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Abstract: The study is devoted to the “mirror” method which enables one to study the integrability of 
nonlinear differential equations. A perturbative extension of the mirror method is introduced. The 
mirror system and its first perturbation are then utilized to gain insights into certain nonlinear 
equations possessing negative Fuchs indices, which were poorly understood in the literatures. In 
particular, for a non-principal but maximal Painlevé family the first-order perturbed series solution is 
already a local representation of the general solution, whose convergence can also be proved. 
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INTRODUCTION 

 
 The relevant literature study dates back to one 
century ago when Painlevé made an in-depth study of 
singularities and initiated the (now named) Painlevé 
analysis of integrability. Painlevé set up the problem of 
determining all differential equations whose general 
solution are single-valued. Following the pioneering 
work of Painlevé (1902), the methods of Gambier 
(1909), Bureau  (1964), Ablowitz et al. (1980) and 
Weiss et al. (1983) have been evolved and they were 
successful to apply in many cases. However, the main 
drawback of the methods is that none of them can build 
necessary conditions at all integer values of 
“resonances”. To be specific, negative Fuchs indices 
cannot be handled by these methods. The reason why 
the methods cannot handle negative indices lies in the 
fact that their Laurent series is assumed to be bounded 
from below.  
 The mirror method uses the new tool in singularity 
analysis: mirror transformations and regular mirror 
systems, which was first introduced by Hu and Yan 
(1999, 2000). By this method they were successful in 
the following several aspects. Firstly, the success of 
constructing mirror transformations enables us to treat 
each principal balance in the Painlevé test, singularity 
structures and symplectic structures of Hamiltonian 
systems from a common point of view. Secondly, Hu et 
al. (2001) showed that the mirror transformations are 
canonical for finite-dimensional Hamiltonian systems. 
Moreover, Yee (2002) demonstrated that the 
linearization of mirror systems near movable poles 
gives the possibility to construct the associated 

Backlund transformations of some partial differential 
equations and the Schlesinger transformations of some 
ordinary differential equations.  
 In the current work our primary goal is to introduce 
an improvement of the mirror method so that negative 
indices (“resonances”) can be treated. The structure of 
the study can now be explained. The perturbative 
Painlevé method is first introduced. We demand single-
valuedness not only for any pole-like expansion as in 
the Painlevé test, but also for every solution close to it, 
represented as a perturbation series in a small parameter 
ε. The usage of the idea of the perturbative method 
proves to be tremendously beneficial for the mirror 
method as a new improvement. Order-zero is the usual 
mirror system. Order-one reduces to a linearization of 
mirror system near a regular singularity and allows the 
introduction of all missing arbitrary coefficients. Higher 
orders lead to the analysis of a linear, Fuchsian type 
inhomogeneous system. In particular, negative indices 
give rise to doubly infinite Laurent series. An 
illustrative example of Bureau’s equation is also 
presented and finally the conclusion follows. 
 

MATERIALS AND METHODS 
 

Perturbative Painlevé analysis: Now we first present 
the perturbative method originally developed by Conte 
et al. (1993). The method allows us to extract the 
information contained in the negative indices, thus 
building infinitely many necessary conditions for the 
absence of movable critical singularities of the 
logarithmic type. 
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 Let us consider a nonlinear ordinary differential 
equation: 
E  ≡ K (u, x) = 0,  (1)  
 
which is polynomial in u and its derivatives, analytic in 
x. The standard Painlevé expansion takes the form (X is 
the expansion variable, Xx=1): 
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in which the negative integers p and q are the respective 
singularity order of u and E. 
 We seek a Laurent expansion for any solution 
which is near to the solution obtained by the standard 
Painlevé method. We do this by considering a 
perturbation expansion. For a non-principal but 
maximal Painlevé family the perturbation extends the 
particular solution into a representation of the general 
solution. Let us define the Painlevé expansion (u(0), E(0)) 
as the solution of unperturbed problem, and look for a 
nearby solution formally represented by an infinite 
perturbation series in powers of small parameter ε: 
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Let us denote, for the equation E = 0, Rk = the set of 
indices for kth family = {…, -1, … }, with the following 
assumptions: (1) all indices are distinct integers, and s 
to be the smallest index (s≤ -1); (2) all k families are 
maximal (families with a number of indices equal to the 
order of the equation); (3) at least one of the k families 
is principal (any maximal family with, apart from -1, all 
integer indices non-negative). 
 Now, the condition that the perturbation expansion 
still be a solution generates an infinite sequence of 
successive differential equations:  
E(0)  =  K(u(0), x)  =  0,      
E(1)  =  K’(u(0)) u(1)  =  0,  … , 
 
where K’ is the Fréchet operator acting on u(n). At each 
level of perturbation, we construct a pole expansion, but 
the order of the pole increases with the order of the 
perturbation. The resulting infinite perturbation expansion 
is a doubly infinite Laurent expansion:  
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 In general, perturbation theory practically always 
yields divergent series. However, by considering the 
perturbation series solution u(0)+εu(1) and expanding in 
X, with coefficients dependent of ε, we can prove the 
convergence. This can be done by introducing a new 
transformation for the mirror system. Eventually we 
succeed to deduce a regular extended mirror system 
with regular initial data. The Cauchy-Kowalevski 
theorem is then applied and convergence follows 
accordingly. The importance of the perturbed solution 
u(0)+εu(1) is that: for a non-principal but maximal 
Painlevé family it is already a local representation of 
the general solution. 
  In the following we investigate in detail each order 
of ε: 
 
With n = 0, E(0)(u(0)) ≡ K(u(0), x) = 0, where  
 
u(0) = a (either particular or general) solution of the 

original nonlinear equation, which is determined 
by standard Painlevé analysis 

 = Xp (A0 + B0 X + …),   A0 ≠ 0.                           (4) 
  
 
With n = 1, E(1)(u(0), u(1)) ≡ K’(u(0)) u(1)  = 0, where  
 
u(1) = (the general solution of homo equation) 
 + (a particular solution of inhomo equation) 
 = Xp  (A1Xs+ B1Xs-1 + …) + 0,                               (5) 
 
where A1, B1, … are arbitrary coefficients introduced at 
level one. The Painlevé series u(0), a Laurent series 
which is bounded below, is substituted into the 
linearized equation K′(u(0)) u(1) = 0, the resulting 
equation for u(1) is of Fuchsian type, the movable 
singularity X = 0 of the original ODE is a regular 
singularity for the linearized equation and its Fuchs 
indices are i+p, where i runs over the Painlevé 
resonances.  
 At this first order, an arbitrary coefficient is 
introduced at each index. Not all of these are new since 
we already have a coefficient in u(0), corresponding to 
each positive integer index. The coefficients introduced 
into u(1) at the corresponding indices (i+p, i a positive 
integer) just perturb the already arbitrary coefficients, 
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so add nothing new and it is not harmful to set them 
zero at this level. However, all other indices give rise to 
new arbitrary coefficients. Therefore the expression 
u(0)+εu(1) already contains as many arbitrary 
coefficients as there are indices in the family. 
 
With n ≥ 2, 
E(n)(u(0), … , u(n)) ≡ K′(u(0)) u(n) - R(n)(u(0), … , u(n−1)) = 0,  
 
where 
u(n) =  Xp (An Xs

 + Bn Xs-1 + …) 
    +Xp  (Cn Xsn+ Dn Xsn-1 + …),                               (6) 
 
where An, Bn, … are arbitrary (independent of Ai, Bi, i ≤ 
n-1)  n-th level coefficients that can be absorbed by u(1). 
Without the loss of generality, we set An = Bn = 0 for 
each n ≥ 2. Therefore, for n ≥ 2, we only concern about 
a particular solution of each inhomogeneous equation. 
The coefficients Cn, Dn, … are dependent of the 
previous “useful” coefficients which belong to a subset 
of {Ai, Bi, … | i = 0, 1}. 
 At these n-th orders (n ≥ 2) each function u(n) 

satisfies an inhomogeneous, linear differential equation. 
The indicial equation is the same for all n ≥ 1 but for n 
≥ 2 the leading behaviour of u(n) is determined by the 
singularity order of the rhs function R(n), not by K′(u(0)).  
 
 

RESULTS 
 
 We begin to illustrate, through a simple but 
instructive example, that the analysis on mirror systems 
might be performed in a perturbative approach such that 
negative and positive indices can be treated at the same 
time. We illustrate the algorithm of performing the new 
perturbative approach on the mirror system through the 
following ODE example of third-order kind, namely the 
Bureau’s equation. We also aim at showing the proof of 
convergence of the no principal balance of mirror system.  
 The Bureau’s third-order ODE is   E = K(u, t) = 0, 
where 
 
K (u, t) ≡ u′′′+3uu′′+3(u′)2+(3u2-c0)u′-c0′ u-d0, (7) 
 
where c0 and d0 are functions of t. By the standard 
Painlevé test we obtain two families of solutions with 
singularity orders and Fuchs indices in the following: 
(F1)   p = -1,  u0 = 1,  {-1, 1, 3}, 
(F2)   p = -1,  u0 = 2,  {-2,-1, 3}. 
 
 The Painlevé series of (F1)-(F2) are respectively: 
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where T := t - t0 and t0, r2, r3, s2 are arbitrary.  
 Now we are applying the perturbative Painlevé 
analysis to the second family (F2) and the result reads: 
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 Thus, the resulting infinite perturbation expansion 
for (F2) is a doubly infinite Laurent expansion: 
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 The local representation of the general solution is 
given by 
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 To demonstrate explicitly the extension of the 
mirror method we introduce the corresponding mirror 
transformation for the original equation given by (7): 
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 The regular mirror system is given by: 
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 The above mirror system can be expressed as K(Θ ) 
= 0, where ),,( 32 ηηθ=Θ .  Based on the dominant 
balance we obtain the two families of solutions of the 
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mirror system with the following singularity orders and 
Fuchs indices: 
 
(F1)  p = (1,-1,-3),  )0,0,1(=Θ ,  {-1, 1, 3}, 

(F2)  p = (1,-1,-3),  )0,1,
2
1(=Θ ,  {-2,-1, 3}. 

 
 The Painlevé series of (F1)-(F2) are respectively: 
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and  
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 The perturbative expansion for the mirror system is: 
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K(Θ )  =  0,    K(Θ (0))  =  0.  The first few terms are 
determined by 

 

⎪
⎩

⎪
⎨

⎧

=ΘΘΘ−ΘΘΘ

=ΘΘ−ΘΘΘ

=ΘΘΘ

,0),,()(':
,0),()(':

,0)(':

)2()1()0()3()3()0()3(

)1()0()2()2()0()2(

)1()0()1(

RK
RK

K
 

 
where 

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++−
−−

≡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−
−

≡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂
−+∂−

+∂
≡Θ

.
0

2

,
0

)(

,
00
2

0
)('

)1(
3

)2()2(
3

)1()2(
2

)1(
2

)1(
2

)2()2(
2

)1(

)3(

)1(
3

)1(2)1(
2

)1(
2

)1(

)2(

)0()0(
2

)0(
3

)0()0(
2

)1(

ηθηθηη
ηθηθ

ηθη
ηθ

θηη
θη

R

R

K

t

t

t

 

 
 Finally the successive linearizations of mirror 
system can be determined now. We consider the non-
principal balance (F2) only. With n = 0, 
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which determines  ),,( )0(

3
)0(

2
)0()0( ηηθ=Θ    as given by 

(16). With n = 1, 
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which gives 
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where s2 and 1α  are independent arbitrary constants 
introduced at the zero and the first level, which 
correspond to indices -1 and -2, respectively. So, 1α  is 
the new (important) parameter that we are looking for. 
At this level, we set another two arbitrary constants to 
zero without any  loss of generality since the arbitrary 
constants (at indices -1 and 3) are already represented 
into Θ(0). Since the family (F2) is maximal then the 
perturbed solution Θ(0)+εΘ(1)  is a local representation 
of the general solution. One indeed can continue to look 
for higher level perturbation in order to obtain a doubly 
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infinite expansion. We just list the second level 
linearization of mirror system below and the 
information up to n = 1 is good enough for our purpose. 
 With n = 2, 
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DISCUSSION 

 
 The new transformation for the mirror system can 
be determined based on the above results. In the 
following, let us also prove the convergence of the 
perturbation series solution Θ(0)+εΘ(1) of (F2). Again, 
we shall use a new transformation to convert the original 
mirror system into a new regular system of first-order 
differential equations with regular initial data. 
 With the family (F2), we deduce the following 
Laurent series based on (16) and (20): 
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where 1α  and s2 are the Painlevé resonances at Fuchs 
indices -2 and 3, respectively. We easily see that the 
solution blows up when T → 0, or t → t0. We observe 
that fact that 2η  is the only resonance variable blowing 
up in the order of  ).1(

0tt
O

−
 So we first introduce the 

new variable δ  by 1
2
−η  and formally invert (t - t0) into 

a series of δ . In this example, it is 
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 Next, we formally expand θ  and 3η into series of 
δ : 
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 By truncating the δ ‐series for θ  at the location of 
the first resonance 1α  to introduce a new variable 2ξ , 

and similarly, truncating the δ ‐series for 3η at the 

location of s2 to introduce 3ξ  we then deduce the new 

transformation ),,(),,( 3232 ξξδηηθ ↔ :  
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 The extended mirror system becomes: 
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 The Laurent series for ),,( 32 ξξδ are: 
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 which gives the initial data: 
 

)).('220,,0())(,,( 0021032 tcst −= εαξξδ    (28) 

 
 The convergence of the general solution can now 
be discussed. For a non-principal but maximal family 
(F2) the first-order perturbed series solution (12) is 
already a local representation of the general solution. In 
order to show the convergence of (12), we need the 
transformations: 
 

).,,(),,()'',',( 3232 ξξδηηθ ↔↔uuu  
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By the Cauchy-Kowalevski theorem, the extended 
mirror system (26) with the initial data (28) has a 
unique analytic solution ))(),(),(( 32 ttt ξξδ  near t = t0. 
 
 Then ),,(),,( 3

11
232 ξδδξηηθ −−=  is a solution 

of the original mirror system (14) near t = t0. Moreover, 
from the ordinary power series method, we can find the 
expansions for ).,,( 32 ξξδ Then an easy calculation 
reveals that the Laurent series of 

),,(),,( 3
11

232 ξδδξηηθ −−=  are exactly (22). The 
convergent power series solutions of the extended 
mirror system lead to convergent Laurent series 
solutions of the original mirror system, because of the 
equivalence between the systems. This proves the 
convergence of Θ(0)+εΘ(1) in (23). In particular, the 
series of )1()0( εθθ + is convergent. 
 
From 
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we can find the expansions for (u(0), u(1)) and they are 
exactly (12), up to the order where all the resonances 
appear. This proves the convergence of Laurent series 
solution u(0)+εu(1), which is locally representing the 
general solution for (F2). 
 
 

CONCLUSION 
 
 In this study we are trying to introduce a patch to 
the mirror method so that the negative Fuchs indices 
can be treated. This consideration extends the use of 
mirror transformations to a larger class of differential 
equations. Based on the examples under consideration, 
we are successful in treating the negative Fuchs 
indices. Order-zero perturbation gives the ordinary 
mirror system. Order-one reduces to a linearization of 
mirror system near a regular singularity and allows the 
introduction of all missing arbitrary coefficients. The 
method reveals that u(0)+εu(1) is already a 
representation of the general solution, whose 
convergence can also be proved. 
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