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Abstract 

This paper estimates the consumption effects of an electricity rate increase 

triggered by an electricity decarbonization policy’s implementation. Underscoring 

its real-world relevance is the policy’s net impact on CO2 emissions, the sum of (a) 

the supply-side impact attributable to using generation resources with low emissions 

to displace those with high emissions, and (b) the demand-side impact caused by 

energy consumption changes in response to the electricity rate increase. For Hong 

Kong, the changes in (b) are decreases in electricity consumption and increases in 

town gas consumption. Using a sample of monthly data for the period of 1981-2016, 

we document the low price responsiveness of Hong Kong’s electricity and town gas 

demands by customer class (residential, commercial and industrial). Hence, the 40% 

projected electricity rate increase due to Hong Kong’s adopted electricity 

decarbonzation policy may only have a small demand-side impact on CO2 emissions. 

Finally, the electricity demands’ low price responsiveness has two important policy 

implications. First, Hong Kong’s demand-side-management should rely more on 

energy efficiency improvement than price-induced consumption reductions. Second, 

restructuring Hong Kong’s electricity industry to introduce wholesale competition 

should consider the potential for large electricity price spikes and market power 

abuse in connection to price-inelastic electricity demands.   

This is the pre-published version published in Energy, available online at: 
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1. Introduction  

The world’s electricity industry has seen three transformative events in the 

last three decades. The first event is market restructuring to introduce wholesale 

competition in Europe, North America, South America, Australia, New Zealand, and 

Asia [1-3], leading to bilateral trading enabled by open transmission access and 

centralized power exchanges administered by independent system operators [4-8]. 

Wholesale electricity market prices are highly volatile with large spikes,
1
 triggering 

extensive research in price behavior and dynamics, forward contracts and tolling 

agreements, derivatives and risk management, product differentiation, system 

operation, and integrated resource planning [9-49]. Further, an electricity market 

reform’s ability to deliver reliable service at stable and reasonable rates requires 

demand price responsiveness that mitigates price spikes and market power of 

generators [2-3, 50-54].  

The second event is large-scale renewable energy development, thanks to the 

global potential of solar and wind resources [55-57], as well as government policies 

such as feed-in-tariff (FIT), easy transmission access, renewable portfolio standard, 

low-cost financing, and tax subsidies [58-66]. Due to their zero fuel costs, renewable 

                                            
1 Wholesale electricity prices are inherently volatile due to: (a) daily fuel-cost variations, especially for the 

natural gas that is widely used by combustion turbines and combined-cycle gas turbines; (b) hourly 

weather-sensitive demands with intra-day and inter-day fluctuations, which must be met in real time by 

generation and transmission already in place; (c) planned and forced outages of electrical facilities; (d) hydro 

conditions for systems with significant hydro resources; (e) carbon-price fluctuations affecting thermal 

generation that uses fossil fuels; (f) transmission constraints that cause transmission congestion and generation 

re-dispatch; and (g) lumpy capacity additions that can only occur with long lead times. 

This is the pre-published version published in Energy, available online at: 
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resources like solar and wind displace thermal generation via the merit order effect 

that reduces wholesale market prices in Europe (e.g., Denmark, Germany and 

Spain), North America (e.g., the Northwestern states, California, Texas, and the 

Northeastern states) and Australia [67-84]. As a result, renewable resources benefit 

electricity consumers, unless their per MWh procurement costs far exceed the 

market prices (e.g., Germany, Spain and Ontario that had used high FIT rates to 

promote renewable generation development). 

The third event is deep decarbonization [85], underscored by the 

international commitments made in the 2015 Paris Climate Change Summit and the 

China-U.S. bilateral agreement ratified in the 2016 G20 Summit in Hangzhou China. 

Despite the Trump administration’s withdrawal of the U.S. committed reduction in 

CO2 emissions, China continues its pursuit of decarbonization through renewable 

energy development and carbon trading, which are a clean electricity future’s critical 

components that have attracted extensive research attention [86-113]. 

Against the backdrop of the above transformative events, this paper’s 

primary objective is to estimate the consumption effects of an electricity 

decarbonization policy. To underscore this objective’s real-world relevance, consider 

(A + B), the policy’s projected net impact on a region’s CO2 emissions. This net 

impact is the supply-side impact A attributable to using generation resources with 

This is the pre-published version published in Energy, available online at: 
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low CO2 emissions to displace those with high CO2 emissions, plus the demand-side 

impact B due to energy consumption changes in response to the policy’s ensuing 

electricity rate increase.  

We choose Hong Kong as our case study for the following reasons. First, 

Hong Kong is an international metropolis with a population of ~7.3 million, larger 

than the individual population sizes of 38 American states, eight Canadian provinces 

and eight OECD countries. Its economic performance rivals OECD countries’, with 

a per capita GDP of about US$43,000 per year and an unemployment rate of 3.4% in 

2016.
2
 Such a performance could not have been possible sans a superbly reliable 

electricity supply [114]. Second, Hong Kong is experiencing deteriorating air 

quality. Besides transportation, the major source of local emissions, including CO2, 

is the 6,608 MW of coal-fired generation that accounts for 52.3% of Hong Kong’s 

12,625 MW of total generation capacity [115-117]. Finally, the Hong Kong 

government has recently made two important policy decisions that shape Hong 

Kong’s electricity future [118-119]. The first decision rejects reforming Hong 

Kong’s electricity industry due to concerns of limited competition among the likely 

few sellers. Its further justification is the low electricity demand price 

responsiveness, as evidenced by the own-price elasticity estimate of -0.155 reported 

                                            
2 http://www.censtatd.gov.hk/hkstat/hkif/index.jsp 
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in [120]. The second decision adopts a fuel mix that uses natural gas and renewable 

energy to displace coal consumed by Hong Kong’s local generation. Importantly, the 

adopted fuel mix’s projected 40% electricity rate increase is found to be publicly 

acceptable [117].  

To achieve the paper’s primary objective, we use a sample of newly 

constructed monthly data for the 192-month period of January 1981 to December 

2016 to estimate the price elasticities of Hong Kong’s retail electricity and town gas 

demands by customer class (residential, commercial and industrial).
3
 The price 

elasticity estimates reported herein help answer three substantive questions:  

● What is the estimated reduction in Hong Kong’s total electricity demand due to 

the projected 40% electricity rate increase? This question is relevant and 

important because declining electricity consumption reduces Hong Kong’s 

local emissions [120-121]. When electricity demands are highly price-sensitive, 

a supply-side policy that leads to electricity rate increases can achieve a greater 

emissions reduction than what the policy anticipates.  

● What is the estimated increase in Hong Kong’s town gas consumption due to 

the projected 40% electricity rate increase? According to [122-123], electricity 

and town gas are substitutes in Hong Kong. Hence, the decremental emissions 

                                            
3 Unlike cities in Europe and North America that use natural gas, Hong Kong uses “[t]own gas produced from 

naphtha and natural gas”. (https://www.towngas.com/Eng/Corp/AbtTG/HKBus/Production.aspx).  

This is the pre-published version published in Energy, available online at: 
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of declining electricity consumption are weakened by the incremental 

emissions of rising town gas consumption.  

● Are Hong Kong’s electricity demands highly price-inelastic? If yes, introducing 

competition via an electricity market reform in Hong Kong is challenging 

because low demand price responsiveness tends to exacerbate price spikes and 

market power of generators [2-3, 50-54].  

While specific to Hong Kong, the above questions are equally relevant to 

other regions that likely see substantial changes in their electricity generation 

resources. The first case in point is California’s newly enacted renewable portfolio 

standard, mandating that 50% of the state’s electricity sales be met by 2030 by 

qualifying renewable resources such as solar, wind or geothermal.
4
 The second case 

is nuclear plant retirements in Europe in the wake of Japan’s 2011 Fukushima 

disaster, as well as the vast development of renewable resources in Europe and 

North America [124-127]. The third case is China’s ambitious plan to cut its 

greenhouse gas emissions by reducing its consumption of coal, the dominant fuel 

used in China’s electricity generation [86-113].
5
  

Our demand estimation uses a constant-elasticity-of-substitution (CES) 

specification described in Appendix C to:  

                                            
4 http://www.energy.ca.gov/portfolio/ 
5 http://www.bbc.com/news/science-environment-33040965 
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● Detect demand price responsiveness when the substitutability among 

electricity and town gas is expected to be low in Hong Kong;
6
  

● Exploit the publicly available data, while accounting for the effects of weather 

on energy consumption [128-133]; and  

● Offer up-to-date price elasticity estimates to enrich the only empirical 

evidence that we have found, the residential electricity price elasticity estimate 

of -0.155 reported in [120].  

Our paper’s main contributions are as follows. First, it shows how to use the 

monthly tariff information in Appendix A to construct monthly energy price data by 

customer class that match the publicly available quarterly price data. Detailed in 

Appendix B, the resulting monthly price data yield a larger and more granular 

sample than those based on quarterly or annual data.   

Second, it presents a CES system of electricity and town gas demands to 

comprehensively estimate class-specific price elasticities. This formulation is 

applicable to cities and regions where aggregate data are available but disaggregate 

data are either unavailable or costly to collect. Even if disaggregate data were 

available, our approach could still offer a reality check of the findings from a 

                                            
6 There are four reasons for our expectation of low substitutability. First, electricity has many end-uses (e.g., air 

conditioning, cooking, lighting, motors and drives, ventilation, refrigeration, water heating, and other plug loads 

like computers and electronics). Second, town gas is mainly for cooking and water heating. Third, all households 

and firms in Hong Kong have universal access to electricity, which is not the case for town gas because the Hong 

Kong China Gas Company’s (HKCGC’s) distribution network’s geographic coverage is less extensive than that 

of Hong Kong Electric’s (HEC’s) and China Light Power’s (CLP’s) distribution networks. 

This is the pre-published version published in Energy, available online at: 
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disaggregate demand analysis.  

Third, it documents the effects of monthly weather on Hong Kong’s 

electricity and town gas consumption. After an extensive exploration of such 

weather variables as monthly mean temperatures, rainfall, bright sunshine hours, 

relative humidity, and wind speed, it finds energy demands by customer class move 

with cooling degree month (CDM = max(monthly mean of daily maximum 

temperatures – 18C, 0)) and heating degree month (HDM = max(18C - monthly 

mean of daily minimum temperatures, 0)).  

Fourth, it documents small price elasticity estimates of -0.01 to -0.02 for 

Hong Kong’s class-specific electricity demands and -0.06 to -0.23 for the related 

town gas demands. To the best of our knowledge, these estimates are new, filling a 

glaring informational gap in the extant studies of Hong Kong’s retail energy 

consumption. 

Finally, it applies the price elasticity estimates to calculate the demand-side 

impact on Hong Kong’s CO2 emissions due to the government’s fuel mix decision’s 

projected 40% electricity rate increase. While the price-induced electricity 

consumption decline reduces the natural gas used by electricity generation, the 

electricity rate increase also raises Hong Kong’s town gas consumption. The net 

change is an annual reduction of ~44,007 (0.24%) metric tons in the total CO2 

This is the pre-published version published in Energy, available online at: 
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emissions attributable to Hong Kong’s electricity and town gas consumption. This 

demand-side estimate of CO2 emissions reduction complements those found via 

energy system modeling of renewable energy development in Hong Kong [115].  

The rest of this paper proceeds as follows. Section 2 briefly reviews the 

energy demand literature, describes our data sample and presents our model 

specification and estimation strategy. Section 3 reports the regression results and 

price elasticity estimates. It also uses the elasticity estimates to compute the net 

change in Hong Kong’s CO2 emissions. Section 4 concludes. 

2.  Material and methods 

2.1 Literature review  

To contextually link our empirical analysis to the vast literature of energy 

demand estimation, this section reviews retail demand studies of electricity and 

natural gas for three customer classes: residential, commercial and industrial. As 

there are hundreds of such studies, we necessarily rely on extant surveys [134-141]. 

These surveys indicate that own- and cross-price elasticity estimates are typically 

developed from the data for a given type of energy (e.g., electricity or natural gas) 

consumed by a particular customer class (e.g., residential or commercial). Relatively 

rare are the price elasticity estimates found using a single data file that encompasses 

multiple energy types and customer classes. Our paper shows how to overcome the 

This is the pre-published version published in Energy, available online at: 
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empirical challenges of assembling such data and performing the associated 

estimation. 

With electricity as the dominant focus of research, residential demand studies 

are based on the theory of consumer behavior [142]. Studies of 

non-time-differentiated kWh consumption often use a linear or double-log 

specification in a single-equation setting, thanks to the specification’s easy 

estimation and theoretical validity [143-144]. Appendix D documents our estimation 

of the linear and double-log demand models, finding these models inappropriate for 

characterizing our sample’s underlying data generation process (DGP).   

Enabled by smart metering, electricity demand response under dynamic 

pricing can improve an electric grid’s economic and operational efficiencies [48, 49, 

145]. Focusing on peak load reduction, a residential time-of-use (TOU) electricity 

study typically estimates a demand system of peak and off-peak kWh consumption 

[146-156]. Besides the CES specification [157-158], two commonly used functional 

forms are the Translog [159] and Generalized Leontief (GL) [160], with the latter 

being more suitable when the TOU demands exhibit low elasticities of substitution 

[161-163].  

A useful message from the TOU demand studies is that the CES and GL 

specifications can parsimoniously parameterize a retail energy demand system for a 

This is the pre-published version published in Energy, available online at: 
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given customer class, chiefly because electricity and natural gas likely have low 

substitutability that leads to small cross-price elasticity estimates.
7
 Further, they 

offer a formal test of the null hypothesis of zero substitution. If this hypothesis is 

rejected, estimating CO2 emissions reduction due to an electricity rate increase 

should consider price-induced changes in natural gas consumption. Appendix D 

documents our estimation of the CES and GL demand models, finding that the CES 

model is an empirically reasonable representation of our sample’s DGP.  

Non-residential energy demands are based on the theory of firm behavior 

[164]. While linear and double-log specifications are popular in the single-equation 

setting, they lack the theoretical rigor of an energy demand system parameterized by 

a suitably chosen functional form, as exemplified by [165-169]. Our paper 

demonstrates how to estimate a CES system that is relatively easy to implement. 

Meta analyses suggest that retail energy demand studies have vastly different 

attributes, yielding highly diverse price elasticity estimates [139-140]. It is difficult 

to use extant studies to project price-induced consumption changes, as selecting the 

“right” price elasticity estimates can be both challenging and controversial 

[170-172]. Hence, an empirically reasonable computation of the price-induced 

                                            
7 The relative versatility of these two energy types explains their low substitutability. To see this point, consider 

a household’s consumption of end-use services (e.g., clothes and dish washing, cooking, refrigeration, lighting, 

space cooling, space heating, and water heating). While electricity is a versatile energy input for the domestic 

production of such end-use services, natural gas is mainly for cooking and water heating.  

This is the pre-published version published in Energy, available online at: 
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consumption changes should preferably use an estimated demand system based on a 

unified framework implemented with a single data file, as demonstrated by our 

demand estimation reported below. 

Finally, our paper is closely related to a 2011 study that uses residential and 

regional own-price elasticity estimates to assess the effect of price-induced 

electricity consumption reductions on CO2 emissions in the U.S.A. [173]. Based on 

a panel of annual data by state for the 15-year period of 1990-2004, the study’s 

double-log demand estimation yields elasticity estimates of -0.20 to -0.25. For a 

10% increase in retail electricity rates, the projected CO2 emissions reduction is 

about 0.86%. However, [173] only considers the electricity rate increase’s effect on 

electricity consumption, unlike our paper that considers the electricity rate increase’s 

effect on both electricity and town gas consumption. 

2.2 Data description 

Our sample contains Hong Kong’s monthly data for the 192-month period of 

January 1981 to December 2016. The period’s ending month reflects the data 

available at the time of our writing. We exclude the data before 1981 because of the 

sharp and abrupt structural change in Hong Kong’s economy triggered by China’s 

economic reform that began in 1978.  

     Unlike the U.S.A. where monthly data are readily available from the Energy 

This is the pre-published version published in Energy, available online at: 
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Information Agency, the Hong Kong government publishes the following data:     

● Monthly electricity and town gas consumption data by customer class available 

from the Census and Statistics Department.
8
  

● Quarterly utility-specific tariffs by customer class for electricity in the various 

issues of Hong Kong Energy Statistics Quarterly Report (Quarterly Report 

hereafter),
9
 or Hong Kong Energy Statistics Annual Report (Annual Report 

hereafter) published by the Census and Statistics Department.
10,11

 Appendix B 

details how we use the electricity tariff information to construct the average 

electricity prices by customer class. We cannot use the published quarterly and 

annual average prices in Quarterly and Annual Reports because such prices are 

not differentiated by customer class and unavailable for our entire sample 

period.
12

  

                                            
8 http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?tableID=127&ID=0&productType=8 
9 Appendix A reproduces the utility-specific tariffs for electricity and town gas reported in the 1st Quarter 2017 

Report of Hong Kong Energy Statistics. 
10 http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?productCode=B1100001  

and http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?productCode=B1100002  
11 While CLP reported “Domestic tariff” and “General service tariff” for the entire sample period, HEC reported 

“Domestic tariff”, “Commercial and miscellaneous tariff” and “Small industrial tariff” before 2002 and merged 

the last two categories into “Commercial, industrial and miscellaneous tariff” in subsequent years.  
12 Annual and Quarterly Reports provide the average prices of electricity and town gas for 1981-2000 and 

2001Q1-2006Q3, respectively. There are no reported figures on average prices in both reports since 2006Q4.We 

calculated subsequent figures by dividing quarterly total sales revenue by quarterly local consumption for 

electricity and town gas, which are available in Tables 4.1, 4.2 and 4.3 of the Quarterly reports. There is only 

slight discrepancy between the reported and our calculated values in the overlapping period of 2006Q1-Q3.   

This is the pre-published version published in Energy, available online at: 
https://doi.org/10.1016/j.energy.2017.12.074.

http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?tableID=127&ID=0&productType=8
http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?productCode=B1100001


15 

 

● Quarterly town gas tariff data in different issues of Quarterly and Annual 

Reports. We incorporate the monthly fuel cost adjustments to the published 

tariff data and calculate the average prices by customer class.
13

  

● Quarterly real GDP available in Hong Kong Economic Reports.
14

 We convert 

the quarterly real GDP to monthly real GDP = quarterly GDP × (number of 

days within the month / total calendar days within the quarter).
15

 

● Weather data published by the Hong Kong Observatory, which include monthly 

temperatures, rainfall, bright sunshine hours, relative humidity and wind 

speed.
16

 We use the monthly means of daily maximum and minimum 

temperatures to derive the CDM and HDM.  

 The average price variables are endogenous under nonlinear tariffs [174 - 

175]. To see this point, consider a random shock (e.g., a typhoon which causes 

residents to stay home) that increases residential electricity consumption and 

therefore the residential average price because of the residential tariff’s increasing 

block rate structure. The positive correlation between the random shock and average 

price may cause unintended bias in our demand estimation [176]. To overcome this 

                                            
13 HKCGC only reported “General tariff” for residential, commercial and industrial classes. This tariff data is 

available in the 1980-1981 issues of Annual Report and data for 1982 and onwards is available in the Quarterly 

Reports. 
14 http://www.hkeconomy.gov.hk/en/reports/archive.htm 
15 Recognizing the number of days in each calendar month, the January real GDP is the Q1 GDP times 0.344 [= 

31 days / (31 days + 28 days + 31 days)]. The February and March real GDP data are derived in the same 

manner.  
16 http://www.hko.gov.hk/cis/monthlyExtract_e.htm?y=2015 
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bias, we use the stepwise autoregressive (STEPAR) method in PROC FORECAST 

of SAS [177] to develop the monthly predicted prices that highly correlated with the 

actual prices (r > 0.85).
17

 As the predicted prices in month t are driven by the actual 

prices in prior months, they do not depend on the consumption levels in month t. 

Hence, the predicted prices are exogenous and serve as instrumental variables in our 

demand estimation.  

Panel A of Table 1 reports our data sample’s descriptive statistics. We use the 

Phillips-Perron (PP) test for a unit root [178] to find residential electricity and town 

gas consumption, real GDP and weather are stationary at the 5% significance level, 

not so for the remaining series. Hence, using these data directly in our demand 

estimation raises concerns of spurious regressions [176]. Further, the relatively low 

coefficients of variation indicate that all data series have relatively small dispersion, 

presaging the empirical challenge in detecting Hong Kong’s electricity and town gas 

demands’ price sensitivity.  

Panel B of Table 1 reports the constructed data series for estimating an 

energy demand system based on the CES specification. With relatively large 

coefficients of variation, the first-differenced data series are stationary at the 5% 

                                            
17 As a quick and automatic way to generate forecasts for many time series, the STEPAR method combines a 

“time trend regression with an autoregressive model and uses a stepwise method to select the lags to use for the 

autoregressive process” [177]. In short, the monthly price predictions are automatically produced by PROC 

FORECAST sans additional modeling efforts by the authors. 

This is the pre-published version published in Energy, available online at: 
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significance level.  

Table 2 shows the correlation coefficients for the first-difference of logged 

data series used in the estimation. We explain these coefficients as follows:  

● The likely low substitution between electricity and town gas consumption 

implies that the logged consumption ratios are weakly correlated with the 

logged price ratios.  

● The logged consumption ratios are positively correlated with logged GDP, as 

rising GDP tends to increase Hong Kong’s stock and utilization of major 

electricity-consuming durables (e.g., air conditioners, refrigerators, cooking 

ranges, and water heaters), more so than those of major town-gas-consuming 

durables (e.g., cooking stoves and water heaters). 

● The logged consumption ratios are positively correlated with CDM but 

negatively correlated with HDM. This reflects Hong Kong’s large air 

conditioning loads that are mainly weather driven. Electricity consumption is 

high in the summer months with high CDM but low HDM (e.g., June - 

October), not so in the winter months with low CDM and high HDM (e.g., 

November – February). In contrast, town gas consumption is largely weather 

insensitive because Hong Kong has mild winter weather and does not use town 

gas as the primary fuel for space heating.   

This is the pre-published version published in Energy, available online at: 
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While the correlation coefficients in Table 2 are informative, they do not quantify 

Hong Kong energy demands’ price responsiveness. Thus, we use a regression 

analysis to identify and quantify this responsiveness. 

2.3 Regression specification 

After extensive trials of different functional forms and model specifications 

reported in Appendix D, we find that the CES specification is an empirically 

plausible representation for our sample’s DGP. To specify our regression model, let 

Xk = electricity consumption (MWh) at price Ek and Yk = town gas consumption (GJ) 

at price Gk for customer class k = 1 for residential, 2 for commercial and 3 for 

industrial.  

A CES system for the three customer classes comprises the following 

equations: 

Δln(X1/Y1) =   + EG Δln(E1/G1) + Y Δln(GDP) + Z1;  (1.a) 

Δln(X2/Y2) =   + EG Δln(E2/G2) + Y Δln(GDP) + Z2;  (1.b) 

Δln(X3/Y3) =   + EG Δln(E3/G3) + Y Δln(GDP) + Z3.  (1.c) 

In the above equations, Zk denotes the total effect of non-price drivers, assumed to 

be a linear function of the weather variables (CDM and HDM), as well as binary 

indicators for months of the year.  

Electricity and town gas are substitutes when the coefficients EG, EG and 

This is the pre-published version published in Energy, available online at: 
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EG are all negative. If these coefficients are equal to zero, the corresponding energy 

demands are completely price-insensitive. Omitted here for brevity, the derivation of 

the price elasticities is given in Appendix C.  

2.4 Estimation strategy 

Affixing an additive random error to each equation yields a system of 

seemingly unrelated regressions (SUR), thanks to these errors’ likely 

contemporaneous correlation.
18

 We use the iterative SUR (ITSUR) method of 

PROC MODEL in SAS [177] to estimate the CES system. We use robust standard 

errors to gauge the regression coefficient estimates’ precision and statistical 

significance, thereby circumventing the need to specify the AR order and form of 

heteroscedasticity of the random errors [179].  

We perform three final checks of our results. First, we use the PP test to 

determine that the regression residuals do not follow a random walk, thus allaying 

concerns of spurious regressions [176]. Second, we re-estimate the CES system after 

adding an interaction term of ln(GDP)  ln(Ek/Gk) to allow for the price 

elasticities’ possible dependence on GDP. As the re-estimation yields the anomalous 

finding that electricity and town gas are not substitutes, we exclude this interaction 

                                            
18 The two reasons for the errors’ contemporaneous correlation are as follows. First, the energy demand 

regressions for a given customer class reflect the consumption decisions of the same class. Second, a random 

shock (e.g., storms) can affect the energy demands of all three customer classes. 

This is the pre-published version published in Energy, available online at: 
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term in our final specification.
19

 Finally, we construct quarterly data to re-estimate 

the CES system. The resulting coefficient estimates are similar to those reported in 

Table 3. Since the use of quarterly data reduces the sample size and masks the 

monthly variations in energy prices and consumption, we decide not to use quarterly 

data for our demand analysis.  

3. Results 

3.1 Regression results  

Table 3 reports the ITSUR regression results. The three regressions have 

adjusted R
2 

values of 0.43 to 0.79, indicating their empirically reasonable fit with the 

noisy monthly first-differenced data. 

The estimates for EG, EG and EG are all negative, lending support to our 

expectation that electricity and town gas are substitutes in Hong Kong. Their small 

sizes, however, suggest low price sensitivities. Except for the commercial class, 

these estimates are statistically insignificant (p-value > 0.1). Taken together, these 

findings’ main inference is that Hong Kong energy demands are highly 

price-inelastic.    

The positive coefficient estimates for Δln(GDP) indicate that rising GDP 

tends to raise the consumption ratio. This makes sense because an increase in GDP 

                                            
19 A theoretically valid energy cost function is concave in energy prices, implying that in our two-input case, 

electricity and town gas should be substitutes [164]. 
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likely has a greater impact on electricity consumption due to the increasing use of air 

conditioning and other end-uses (e.g., electronics and refrigeration) than town gas 

consumption that is mainly for cooking and water heating. Coefficient estimates for 

CDM and HDM confirm that Hong Kong’s electricity and town gas demands 

move with weather.  

3.2 Elasticity estimates  

Table 4 reports the own-price elasticity estimates for electricity, which are 

-0.0214, -0.0207 and -0.0113 for the residential, commercial and industrial class, 

respectively. Hence, the aggregate elasticity estimate is small at -0.0194. The 

estimates for town gas are -0.0648 for the residential class, -0.1972 for the 

commercial class and -0.2287 for the industrial class, implying an aggregate 

own-price elasticity estimate of -0.1275. These estimates indicate that Hong Kong’s 

electricity and town gas demands by customer class are highly price-inelastic.   

3.3 Net change in CO2 emissions  

This section assesses the demand-side impact of the 40% electricity rate 

increase on Hong Kong’s CO2 emissions. Fig.1 shows that this assessment entails 

the following steps: 

● Step 1: Use the own-price elasticity estimates to compute the percentage 

change in class-specific electricity consumption.  

This is the pre-published version published in Energy, available online at: 
https://doi.org/10.1016/j.energy.2017.12.074.



22 

 

● Step 2: Use the results from Step 1 and the 2016 annual data to find the change 

in total electricity consumption of the three customer classes.  

● Step 3: Use the result from Step 2 to find the change in natural gas used in 

electricity generation at an assumed marginal heat rate of ~7 MMBtu/MWh 

based on CLP’s combined cycle gas turbines.  

● Step 4: Use the cross-price elasticity estimates to find the percentage change in 

class-specific town gas consumption.  

● Step 5: Use the results from Step 4 and the 2016 annual data to find the change 

in total town gas consumption of the three customer classes. 

● Step 6: Compute the changes in CO2 emissions based on the results from Steps 

3 and 5, thereby quantifying the net change in CO2 emissions caused by the 

40% electricity rate increase.  

As the own- and cross-price elasticity estimates are key parameters in the 

above steps, we explore three plausible scenarios of interest:  

● Scenario 1 (zero price responsiveness): All price elasticities are zero to reflect a 

complete lack of price responsiveness. Absent price-induced consumption 

changes, this scenario’s demand-related CO2 emissions reductions by customer 

class are zero. 
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● Scenario 2 (expected price responsiveness): The price elasticities are the 

estimates reported in Table 4. Fig.2. shows that the 40% electricity rate increase 

would decrease Hong Kong’s total electricity consumption, while increasing 

Hong Kong’s total town gas consumption. The net reduction in annual CO2 

emissions is ~44,007 metric tons, or 0.24% of Hong Kong’s total CO2 

emissions due to natural-gas-fired generation and town gas consumption. 

● Scenario 3 (higher-than-expected price responsiveness): The own- and 

cross-price elasticities are larger in size than those in Scenario 2. Hence, we 

assume the own-price (cross-price) elasticities are the lower (upper) bounds of 

the 95% confidence intervals for the estimates reported in Table 4. Fig.3. shows 

that the net reduction in annual CO2 emissions remain small at ~48,141 metric 

tons, or 0.27% of Hong Kong’s total CO2 emissions due to natural-gas-fired 

generation and town gas consumption. 

Based on the three scenarios’ empirical findings, the 40% electricity rate increase is 

expected to have a small demand-side impact on Hong Kong’s total CO2 emissions.   

4. Conclusion  

We conclude by answering the three questions posed in Section 1. First, what 

is a 40% electricity rate increase’s effect on Hong Kong’s total electricity demand? 

Based on the own-price elasticity estimates in Table 4, this effect is small, only 
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-0.81% of Hong Kong’s total electricity demand.  

Second, what is the projected increase in town gas consumption resulting 

from the 40% electricity rate increase? Based on town gas’ cross-price elasticity 

estimates, the change in Hong Kong’s total town gas consumption is 5.12%, thus 

offsetting the CO2 emissions reduction noted above. Based on Fig.2, the net impact 

is a 0.24% reduction in Hong Kong’s CO2 emissions due to the price-induced 

changes in electricity and town gas consumption. 

Finally, are the estimated electricity demands price-inelastic? The answer is 

“yes” because the class-specific elasticity estimates have sizes well below 1.0. These 

price-inelastic electricity demands caution the introduction of an electricity market 

reform in Hong Kong, due chiefly to the potential for large price spikes and market 

power abuse by electricity suppliers. 

The above findings have two important policy implications. First, the low 

price responsiveness reported herein suggests Hong Kong’s demand-side 

management should rely more on energy-efficiency improvements than 

price-induced demand reductions to cut its total electricity consumption [e.g., 9]. It 

also supports the government’s decision to decarbonize Hong Kong’s electricity 

supply, as the supply-side impact is not weakened by the demand-side impact on 

Hong Kong CO2 emissions. 
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Second, mitigating market power abuse in a deregulated electricity market in 

Hong Kong necessitates electricity forward trading [180] and market surveillance of 

and regulatory sanctions against non-competitive behavior [2-3, 181-182]. This 

requires reform prerequisites that Hong Kong does not currently have (e.g., 

legislative mandates for vertical and horizontal divestiture, as well as the 

establishment of an independent system operator and a public utilities commission). 

Hence, HEC and CLP should continue to be integrated utilities, operating under the 

recently signed 15-year regulatory contracts between the Hong Kong government 

and these two electric utilities.
20
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Appendix B: Price data construction  

The biggest challenge in our monthly demand analysis is the lack of suitable 

monthly price data for Hong Kong’s electricity and town gas consumption. To 

construct the price data, we first verify each tariff in the Quarterly and Annual 

Reports of Hong Kong Energy Statistics, ensuring that the tariff’s volumetric 

charges contain the quarterly and monthly fuel cost adjustments.
21

 If the tariff’s 

volumetric charges have excluded the fuel cost adjustments, we add the adjustments 

to the volumetric charges, resulting in the effective charges paid by the end-use 

customers. We ignore the monthly customer charges because they do not vary with 

consumption and their small sizes should not affect a customer’s service-connection 

decision. The tariffs’ nonlinearity motivates us to consider two different approaches 

to construct the price data.  

To illustrate these approaches, we use a hypothetical 3-block tariff to 

construct the monthly data for price variable P1 for a given customer class of HEC. 

Using a 4- or 5-block tariff complicates our illustration, without the benefit of 

additional insights. 

Suppose the tariff’s first block is Q1 kWh, second block is Q2 kWh, and third 

block is Q3 kWh for a customer’s monthly billing kWh in excess of (Q1 + Q2). 

                                            
21 While the Annual Reports from 1980 to 2001 show information of quarterly fuel cost adjustments for HEC, 

CLP and HKCGC, those from 2002 to 2014 show only the annual fuel cost adjustments. Quarterly Reports from 

2001Q2 to 2016Q4, however, show monthly fuel cost adjustments for HEC, CLP and HKCGC.     
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Further suppose that the three volumetric charges (HK$/kWh) are VC1, VC2 and VC3. 

Based on this 3-block tariff, the first approach is simple averaging so that each 

month’s P1 = (VC1 + VC2 + VC3) / 3. It generates a reasonable P1 when the tariff is 

almost linear with approximately equal VC1, VC2 and VC3.While easy to implement, 

it ignores the tariff’s block quantities. As some tariffs in the Quarterly Reports are 

highly nonlinear, we decide to abandon this approach. 

We adopt the second approach of block-weighted averaging. Under this 

approach, we assume each month’s average price estimate for the customer class is 

P1 = (VC1 Q1 + VC2 Q2) / (Q1 + Q2), which excludes the volumetric charge VC3 to 

which we cannot attach a kWh weight sans data on a customer’s monthly billing 

kWh. When VC1, VC2 and VC3 are close, block-weighted and simple averaging 

should yield nearly identical P1 values.  

We recognize that an accurately calculated average price for a given class 

should be P1’ = (VC1 * Class kWh sales at VC1 + VC2 * Class kWh sales at VC2 + 

VC3 * Class kWh sales at VC3) ÷ (Class kWh sales at VC1 + Class kWh sales at VC2 

+ Class kWh sales at VC3). Unfortunately, we do not have the necessary 

utility-specific data on monthly class sales by variable charge to compute P1’.  

For each customer class, we now have two electricity prices: P1 (HK$/MWh) 

for Hong Kong Island (HKI) served by HEC and P2 (HK$/MWh) for Kowloon and 
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New Territory (KNT) served by CLP.
22

 We derive Hong Kong’s average monthly 

electricity price E as a weighted average of P1 and P2 based on CLP’s and HEC’s 

annual sales by customer class.  

When compared to P1’, P1 is likely biased. So are our other similarly 

constructed prices. Hence, we scale all of our constructed prices using the following 

factor:  = Actual AP / Constructed AP, where Actual AP = Hong Kong’s quarterly 

actual average electricity price and Constructed AP = Hong Kong’s quarterly 

constructed average electricity price.  

We use the following steps to compute : 

(1) Find Hong Hong’s quarterly total sales in the government report.
23

 We use the 

monthly data in the report to compute the quarterly sum of total sales.  

(2) Compute the quarterly weighted average of HEC’s and CLP’s constructed 

prices by customer class. For a given customer class, this price is (HEC’s share 

of Hong Kong’s annual total class sales * HEC’s quarterly average 

class-specific constructed price + CLP’s share of Hong Kong’s annual total 

class sales * CLP’s quarterly average class-specific constructed price). Because 

the Quarterly Report does not have quarterly utility-specific sales data, we can 

only use the annual class sales data from the annual reports of HEC and CLP to 

compute the annual utility-specific class sales shares.   

(3) Estimate Hong Hong’s quarterly total electricity revenue as Sum (over 

customer classes) of Hong Kong’s total quarterly electricity sales by customer 

                                            
22 A map of Hong Kong that shows HKI and KNT is available at: 

http://www.travelchinaguide.com/map/hongkong/ 
23 http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?tableID=127&ID=0&productType=8 
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class from Step 1 * Weighted quarterly average electricity price by customer 

class from Step 2. 

(4) Find Hong Kong’s quarterly constructed AP as Result from Step 3 ÷ Result 

from Step 1. 

(5) Find  for the following cases when AP are derived from different sources: 

 Case 1: Hong Kong’s quarterly actual AP is reported in the Quarterly 

Report. For the period of 2001Q1 to 2006Q4, we find  = Hong Kong’s 

quarterly actual AP in the Quarterly Report ÷ Result from Step 4. 

 Case 2: Hong Kong’s quarterly actual AP is derived by dividing quarterly 

total sales revenue by quarterly local electricity consumption. For the 

period of 2007Q1 to 2014Q4, we find  = Hong Kong’s quarterly actual AP 

derived by the above-mentioned method ÷ Result from Step 4. 

 Case 3: Hong Kong’s quarterly actual AP is not reported in the Quarterly 

Report. For the period of 1981Q1 to 2000Q4,  = (Hong Kong’s annual 

actual AP (expand to quarterly actual AP) ÷ Result from Step 4), where 

Hong Kong annual actual AP = (HEC’s annual sales * HEC’s annual 

system average price + CLP’s annual sales * CLP’s annual system average 

price) ÷ (HEC’s annual sales + CLP’s annual sales).   

The scaling factors have a sample mean of 0.930, indicating the constructed average 

prices are moderately above the actual average prices.  

We use the GDP price deflator to convert the nominal prices to real prices in 

constant 2014 dollar.
24

 We multiply the real electricity prices by 1000 to obtain their 

                                            
24 The quarterly GDP price deflator data are available at 

http://www.censtatd.gov.hk/hkstat/sub/sp250.jsp?tableID=030&ID=0&productType=8. We use linear 
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HK$/MWh values. We also multiply the real town gas prices by 1000 to obtain their 

HK$/GJ value.  

 

Appendix C: The CES energy cost function 

This appendix derives the regression specification in the main text. Consider 

a retail customer with a CES energy cost function: C = A
1/

 Q = EX + GY, where A = 

[ E

 + (1 – ) G


], E= electricity price ($/MWh), G = town gas price ($/GJ), and Q 

= intermediate output index, an increasing function of end-use needs (e.g., heating, 

lighting, …, etc.) [158]. Invoking Shephard’s Lemma [164], the electricity demand 

is X = ∂C/∂E = A
1/ E


Q and the town gas demand is Y = ∂C/∂G = A

1/
) 

G


Q. Absent data on Q, the estimable equation is ln(X / Y) = +  ln(E / G), with 

 = [ / (1 – )] > 0 and  = ( -1) < 0 when electricity and town gas are substitutes. 

To account for the energy consumption ratio’s dependence on non-price variables, 

we assume the intercept  to be a linear function of logged income, weather and 

binary indicators for months of the year.  

To find the own-price elasticity, consider the electricity cost share SX = EX / 

C =  E

 / A. The effect of an electricity price change on lnX is ∂lnX /∂E = ∂lnC/∂E + 

( - 1) / E – ( /A)  E


. As SX = (∂lnC/ ∂E) E =  E

 /A and = ( - 1), ∂lnX/∂lnE 

=  (1 – SX) =  SY because (SX + SY) = 1. Finally, ∂lnX/∂lnE + ∂lnX/∂lnG = 0 

                                                                                                                             
interpolation to find the monthly deflator series. 
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because the CES cost function is homogenous of degree one in energy prices. 

 

Appendix D: Summary of empirical explorations  

This appendix summarizes our explorations that lead to our finally chosen 

CES formulation shown in Section 2. By no means exhaustive, these explorations 

employ several commonly used approaches to find empirically plausible elasticity 

estimates. 

We first use the Generalized Leontief (GL) demand system, which is suitable 

for estimating energy demands with small elasticity of substitution [163, 165]. We 

first-difference the data as the raw data series are non-stationary at the 5% 

significance level. We apply the ITSUR method of PROC MODEL in SAS [177] to 

estimate the GL system under the restrictions of positive coefficient estimates for the 

square-rooted price ratios, as required by a well-behaved energy cost function that is 

concave in energy prices [160]. Based on the monthly actual price data, all 

restrictions are rejected at the 5% significance level. Based on the monthly predicted 

price data, two out of three non-negative restrictions are rejected at 5% level. Further, 

the regression residual for the industrial electricity demand is non-stationary. As part 

of the estimation process, we test AR(n) (n = 1, 2, and 3) errors and try additional 

weather variables like rainfall, bright sunshine hours, relative humidity, and wind 

speed. None of these efforts leads to empirically plausible own-price elasticity 
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estimates that should be negative. 

After abandoning the GL specification, we estimate the popular double-log 

model:
25

 ln(energy consumption) =  +  × ln(real actual or predicted price) + 

non-price effects (e.g., ln(real GDP), ln(weather variables)) + AR(1) error. 

Estimating the six energy demand equations (= electricity and town gas for three 

customer classes) yields positive own-price elasticity estimates for all customer 

classes. Re-estimation with different weather variables fails to remedy the 

anomalous elasticity estimates. We also try the linear demand specification, yielding 

positive own-price elasticity estimates. Repeating the estimation process using the 

first-differenced data does not yield empirically plausible results. 

After rejecting the double-log and linear specifications, we estimate a CES 

system in level form. With the actual monthly price data, the coefficient estimates 

for the logged price ratio variables are positive, suggesting that the two energy types 

are not substitutes. With the predicted monthly price data, only one coefficient 

estimate for the logged price ratio variable is negative. Further, the industrial class’ 

regression residuals are non-stationary. Finally, changing the combination of 

regressors does not solve the problems of implausible price elasticity estimates and 

non-stationary residuals.  

                                            
25 For a discussion on the theoretical basis of the double-log and linear demand equations for the residential 

class, see [143]. 
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We then estimate a CES system in first-difference form, yielding empirically 

plausible coefficient estimates that are consistent with the properties of a 

theoretically valid energy cost function. As a result, we report this system’s 

regression results in the main text.    
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Nomenclature 

FIT Feed-in-tariff 

CES Constant-elasticity-of-substitution 

HKCGC Hong Kong China Gas Company 

HEC Hong Kong Electric 

CLP China Light Power 

CDM Cooling degree month 

HDM Heating degree month 

DGP Data generation process 

TOU Time-of-use 

GL Generalized Leontief 

Quarterly Report Hong Kong Energy Statistics Quarterly Report 

Annual Report Hong Kong Energy Statistics Annual Report 

STEPAR Stepwise autoregressive 

PP test Phillips-Perron test 

SUR Seemingly unrelated regressions 

ITSUR method Iterative SUR method 

HKI Hong Kong Island 

KNT Kowloon and New Territory  
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Table 1  

Descriptive statistics for Hong Kong energy data; sample period = Jan-1981 – Dec-2016. 

Panel A: Raw data series 

Data type Variable (unit) Stationary at 5% 

level? 

Mean (M) Standard deviation 

(SD) 

Coefficient of variation = SD 

/ M 

Minimum Maximum 

Residential consumption 
Electricity X1 (MWh)  Yes 650180.68 351169.55 0.54 151666.67 1647777.78 

Town Gas Y1 (GJ) Yes 930412.04 425378.83 0.46 137000.00 1898000.00 

Commercial 

consumption 

Electricity X2 (MWh)  No 1583121.14 730083.00 0.46 307222.22 2972500.00 

Town Gas Y2 (GJ) No 735918.98 269516.87 0.37 135000.00 1117000.00 

Industrial consumption 
Electricity X3 (MWh)  No 397484.57 121791.60 0.31 191944.44 688611.11 

Town Gas Y3 (GJ) No 70851.85 32876.78 0.46 14000.00 152000.00 

Actual residential price 
Electricity ($/MWh) No 821.97 230.43 0.28 552.71 1358.35 

Town Gas ($/GJ) No 183.39 64.69 0.35 86.70 301.35 

Actual commercial price 
Electricity ($/MWh) No 821.50 202.67 0.25 539.71 1146.40 

Town Gas ($/GJ) No 183.39 64.69 0.35 86.70 301.35 

Actual industrial price 
Electricity ($/MWh) No 794.85 189.63 0.24 525.45 1104.17 

Town Gas ($/GJ) No 183.39 64.69 0.35 86.70 301.35 

Predicted residential 

price 

Electricity E1 ($/MWh) No 821.55 228.69 0.28 449.58 1355.37 

Town Gas G1 ($/GJ) No 183.50 64.62 0.35 75.40 300.31 

Predicted commercial 

price 

Electricity E2 ($/MWh) No 821.62 202.53 0.25 480.20 1147.73 

Town Gas G2 ($/GJ) No 183.50 64.62 0.35 75.40 300.31 

Predicted industrial Electricity E3 ($/MWh) No 794.92 189.45 0.24 482.61 1105.64 
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price Town Gas G3 ($/GJ) No 183.50 64.62 0.35 75.40 300.31 

Weather 

Cooling degree days 

CDM 

Yes 7.92 4.77 0.60 0.00 16.40 

Heating degree days 

HDM 

Yes 0.79 1.42 1.80 0.00 6.70 

Gross Domestic Product Real GDP ($M) Yes 135681.57 42867.26 0.32 53592.51 221349.77 

 

Panel B: Constructed data series used in the estimation 

Data type Variable Stationary at 5% 

level? 

Mean 

(M) 

Standard deviation 

(SD) 

Coefficient of variation = 

SD / M 

Minimum Maximum 

First-differenced natural log of energy 

consumption ratio 

Δln(X1/Y1) Yes -0.0017 0.2902 -170.7059 -1.2741 0.6750 

Δln(X2/Y2) Yes 0.0001 0.1193 1193.0000 -0.2685 0.3083 

Δln(X3/Y3) Yes -0.0042 0.1113 -26.5000 -0.3567 0.4990 

First-differenced natural log of predicted energy 

price ratio 

Δln(E1/G1) Yes -0.0002 0.0298 -149.0000 -0.2635 0.2288 

Δln(E2/G2) Yes -0.0008 0.0242 -30.2500 -0.1378 0.1589 

Δln(E3/G3) Yes -0.0009 0.0235 -26.1111 -0.1430 0.1584 

First-differenced natural log of GDP  Δln(GDP) Yes 0.0030 0.0624 20.8000 -0.1272 0.1840 

First-differenced weather variables  
ΔCDM Yes 0.0065 2.7219 418.7538 -7.1000 7.4000 

ΔHDM Yes -0.0079 1.3101 -165.8354 -6.5000 4.8000 
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Table 2  

Correlation coefficients for the constructed data series used in the estimation; sample period = Jan-1981 – Dec-2016. 

Variable First-differenced natural log of predicted energy price ratio First-differenced natural log of GDP First-differenced weather variables 

Residential: 

Δln(E1/G1) 

Commercial: 

Δln(E2/G2) 

Industrial: 

Δln(E3/G3) 

Δln(GDP) ΔCDM ΔHDM 

Δln(X1/Y1) 0.03 -0.03 -0.01 0.20 0.67 -0.13 

Δln(X2/Y2) 0.02 -0.05 0.00 0.46 0.73 -0.40 

Δln(X3/Y3) 0.01 -0.03 -0.01 0.43 0.47 -0.34 
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Table 3  

ITSUR regression results for the CES system; sample period = Jan-1981 – Dec-2016; adjusted R
2
 in [  ]; clustered autocorrelation-heteroscedasticity-consistent standard 

errors in (  ); “
***

” = 1% significance, “
**

” = 5% significance, “
*
” = 10% significance. 

Variable 
Residential class: j = 1 

[0.7888] 

Commercial class: j = 2 

[0.7769] 

Industrial class: j = 3 

[0.4267] 

Δln(Ej/Gj) 
-0.0861  

(0.1944) 

-0.2178
*
 

(0.1162) 

-0.2400  

(0.1983) 

Δln(GDP) 
1.6455

***
 

(0.2994) 

0.3373
**

 

(0.1684) 

0.0245 

(0.2430) 

ΔCDM 
0.0288

***
 

(0.0065) 

0.0136
***

 

(0.0028) 

0.0022  

(0.0039) 

ΔHDM 
0.0399

***
 

(0.0085) 

0.0047 

(0.0044) 

-0.0215
***

 

(0.0063) 

Note: For brevity, this table omits the estimates for the intercepts and coefficients of the binary indicators for months.  
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Table 4  

Own-price elasticity estimates based on ITSUR regression results; sample period = Jan-1981 – Dec-2016; standard errors in (  ); “
***

” = 1% significance, “
**

” = 5% 

significance, “
*
” = 10% significance. 

Energy type Residential Commercial Industrial Aggregate 

Electricity 
-0.0214 

(0.0482) 

-0.0207
*
 

(0.0110) 

-0.0113  

(0.0093) 

-0.0194  

(0.0150) 

Town gas 
-0.0648 

(0.1462) 

-0.1972
*
 

(0.1052) 

-0.2287  

(0.1890) 

-0.1275  

(0.0985) 

Note: The cross-price elasticity estimates are not shown here because the sum of the own price and cross price elasticity estimates is equal to zero, see Appendix C. The 

aggregate elasticity is the weighted average of the class-specific estimates, with each weight equal to the class-specific consumption share. 
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Fig. 1. Assessment of the net change in CO2 emissions due to the projected 40% electricity rate increase triggered by Hong Kong’s electricity decarbonization policy  
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Fig. 2. The net change in CO2 emissions due to the 40% electricity price increase based on the annual consumption data in 2016 under the expected price responsiveness 

scenario.  

Note:  Using the CO2 content information available at https://www.eia.gov/tools/faqs/faq.php?id=73&t=11, this figure’s construction is as follows. Let Mj = change in 

natural gas usage (MMBtu) in electricity generation = CCGT’s heat rate of ~7 MMBtu / MWh  MWh change in customer class j’s price-induced electricity 

consumption decline (= class j’s own-price elasticity estimate for electricity  40%  class j’s annual MWh consumption in 2016). The total change in electricity 

generation’s natural gas usage is M = M1 + M2 + M3. The CO2 emissions change due to M is R1 = M  K1 where K1 = CO2 emissions of burning natural gas = 53.2 kg 

/ MMBtu. Let Nj = class j’s change in town gas consumption (GJ) = class j’s cross-price elasticity estimate for town gas  40%  class j’s annual GJ consumption in 

2016. The total change in town gas consumption is N = N1 + N2 + N3. The CO2 emissions change due to N is R2 = N  K2 where K2 = CO2 emissions of burning town 

gas = 59.9 kg / GJ based on the information available at https://www.towngas.com/en/Social-Responsibility/Environmental-Protection/Carbon-Management. Finally, 

the net CO2 emissions change is R = R1 + R2.   
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Fig. 3. The net change in CO2 emissions due to the 40% electricity price increase based on the annual consumption data in 2016 under the higher-than-expected price 

responsiveness scenario. 

Note:  This figure’s construction is the same as Fig.2’s.  

 

-3000000

-2500000

-2000000

-1500000

-1000000

-500000

0

500000

1000000

1500000

2000000

Residential Commercial Industrial

Change in electricity 

consumption (MWh) 
M = Change in natural gas used in 

electricity generation (MMBtu) 

N = Change in town 

gas consumption (GJ) 

R2 = CO2 emissions 

change due to N (00 kg) 

R1 = CO2 emissions 

change due to M (00 kg) 

Net CO2 emissions change 

 = R  = R1 + R2  (00 kg) 

This is the pre-published version published in Energy, available online at: 
https://doi.org/10.1016/j.energy.2017.12.074.




