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ABSTRACT 

 In this article, we study the modified Hirota bilinear method to construct 

some exact analytical solutions of the complex Ginzburg–Landau equations 

(CGLEs). CGLEs are intensively studied models of pattern formation in 

nonlinear dissipative media, with applications to biology, hydrodynamics, 

nonlinear optics, plasma physics, reaction–diffusion systems and many other 

fields. A system of two coupled CGLEs modeling the propagation of pulses 

under the combined influence of dispersion, self and cross phase modulations, 

linear and nonlinear gain and loss will be discussed. A solitary pulse (SP) is a 

localized wave form and a front (also termed as shock) refers to a transition 

connecting two constant, but unequal, asymptotic states. A SP-front pair solution 

can be analytically obtained by the modified Hirota bilinear method. These wave 

configurations are dictated by a system of six nonlinear algebraic equations, 

allowing the amplitudes, wave-numbers, frequency, and velocities to be 

determined. The final exact solution can then be computed by employing the 

Groebner basis method in the computer software Maple. 
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1. INTRODUCTION  

The complex Ginzburg–Landau equations (CGLEs) govern the dynamics of 

patterns in nonlinear dissipative media, and arise in many disciplines, e.g. 

biology, chemical reactions, diffusion, hydrodynamics, optics, plasma physics 

and many other fields. The dynamics and propagation of the pulses are governed 

by the combined influence of dispersion, self and cross phase modulations, linear 

and nonlinear gain/loss. Many varieties of modes have been established, with the 

well known examples being (a) bright (or localized) solitary pulses, (b) dark 

pulses with minimum in intensity or holes, (c) kinks (also termed shocks or wave 

front solutions), transitions joining two constant, but unequal, asymptotic states. 

Comprehensive reviews have been given [1, 2, 3, 4].   

The primary focus in the paper is a system of two waveguides governed by 

two coupled CGLEs. Conditions for the presence of a shock / wave front in one 

channel, and a bright solitary pulse (SP) in the other, will be elucidated. The 

words ‘bright SP’ / ‘dark SP’ are borrowed from optics, and refer to a ‘localized 

pulse’ / ‘localized minimum in a constant intensity background’ respectively. 

Most works in the existing literature focus either on the ‘bright – bright SPs’ 

situation or a ‘bright – dark SPs’ pair. Hence the present configuration of ‘bright 

SP – shock’ in the two waveguides would be novel. The word ‘soliton’ will 
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occasionally be employed loosely here to substitute for solitary pulse, without 

implying integrability of the equations.  

A brief review will provide additional motivation for the present work. 

CGLEs where the carrier wave packets possess a difference in group velocities 

can be discussed in the terminology of sources and sinks, and may help in the 

understanding of spatiotemporal chaos [5 – 6]. Front solutions are also termed 

‘domain walls’ in the literature. CGLEs with spatially dependent coupling 

coefficients will be relevant to rotating fluid flow in narrow annulus, or large 

aspect ratio system with poor heat conduction coefficients [7]. In modeling 

convection and liquid crystals, fronts in CGLEs with resonant temporal forcing 

can result in ‘tunable’ mechanism for stabilizing these wave pulses [8].   

Considerable analytical progress can be made if one of the two coupled 

CGLEs exhibits substantial simplifications, e.g. consisting of linear damping 

alone or displaying an absence of dispersion [9]. In the optical context, one such 

system of CGLEs models the ‘nonreturn-to-zero’ pulses by a superposition of 

two shock solutions. This dynamics is relevant to dual-core, erbium-doped, 

amplifier-supported fiber system. In contrast, we shall study two nonlinearly 

coupled CGLEs in this work.  

Besides the search for analytical expressions for solitary waves, a crucial 

problem to address is the stability of the background. For an isolated CGLE, 
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generalization of such modulation instability has been considered in recent 

reviews [10]. For coupled CGLEs, where one component is linear and dissipative, 

precise stability boundaries have been mapped out. For linearly coupled CGLEs 

with fifth order (quintic) nonlinearities, doubly asymmetric solitary pulses and 

breathers are possible [11].  

The structure of this paper can now be explained. Solitons and fronts in 

isolated or uncoupled CGLE can be calculated by a modified Hirota bilinear 

operator (Section 2). Another critical feature is that the conventional bilinear 

equations must be replaced by ‘trilinear equations’ to compute specialized exact 

solutions. This is illustrated by a simple case where damping and gain are absent, 

i.e. CGLEs are reduced to the integrable, nonlinear Schrödinger (Manakov) 

equations (Section 2). The nonlinearly coupled Ginzburg–Landau model is then 

introduced (Section 3).  The exact ‘bright–front’ pair is formulated (Section 3). 

Special exact solutions are then presented (Section 4), and Conclusions follow 

(Section 5). 

 

2. METHOD 

In the literature the method involving the use of Hirota bilinear operator 

has been well established in finding solitary and periodic pulses of nonlinear 

systems. Several modifications and improvements are at times necessary to 
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obtain an even larger class of nonlinear waves. In the following an illustrative 

example will be given, namely, the modified Hirota operator by Bekki and 

Nozaki will first be introduced and the evolution equations recast as ‘trilinear’ 

forms will also be displayed.  

 The modified Hirota derivative introduced by Bekki and Nozaki earlier in 

[12] is 
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where M is a positive integer, and μ can be complex.  

The ‘bright soliton – front’ pair of CGLEs can be obtained by rewriting the 

partial differential equations as ‘trilinear’ forms with the Bekki-Nozaki modified 

Hirota operator. A concrete example is given in the following to illustrate the 

main idea. This is a simplified case where gain / loss are absent, i.e. CGLEs 

reduce to the coupled nonlinear Schrödinger equations.   

 The Manakov system is the special, integrable set of coupled nonlinear 

Schrödinger equations: 
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and one set of exact periodic solutions in terms of Jacobi elliptic functions is 

known: 
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 ,)exp()dn()cn(6,)exp()cn()sn(6 201
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0 tirxrxkrBtirxrxkrA Ω−=Ω−=  (3)  

where Ω1, Ω2 are appropriate angular frequencies and k0 is the modulus of the 

Jacobi elliptic functions. The long wave limits of (3) are the (double humped for 

waveguide A) solutions 

.)4exp()(sech6,)exp()sech(tanh6 222 tirrxrBtirrxrxrA ==  

 To derive (3) from (2) by the Hirota method, the trilinear formulations 
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F
GA ==                        (4) 

,0}{}){( 2**2 =⋅−++⋅+ FFDHHGGGFGDiDF xxt                  (5a) 

,0}{}){( 2**2 =⋅−++⋅+ FFDHHGGHFHDiDF xxt                  (5b) 

must be used. The bilinear decomposition, e.g. setting the second bracket to be 

zero in (5a, 5b), cannot be taken. However, for an uncoupled CGLE (p, q 

complex), we can still apply the trilinear form to obtain the shock/front solutions 

which are in agreement with formulas obtained earlier in the literature [12]. 

 

3. MODEL AND RESULTS 

In this section we can present our target model, say, the nonlinearly 

coupled complex Ginzburg–Landau model and the major results about the model. 

We are going to employ the terminologies of nonlinear optics for discussion. 
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Slowly varying amplitudes of the electric fields A and B will typically be 

governed by the nonlinearly coupled CGLEs, 

                ,)( 1

2

2

2

11 AiABqAqApiA xxt γ=+++                                  (6) 

                              .)( 2

2

2

2

12 BiBAqBqBpiB xxt γ=+++              (7) 

The interpretations and physical significance of the various terms can now be 

explained. The real parts of the coefficients p1 and p2 denote the group velocity 

dispersion, and the imaginary parts, if any, are associated with the physical 

effects of ‘bandwidth limited amplification’. The real parts of the complex 

coefficients q1 and q2 account for the self– and cross–phase modulations 

respectively, while the imaginary parts measure the nonlinear gain/loss. The 

linear gain/loss of the optical waveguides is given by the real coefficients γ1, γ2.  

To rewrite (6, 7) in terms of the operator (1), we take 

                                       nm f
HtixiB

f
GA ]exp[, Ω−ξ

==                                        (8) 

where G and H are complex-valued functions, but f is real-valued, while m and n 

are complex numbers of the specific form  (in which α and β are real) 

                        m = 1+iα,         n = 1+iβ.                                                   (9) 

Using the modified Hirota’s bilinear operator (1), the two trilinear reductions of 

(6, 7) are determined as follows: 
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The ‘Dx’ (without the first subscript) refers to the ordinary Hirota derivative, or μ 

= 1 in (1). We shall search for localized modes in A and shock / front in B. Next 

we assume expressions of the forms (in which k and ω are complex), 

],exp[ tkxgG ω−=         (12) 
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then by equating the proper powers of the exponentials, we finally obtain the 

target system of six nonlinear equations: 
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We can regard (15 – 20) as six complex algebraic equations for the unknowns ξ 

(real), Ω (real), α (real, or m defined by (9)), β (real, or n defined by (9)), gg* 

(real), hh* (real), k (complex), ω (complex), whereas the parameters p1, p2 

(complex, dispersion and bandwidth limited amplification), q1, q2 (complex, 

self/cross phase modulation and nonlinear gain/loss), γ1, γ2 (real, linear gain/loss) 

are the six coefficients given by the original equations of (6, 7). In principle, g 

and h can be complex, but the system (6, 7) is invariant up to a complex phase 

factor, and thus effectively only gg*, hh* matter in the final solutions. Generally 

speaking, locating all families of solutions for (15 – 20) is a huge undertaking. 

Specifically if we impose special conditions on p1, p2, q1, q2, this certainly 

permits significant analytical progress. In terms of physical meanings we are 

going to investigate the solitary pulse and kink pair solution. Finding such exact 

solutions for a solitary pulse-kink pair will be our goal in the following. 

 

4. DETAILS AND DISCUSSION 

By separating the real and imaginary parts the six complex equations of 

(15 – 20) give rise to a system of 12 nonlinear real equations for the real 

unknowns (kr, ki, ωr, ωi, gg*, hh*, α, β, ξ, Ω, γ1, γ2). We remark that γ1 and γ2 are 
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treated with purpose as unknowns for the system and we define k := kr + i ki , 

ω := ωr +i ωi to simplify the writing further.  Not surprisingly, the above system 

is still too complicated and we need to do some algebraic simplifications before 

we plug this into the software Maple and try to find any possible exact solutions 

symbolically. Before we get into the details of the simplifications, we may 

observe that the simplest solution can easily be found by choosing that q2 = q1 

and p2 = p1. From (15, 18) and the requirement that m, n be complex numbers 

with real part unity, the implication is m = n, or equivalently α = β. Unfortunately, 

this parameter regime only gives a plane wave in x, and does not yield a spatially 

localized solution. In order to locate the non-degenerate case where α ≠ β we 

thoroughly investigated the 12 real equations and eventually made the following 

assumptions in order to make the algebra tractable. In this section we confine our 

attention to  

q1 = –q2 = qr + iqi,       p2/s = p1 = pr + ipi,     pi ≠ 0                        (21) 

where s is real. 

 Equations (15) and (18) imply that  

αβ = –2, and s = α2/2 > 0.                                                                         (22) 

This means that p1 and p2 must be related to each other by a real, positive 

multiple. By writing the real and imaginary parts of (18) explicitly, we have a 
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homogeneous system of two unknowns (hh* − gg*) and 2
rk . In order to have 

nontrivial solutions, we deduce the condition  

.0))(2()(3 2 =−α−−+α riiriirr qpqpqpqp                                        (23) 

This condition determines the possible values of α whenever pr, pi, qr, qi are 

given. Note that the product of roots is –2, being consistent with (22).  

 Elimination of the angular frequency parameters yields the system of four 

real equations with six real unknowns (kr, ki, hh*, ξ, α, γ1): 
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222* =−−+−−+− ririrrii kppkkkphhq .    (27) 

We note that solving the nonlinear system of (24 – 27) by employing suitable 

computer software is our next primary goal. In fact we may solve this system by 

using the Groebner basis method in the software Maple. The software will output 

several sets of common zeros of Groebner basis. Each set of common zeros of 

the Groebner basis is equivalent to the set of common zeros of the original set of 

polynomials. After some simplifications, the final result is (γ1 being arbitrary)  
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where Θ is an auxiliary polynomial. The coefficients φj are given in terms of 

lengthy expressions listed in the Appendix in [13].  

 Some remarks for the exact solution given by (28 – 33): 

(i) pi is not zero. In the intermediate calculations the factor pi appears in the 

denominator, and thus pi bounded away from zero becomes critical. 

(ii) Each of α, kr, ki, ξ may assume two possible values, one positive and one 

negative. We will use the notations: α+, α-, kr
+, ki

-, ξ+, ξ- depending on whether 

they are positive or negative.  

(iii) Recall the explicitly written six unknowns in the solution (28 – 33), the other six 

unknowns (Recall the explicitly written six unknowns in the solution (28 – 33), 

the other six unknowns (ωr, ωi, gg*, β, Ω, γ2) can then be computed accordingly. 

In fact we have 

1. β is determined by (22), 
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2. γ2 is determined by  

0γ)ξαξα816(
2
1

2
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0ω2)( 22 =−+− iiririr kkpkkp ,       (36) 
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0)α3)α2((4)( 22** =−−++− rirr kppgghhq ,     (37) 

6. Ω is determined by  

0Ωξα
2
1ξα2α2 22222 =+−− rrirr pkpkp .      (38) 

The computations show that ωr, ωi, γ2 and Ω may have two different expressions. 

They are denoted by (2)(1)(2)
2

(1)
2

(2)(1)(2)(1) Ω,Ω,γ,γ,ω,ω,ω,ω iirr . 

(iv) Given the values of pr, pi, qr, qi, we find that only one member of the family of 

solutions )γ,γ,Ω,ξ,β,α,hh,gg,ω,ω,k,(k (1,2)
21

(1,2)**(1,2)(1,2) ±±±±±
irir , where γ1 is arbitrary, will 

satisfy the original equations.  

(v) Given the values of pr, pi, qr, qi, the positiveness of gg*, hh*, 2
rk , 2

ik ,ξ2 will 

determine the sign of α and the sign of γ1 in the exact solution. Note that 
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although the sign of γ1 is restricted, this does not affect the arbitrariness of γ1 (it 

is still a free parameter in the exact solution). 

(vi) The exact solution can finally be deduced by verifying the family of solutions 

with the original equations.  

 

 As an illustrative example and with the assumptions made in (21) we have 

q2 = –q1, and p2 = sp1 = (α2/2) p1, where  

p1 = –2 + i,       q1 = –1 + i.                           (39) 

It is shown that an exact solution with a linear gain ( 0γ1 > ) can be chosen: 
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The above numerically represented exact solution is given by  
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 For γ1 < 0, similar analysis can be performed and the corresponding 

analytical solutions can also be computed, but details will not be pursued here. 

 

5. CONCLUSION 

In case of the conservative wave system, i.e. in the absence of gain and 

loss, CGLEs reduce to the nonlinear Schrödinger equations. In order to find the 

exact travelling wave solutions, there exists a large variety of analytical methods 

and the use of symbolic algebra software is well established [14].  
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Upon including gain/loss, a two-waveguide system will be governed by 

coupled CGLEs, and one model of nonlinear coupling is investigated in this 

work. A combination of phase locked ‘localized pulse / front’ solution has been 

investigated and such a pair is presented here via the use of trilinear equations 

with the Bekki-Nozaki modified Hirota operator [12]. Sets of algebraic equations 

defining the amplitude, phase, wave number, and frequency of the bright 

(localized) soliton / kink pair are established, in conjunction with the basic 

properties of the nonlinear dissipative media, i.e. coefficients of the coupled 

CGLEs. The closed-form representations of the exact solutions, for the case 

where the dispersion coefficients are of same signs, are obtained analytically.  

Further sets of exact solutions, for the case where the dispersion 

coefficients are of different signs, can also be found. One delicate, but crucially 

important, issue is the modulation instability of the background state, and has not 

been fully addressed in this work. Such instability will dictate conditions on 

whether the wave forms will be physically observable, and will create 

requirements on the range of validity of the parameters. Future works along these 

lines of reasoning will definitely be fruitful.      
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