, ω) where ω ∈ A∞.

The notion of p-convexity 1 ≤ p ≤ ∞ for Banach lattices was introduced
in [2, 4, 10]. For the extension of the notion of p-convexity to quasi-Banach
space, the reader is referred to [3] p.156.

The notion of p-convexity was used to study the isomorphic properties
of Banach lattices (see [11] Volume II, Section 1.d). In this paper, we find
that BMO can be characterized by an r.-i.q-B.f.s. on (Rn, ω), ω ∈ Ap, if it
is p-convex.

On one hand, this paper shows that p-convexity is not only an abstract
notion arising from the Banach space geometry, it also has applications on
the study of some concrete function spaces. On the other hand, this paper
generalizes the characterizations of BMO by replacing the Lebesgue spaces
Lp, 1 ≤ p < ∞, by rearrangement-invariant quasi-Banach function spaces.

We recall some results on the characterizations of BMO. Let B =
{B(x0, r) : x0 ∈ Rn, r > 0} where B(x0, r) = {x ∈ Rn : |x − x0| < r}.
Let us denote the center and the radius of B ∈ B by cB and rB, respec-
tively. Let M0 be the set of locally integrable function on Rn.

Recall that a locally integrable function f belongs to BMO if

∥f∥BMO = sup
B∈B

∥(f − fB)χB∥L1

∥χB∥L1

< ∞

where fB = 1
|B|

∫
B
f(x)dx.
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More generally, BMO can be defined via the Lp norm. That is,

BMO =

{
f ∈ M0 : sup

B∈B

∥(f − fB)χB∥Lp

∥χB∥Lp

< ∞
}
.

Thus, the characterization ofBMO can be generalized by examining whether
we have the following identification

(1.1) BMO =

{
f ∈ M0 : sup

B∈B

∥(f − fB)χB∥Lp(ω)

∥χB∥Lp(ω)

< ∞
}

where ω ∈ A∞.
As Lemma 3.1 shows, one inclusion is easy to obtain. One of the main

result for this paper is that the identity (1.1) is true provided that ω ∈ Ap,
see Theorem 3.3.

We further extend our result by considering the r.-i.q-B.f.s. Yω on (Rn, ω)
where ω ∈ A∞. That is, we investigate whether the characterization

(1.2) BMO =

{
f ∈ M0 : sup

B∈B

∥(f − fB)χB∥Yω

∥χB∥Yω

< ∞
}

is valid. This result is presented in Theorem 3.9.
For any r.-i.q-B.f.s Yω on (Rn, ω), we introduce BMOYω . It is defined by

BMOYω =

{
f ∈ M0 : sup

B∈B

∥(f − fB)χB∥Yω

∥χB∥Yω

< ∞
}
.

Write ∥f∥BMOYω
= supB∈B

∥(f − fB)χB∥Yω

∥χB∥Yω

.

To prove the embedding BMO ↪→ BMOYω , we establish the John-
Nirenberg inequality for r.-i.q-B.f.s on (Rn, ω), see Proposition 3.5. In fact,
with that proposition, the embedding

(1.3) BMO ↪→ BMOYω

holds for r.-i.q-B.f.s Yω on (Rn, ω), ω ∈ A∞.
The unweighted version of the characterization (1.2) is presented in [7].

For the unweighted case, an expected condition on the Boyd indices of the
rearrangement-invariant Banach function space (r.-i.B.f.s.) X on (Rn, | · |)
where | · | is the Lebesgue measure is enough to guarantee the characteri-
zation of BMO by X. However, when Yω is an r.-i.q-B.f.s. on (Rn, ω) and
ω ∈ Ap, we need the notion of p-convexity to establish the reverse inequality
of (1.3).

Moreover, for a general r.-i.q-B.f.s. Yω on (Rn, ω), it is not necessarily a
subset of M0. That is, fB is not necessarily well defined for any B ∈ B and
f ∈ Yω.

In Theorem 3.9, we figure out a condition imposed on an r.-i.q-B.f.s.
so that on one hand, it is a subset of M0 and on the other hand, the
characterization (1.2) is valid. More precisely, we find that if Yω is p-convex
and its Boyd’s indices satisfying p ≤ pYω ≤ qYω < ∞, then Yω ⊂ M0 and
we have the characterization (1.2).

This is a published version (permitted).
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2. Background materials

We present the notations and terminologies used in this paper.
Even though the Ap class is well-known, for completeness, we offer the

definition of Ap weight functions.

Definition 2.1. For 1 < p < ∞, a locally integrable function ω : Rn →
[0,∞) is said to be an Ap weight if

sup
B∈B

(
1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

ω(x)−
p′
p dx

) p
p′

< ∞

where p′ = p
p−1

. A locally integrable function ω : Rn → [0,∞) is said to be

an A1 weight if

1

|B|

∫
B

ω(y)dy ≤ Cω(x), a.e. x ∈ B

for some constant C > 0. We define A∞ = ∪p≥1Ap.

For any ω ∈ A∞ and any Lebesgue measurable set E, write ω(E) =∫
E
ω(x)dx. We have the following characterization of A∞ weight (see [6]

Theorem 9.3.3 (d)).

Theorem 2.1. A locally integrable function ω : Rn → [0,∞) belongs to A∞
if and only if there exist an ϵ > 0 and a constant C0 > 0 such that for any
B ∈ B and all measurable subsets E of B, we have

(2.1)
ω(E)

ω(B)
≤ C0

(
|E|
|B|

)ϵ

.

We recall the John-Nirenberg inequality in the next theorem (see [6],
Theorem 7.1.6).

Theorem 2.2. There exist constants C1, C2 > 0 such that for any γ > 0
and any B ∈ B,

|{x ∈ B : |f(x)− fB| > γ}| ≤ C1e
− C2γ

∥f∥BMO |B|, f ∈ BMO\C
where C denotes the set of constant functions.

We state some background materials for rearrangement-invariant quasi-
Banach function spaces.

Let ω ∈ A∞. For any Lebesgue measurable function f , denote its de-
creasing rearrangement with respect to (Rn, ω) by f ∗,ω.

We recall the definition of rearrangement-invariant Banach function space
from [1, Chapter 1, Definitions 1.1 and 1.3, and Chapter 2, Definition 4.1].
For any ω ∈ A∞, let Mω denote the class of ω-measurable functions.

Definition 2.2. Let ω ∈ A∞. A mapping ρ : Mω → [0,∞] is said to
be a rearrangement-invariant Banach function norm if for all ω-measurable
functions f, g, {fn}∞n=1 on Rn and a > 0, we have
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(1) ρ(f) = 0 ⇔ f = 0 ω-a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g)
(2) 0 ≤ g ≤ f ω-a.e. ⇒ ρ(g) ≤ ρ(f)
(3) 0 ≤ fn ↑ f ω-a.e. ⇒ ρ(fn) ↑ ρ(f)
(4) ω(E) < ∞ ⇒ ρ(χE) < ∞
(5) ω(E) < ∞ ⇒

∫
E
f(x)ω(x)dx ≤ CEρ(f) for some CE > 0.

(6) ρ(f) = ρ(g) for every pair of equimeasurable functions f, g.

The collection Yω of all functions f in Mω for which ρ(|f |) < ∞ is called
a rearrangement-invariant Banach function space (r.-i.B.f.s.). The norm of
Yω is given by ∥ · ∥Yω = ρ(| · |).

For any r.-i.B.f.s. Yω, according to the Luxemburg representation theorem
(see [1] Chapter 2, Theorem 4.10), we have a norm ρYω : M([0,∞)) → [0,∞]
where M([0,∞)) is the set of Lebesgue measurable functions on [0,∞) such
that

∥f∥Yω = ρYω(f
∗,ω).

We find that this property is crucial on the definition of Boyd’s indices. On
the other hand, the validity of the Luxemburg representation theorem relies
on the fact that the associated space of an r.-i.B.f.s. is not trivial. But for
a general quasi-Banach function space, the associated space may be trivial.
That is, item (5) of Definition 2.2 does not necessarily hold for a general
quasi-Banach function space. For instance, when 0 < p < 1, the associated
space of Lp(Rn) is equal to {0}.

Therefore, we use the subsequent definition for rearrangement-invariant
quasi-Banach function spaces.

Definition 2.3. Let ω ∈ A∞. A quasi-Banach function space Yω on (Rn, ω)
is rearrangement-invariant (r.-i.) if

(1) ∥ · ∥Yω is a quasi-norm ;
(2) ∥ · ∥Yω satisfy item (2)-(4) in Definition 2.2;
(3) there exists a quasi-norm ρYω : M([0,∞)) → [0,∞] such that

∥f∥Yω = ρYω(f
∗,ω).

We combine the definition of Boyd indices for r.-i.B.f.s. from [1], Chapter
3, Definition 5.10 and the definition of Boyd indices for r.-i.q-B.f.s. from
[12] to give the following definition.

Definition 2.4. For each t > 0 and any Lebesgue measurable function f
on [0,∞), let Et denote the dilation operator defined by

(Etf)(x) = f(tx), x ≥ 0.

The Boyd indices of an r.-i.q-B.f.s. Yω are the numbers defined by

pYω = sup{p : ∃C > 0, ∀t < 1, ρYω(Etf) ≤ Ct−
1
pρYω(f)},

qYω = inf{q : ∃C > 0,∀t > 1, ρYω(Etf) ≤ Ct−
1
q ρYω(f)}.
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We have 0 ≤ pYω ≤ qYω ≤ ∞. For any quasi-Banach function space Yω,
let Y ′

ω be the associated space (the Köthe dual) of Yω (see [13] p.35).

Lemma 2.3. Let Yω be an r.-i.B.f.s. on (Rn, ω). For any Lebesgue mea-
surable set E with ω(E) < ∞, we have

(2.2) ∥χE∥Yω∥χE∥Y ′
ω
= ω(E).

The above lemma is crucial to establish the main result in [7]. The proof
of the above lemma is given in [1] Chapter 2, Theorem 5.2.

The identification BMOLp(ω) = BMO is valid provided that ω ∈ Ap. To
apply this result to r.-i.q-B.f.s. on (Rn, ω), we introduce the notion of p-th
power (1/p-convexification). For any 0 < p < ∞ and any quasi-Banach
function space Yω on (Rn, ω), define the p-th power of Yω, Y

p
ω by

f ∈ Y p
ω ⇔ |f |

1
p ∈ Yω,

and the quasi-norm of Y p
ω is defined by ∥f∥Y p

ω
= ∥|f |

1
p∥pYω

. The reader is
referred to [13] Section 2.2 for a complete discussion on the notion of p-th
power of quasi-Banach function space. For 0 < p < 1, Y p

ω is a Banach space
(see [5] Proposition 1.11) while for 1 < p < ∞, it is a quasi-Banach space
(see [13] Chapter 2, Proposition 2.22).

As claimed on the introduction, conditions on the Boyd indices are not
sufficient to assert the characterization of BMO by Ap weights. We need
another notion from the geometry of quasi-Banach space. Let 0 < p < ∞.
A quasi-Banach function space X is said to be p-convex if there exists a
constant C > 0 such that∥∥∥∥( n∑

i=1

|fi|p
) 1

p

∥∥∥∥
X

≤ C

( n∑
i=1

∥fi∥pX
) 1

p

for any {fi}ni=1 ⊂ X.
Any p-convex quasi-Banach function space is also r-convex provided that

0 < r ≤ p (see [3] Lemma 4).
The following proposition gives a procedure to obtain an equivalent norm

for a p-convex quasi-Banach function space. That procedure was already
presented in [4, 10] for Banach lattices.

Proposition 2.4. Let 1 ≤ p < ∞. If the quasi-Banach function space Yω

is p-convex, then
(2.3)

η[p](f) = inf{
n∑

i=1

∥fi∥Y p
ω
: |f | ≤

n∑
i=1

|fi|, fi ∈ Y p
ω , i = 1, 2, . . . , n, n ∈ N}

is a lattice norm and is equivalent to ∥ · ∥Y p
ω
. Hence, Yω is normable and

admits

η(f) =
(
η[p](|f |p)

) 1
p

as an equivalent lattice norm.
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The proof of the above proposition is given by [13, Proposition 2.23].

3. The characterizations of BMO

We present several embedding and characterizations of BMO in this sec-
tion. We first pay our attention to the weighted Lebesgue space Lp(ω),
1 ≤ p < ∞, ω ∈ A∞.

Lemma 3.1. Let 0 < p < ∞ and ω ∈ A∞. We have

(3.1) BMO ↪→ BMOLp(ω).

Proof: According to the John-Nirenberg inequality, we have

|{x ∈ B : |f(x)− fB| > γ}| ≤ C1e
− C2γ

∥f∥BMO |B|.
Applying inequality (2.1), we find that

(3.2) ω({x ∈ B : |f(x)− fB| > γ}) ≤ C0C
ϵ
1e

− C2ϵγ
∥f∥BMO ω(B)

for some C0 > 0. Hence, there exists constant C3 > 0 so that for any B ∈ B,
1

ω(B)
∥(f − fB)χB∥pLp(ω) =

p

ω(B)

∫ ∞

0

γp−1ω({x ∈ B : |f(x)− fB| > γ})dγ

≤ C0C
ϵ
1p

∫ ∞

0

γp−1e
− C2ϵγ

∥f∥BMO dγ ≤ C3∥f∥pBMO.

Therefore, the embedding (3.1) is valid.

Lemma 3.2. If 1 ≤ p < ∞ and ω ∈ Ap, then

(3.3) BMOLp(ω) ↪→ BMO.

Proof: When 1 < p, by the Hölder inequality, we obtain∫
B

|f(x)− fB|dx ≤
(∫

B

|f(x)− fB|pω(x)dx
) 1

p
(∫

B

ω(x)−
p′
p dx

) 1
p′

.

Therefore, the Ap condition concludes that∫
B

|f(x)− fB|dx ≤ C∥(f − fB)χB∥Lp(ω)
|B|

ω(B)
1
p

.

Similarly, the proof of the embedding (3.3) for p = 1 follows from the
definition of A1 weight functions.

The above lemmas offer a new characterization for BMO by Lp(ω), ω ∈
Ap. We will generalize this characterization of BMO to r.-i.q-B.f.s. on the
rest of this section. Even though the characterization of BMO by Lp(ω) is
a special case of the following results, the proof for the general case is, in
fact, based on this special case.

Theorem 3.3. Let 1 ≤ p < ∞ and ω ∈ Ap. We have

BMO = BMOLp(ω).

The norms are mutually equivalent.
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We now turn our attention to the r.-i.q-B.f.s. on (Rn, ω), ω ∈ A∞.
We prove the embedding BMO ↪→ BMOYω by using the John-Nirenberg

inequality. We have a supporting lemma for establishing the John-Nirenberg
inequality on Yω.

Lemma 3.4. Let ω ∈ A∞. If Yω is an r.-i.q-B.f.s. on (Rn, ω) with qYω < ∞,
then for any q > qYω , there exists a constant C > 0 such that for any x0 ∈ Rn

and R > r > 0, we have

(3.4)
∥χB(x0,r)∥Yω

∥χB(x0,R)∥Yω

≤ C

(
ω(B(x0, r))

ω(B(x0, R))

) 1
q

.

The proof of Lemma 3.4 follows from the definition of Boyd’s indices and
the facts that

∥χB(x0,r)∥Yω

∥χB(x0,R)∥Yω

=
ρYω(χ[0,ω(B(x0,r))])

ρYω(χ[0,ω(B(x0,R))])

and Etχ[0,ω(B(x0,R))] = χ[0,ω(B(x0,r))] where t = ω(B(x0,R))
ω(B(x0,r))

.

We have the following John-Nirenberg inequality for r.-i.q-B.f.s..

Proposition 3.5. Let ω ∈ A∞. If Yω is an r.-i.q-B.f.s. on (Rn, ω) with
qYω < ∞, then there exist K1, K2 > 0 such that for any γ > 0 and any
B ∈ B,

∥χ{x∈B:|f(x)−fB |>γ}∥Yω ≤ K1e
− K2γ

∥f∥BMO ∥χB∥Yω , ∀f ∈ BMO\C.

Proof: As ω ∈ A∞ = ∪1≤p<∞Ap, we have C4, δ > 0 (see [6] Corollary 9.3.4
and Proposition 9.1.5.(9)) such that for any λ > 1,

ω(B(x0, λr)) ≤ C4λ
δω(B(x0, r)), ∀x0 ∈ Rn.

It suffices to consider the case when γ is large, so, without loss of generality,

we assume that (C4C0)
1
δC

ϵ
δ
1 e

− C2ϵγ
δ∥f∥BMO < 1.

According to the John-Nirenberg inequality for ω (see (3.2)), we find that

ω({x ∈ B : |f(x)− fB| > γ}) ≤ ω(B̃)

where B̃ ∈ B with

cB̃ = cB and rB̃ = (C4C0)
1
δC

ϵ
δ
1 e

− C2ϵγ
δ∥f∥BMO rB.

As Yω is r.-i. with respect to ω (see [1] Chapter 2, Definition 5.1 and
Corollary 5.3), we assert that

∥χ{x∈B:|f(x)−fB |>γ}∥Yω ≤ ∥χB̃∥Yω .

In view of qYω < ∞, (2.1) and Lemma 3.4 guarantee that for any q > qYω

∥χ{x∈B:|f(x)−fB |>γ}∥Yω ≤ K1e
−K2γ

∥f∥BMO ∥χB∥Yω

where K1 = (C4C0)
nϵ
qδC

nϵ2

qδ

1 and K2 =
C2nϵ2

qδ
.

This is a published version (permitted).



8 KWOK-PUN HO

Theorem 3.6. Let ω ∈ A∞. Suppose that Yω is an r.-i.q-B.f.s. on (Rn, ω)
with qYω < ∞. Then, we have the embedding

(3.5) BMO ↪→ BMOYω .

Proof: Let κ be the Aoki-Rolewicz index for the quasi-Banach function
space Yω (see [9] Theorem 1.3). That is, κ is a number such that ∥ · ∥κYω

is
sub-additive on Yω. For any j ∈ N, Proposition 3.5 gives

∥χ{x∈B:2j<|f(x)−fB |≤2j+1}∥κYω
≤ Kκ

1 e
−κK22

j

∥f∥BMO ∥χB∥κYω

because qYω < ∞. Multiplying 2(j+1)κ on both sides and summing over j,
we find that

(3.6) ∥(f − fB)χB∥κYω
≤ C∥f∥κBMO∥χB∥κYω

for some constant C > 0. More precisely, we have the above inequality
because ∑

j∈N

2jκe
−κK22

j

∥f∥BMO ≤ C

∫ ∞

0

sκ−1e
−κK2s

∥f∥BMO ds ≤ C∥f∥κBMO

for some constant C > 0 independent of f ∈ BMO and B ∈ B. The
embedding (3.5) follows from inequality (3.6).

The condition qYω < ∞ is the best condition for the embedding (3.5)
in term of Boyd’s indices. For instance, when Yω = L∞, the upper Boyd
indices of Yω is infinity. We see that the embedding (3.5) does not hold
because BMOL∞ = L∞ (see [7]).

Corollary 3.7. Let ω ∈ A∞. If Yω is an r.-i.q-B.f.s. on (Rn, ω) with
qYω < ∞, then for any f ∈ BMO and for all µ < K2

∥f∥BMO
(K2 is given in

Proposition 3.5), we have

∥eµ|f−fB |χB∥Yω ≤ C(µ, f)∥χB∥Yω ,

for some constant C(µ, f) independent of B ∈ B.

To obtain the embedding of BMOYω ↪→ BMO, we encounter a technical
obstacle. Any p-convex r.-i.q-B.f.s. Yω on (Rn, ω) possesses two quasi-
norms. The first one ∥ · ∥Yω is not a norm but it is rearrangement-invariant.
The second one η(·) is a norm but it is not necessarily rearrangement-
invariant.

On one hand, the merit of having an rearrangement-invariant quasi-norm
is that the Boyd type interpolation theorem can be applied to Yω (see [12]).
On the other hand, the advantage of possessing a norm is that the associate
space (Köthe dual) of Yω is non-trivial. Even though Yω does not necessarily
have an rearrangement-invariant norm, the following lemma shows how to
incorporate these two separated properties to obtain a generalization of
Lemma 2.3 for Yω.
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Lemma 3.8. Let ω ∈ A∞. Suppose that Yω is an r.-i.q-B.f.s. on (Rn, ω)
with 1 < pYω ≤ qYω < ∞ and Yω is 1-convex. Then, the associate space of
Yω is nontrivial and we have two constants D1, D2 > 0 such that for any
Lebesgue measurable set E with ω(E) < ∞,

(3.7) D1ω(E) ≤ ∥χE∥Yω∥χE∥Y ′
ω
≤ D2ω(E).

Proof: As Yω is 1-convex, it possesses an equivalent lattice norm η and,
hence, Y ′

ω ̸= {0}. Denote the associate norm for η by η′. Thus, η′(·) is an
equivalent norm for ∥ · ∥Y ′

ω
. Furthermore, by [1], Chapter 1, Theorem 2.4,

we have a constant C > 0 so that∫
Rn

|f(x)g(x)|ω(x)dx ≤ η(f)η′(g) ≤ C∥f∥Yω∥g∥Y ′
ω

for any f ∈ Yω and g ∈ Y ′
ω. The first inequality in (3.7) follows by taking

f = g = χE.
To establish the second inequality of (3.7), we consider the linear operator

PE(f) =

(
1

ω(E)

∫
E

f(x)ω(x)dx

)
χE

where E is a Lebesgue measurable set with ω(E) < ∞. For any 1 ≤ p ≤ ∞,
PE is uniformly bounded on Lp(ω). More precisely, ∥PE∥Lp(ω)→Lp(ω) = 1.
Thus, for any 1 ≤ p, q ≤ ∞ and E, PE is of joint weak type (p, p; q, q) (see
[1], Chapter 4, Theorem 4.11). According to Theorem 3 of [12] or Theorem
4.4 of [8], PE is bounded on Yω with operator norm independent of E. That
is, there is a constant C > 0 such that for any Lebesgue measurable set E
and any f ∈ Yω,

1

ω(E)

∣∣∣∣ ∫
E

f(x)ω(x)dx

∣∣∣∣∥χE∥Yω = ∥PE(f)∥Yω ≤ C∥f∥Yω .

Then,

∥χE∥Y ′
ω
= sup

{∣∣∣∣ ∫
E

f(x)ω(x)dx

∣∣∣∣ : ∥f∥Yω ≤ 1

}
≤ C

ω(E)

∥χE∥Yω

.

We now present the main results of this paper. Theorems 3.9 and 3.10
give the characterizations of BMO by Ap weighted r.-i.q-B.f.s. for p > 1 and
p = 1, respectively. To obtain Theorem 3.9, we use the openness property
for Ap weight functions when p > 1 (see [6] Corollary 9.2.6). That is,

(3.8) Ap = ∪1<r<pAr.

Theorem 3.9. Let 1 < p < ∞ and ω ∈ Ap. Suppose that Yω is an r.-i.
q-B.f.s. on (Rn, ω) with p ≤ pYω ≤ qYω < ∞ and Yω is p-convex. Then,
Yω ⊆ M0,

BMOYω = BMO

and ∥ · ∥BMOYω
is an equivalent norm of ∥ · ∥BMO.
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Proof: We first show that Yω ⊆ M0. Using property (3.8), we see that
ω ∈ Ar for some r slightly smaller than p. By using Lemma 4 of [3], Yω is
r-convex. Therefore, η[r] is well-defined. Denote the associate norm of η[r]
by η′[r]. From Lemma 3.8, for any B ∈ B, we have χB ∈ Yω ∩ Y ′

ω. For any
f ∈ Yω, the Hölder inequality ensures that

|f |B =
1

|B|

∫
B

|f(x)|dx ≤ 1

|B|

(∫
B

|f(x)|rω(x)dx
) 1

r
(∫

B

ω− r′
r (x)dx

) 1
r′

where r′ is the conjugate of r. Using the Hölder inequality for η[r] and the
definition of Ar, we obtain

|f |B ≤ C(η[r](|f |r)η′[r](χB))
1
r

1

ω(B)
1
r

≤ Cη(f)(η′[r](χB))
1
r

1

ω(B)
1
r

.

As Y r
ω is p

r
-convex and the lower Boyd index of Y r

ω satisfies pY r
ω
=

pYω
r

≥
p
r
> 1, we are allowed to apply Lemma 3.8 to ∥ · ∥Y r

ω
. Moreover, η, η[r] and

η′[r] are equivalent to ∥ · ∥Yω , ∥ · ∥Y r
ω
and ∥ · ∥(Y r

ω )′ , respectively. Thus,

|f |B ≤ C∥f∥Yω

(
ω(B)

∥χB∥Y r
ω

) 1
r 1

ω(B)
1
r

≤ C∥f∥Yω

1

∥χB∥Yω

< ∞.

That is, fB is well-defined and Yω ⊆ M0.
It remains to prove the embedding BMOYω ↪→ BMO. Theorem 3.3

ensures that BMOLr(ω) = BMO. Thus, for any f ∈ BMOYω , we obtain∫
B

|f(x)− fB|rω(x)dx ≤ η[r](|f − fB|rχB)η
′
[r](χB).

Similarly, as Y r
ω is p

r
-convex and pY r

ω
=

pYω
r

≥ p
r
> 1, applying Lemma 3.8

to ∥ · ∥Y r
ω
again and using the fact that η[r] and η′[r] are equivalent to ∥ · ∥Y r

ω

and ∥ · ∥(Y r
ω )′ , respectively, we obtain∫

B

|f(x)− fB|rω(x)dx ≤ C

(
η(|f − fB|χB)

)r
ω(B)

∥χB∥Y r
ω

= C
∥|f − fB|χB∥rYω

ω(B)

∥χB∥rYω

where the constant C > 0 is independent of B ∈ B and f ∈ BMOYω .
Hence, the inequality

∥(f − fB)χB∥Lr(ω)

∥χB∥Lr(ω)

≤ C
∥|f − fB|χB∥Yω

∥χB∥Yω

is valid and the embedding BMOYω ↪→ BMO follows apparently.
Using Lemma 2.3 instead of Lemma 3.8 when ω ∈ A1, we have the fol-

lowing result.

Theorem 3.10. Let ω ∈ A1. If Yω is an r.-i.B.f.s. on (Rn, ω), then

BMOYω = BMO

This is a published version (permitted).
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and ∥ · ∥BMOYω
is an equivalent norm of ∥ · ∥BMO.
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