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Abstract

We prove that the game chromatic index of trees of maximum degree 4
without three adjacent 4-vertices (degree-four vertices) is at most 5. This
relaxes the assumption that the trees do not contain adjacent 4-vertices in
a result of Chan and Nong [The game chromatic index of some trees of
maximum degree 4. Discrete Appl. Math., 170 (2014), 1-6].
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1. Introduction

In this paper, we consider the edge-coloring game studied in [2, 5, 6], in
which two players, Alice and Bob, alternatively choose a color from a set of
colors to color an uncolored edge of an initially uncolored finite and simple
graph G such that no adjacent edges receive the same color. Alice wins the
game if all edges of G are finally colored successfully; otherwise, Alice loses.
Bob takes the first move and he is permitted to skip turns throughout the
game, while skipping is not allowed for Alice. The parameter game chromatic
index χ′g(G) of a graph G, which was introduced by Cai and Zhu [4], is defined
as the smallest natural number n so that Alice has a winning strategy for
the game played on G with n colors. A similar type of games was introduced
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by Bodlaender [3], in which nodes are colored instead of edges, and the
corresponding parameter is called game chromatic number.

For any tree T with the maximum degree ∆, Cai and Zhu [4] showed that
χ′g(T ) ≤ ∆ + 2. Erdős et al. [6] then proved that the best possible upper
bound is ∆ + 1 for trees with ∆ ≥ 2. This best possible bound is achieved
when ∆ = 3 [1] or ∆ ≥ 5 [2, 6]. As this bound trivially holds for ∆ = 2,
only the case ∆ = 4 was left open. For this remaining case, Chan and Nong
[5] proved that the bound ∆ + 1 is also effective and sharp when T does not
contain adjacent 4-vertices or, when T is a caterpillar, which may contain a
chain of 4-vertices. In this paper, we prove that the bound 5 is still valid
when T contains adjacent 4-vertices and even it is not a caterpillar, provided
that no three 4-vertices are adjacent.

2. Trees with ∆ = 4 and without three adjacent 4-vertices

Theorem 1. Let T be a finite tree with ∆ = 4 and containing no three
adjacent 4-vertices. Then χ′g(T ) ≤ 5.

Before presenting the proof of the above theorem, we first define several
terms as follows:

• A leaf is the edge incident with a pendant vertex.

• The root of a leaf is the non-pendant vertex incident with a leaf.

• A trivial path is a path of length zero.

• A star-node is a vertex connected to three or more roots of colored
leaves by edge-disjoint (maybe trivial) paths.

• A k-SN is a star node connected to exactly k roots of colored leaves by
edge-disjoint (maybe trivial) paths.

• A star-edge is an edge incident with a star-node.

• A star-path is the path connecting two star-nodes.

• A k-leaf-colored tree (k-LCT ) is a tree containing exactly k colored
leaves.
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• A v-branch of a tree containing a vertex v is its maximal subtree which
consists of exactly one edge incident with v. A v-branch with no colored
edges is called an uncolored v-branch.

We have the following remarks for a tree with ∆ = 4, based on the above
definitions:

1. Each star-node is either a 3- or 4-vertex.

2. A tree has no star nodes if and only if it has at most two colored leaves.
A 3-LCT has exactly one 3-SN; a 4-LCT has either exactly one 4-SN
or exactly two 3-SN.

Here are some notations and remarks about our figures. Let {1, 2, 3, 4, 5}
be the color set, and letter a be any color in the color set. A rectangle, a
triangle and a circle represent a 4-vertex, a 3-vertex and a vertex, respectively.
A dashed edge and its two end vertices jointly represent an uncolored path
with any length, and this path may be trivial. For example, in Figure II(d),
vertex s is incident with the edge with color a if the path is trivial. Uncolored
subgraphs may be incident with vertices in the figures.

During the game on T , colored edges can be interpreted as boundaries
to split T into subtrees, and each boundary belongs to exactly two subtrees.
When an edge is being colored, the subtree containing it will be split into
two. For convenience, we define that when a leaf is being colored, the subtree
containing it will be split into a K2 and the subtree itself. Then, we may
consider each subtree independently as it is clear that subsequent coloring of
any subtree will not affect that of one another.

We call the following types 1 to 8 subtrees permitted. Subtrees which are
neither completely colored nor permitted are called unpermitted.

1. Trees containing no star-nodes.

2. Trees containing exactly one star-node, except those in Figures I(a),
I(b) and I(c).

3. A tree with all uncolored edges on it forming a path of length at most
three. Moreover, if the length of this path is one (an edge), there is at
least one color available for this edge; if the length of it is two or three,
there are at least two colors available for each uncolored edge.
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(a) Unpermitted if and only if
d(u) ≥ 3. (b) (c)

Figure I: Some unpermitted subtrees with exactly one star-node.

4. A tree with all uncolored edges of it forming the union of a path P =
v0v1...vm for 3 ≤ m ≤ 4 and a tree Ts where all vertices of Ts are not
incident with any colored edges and vm is the unique common vertex
of P and Ts. Moreover, at least four colors are available for vm−1vm
and at least two for each of the remaining uncolored edges of P . An
example of this type with m = 4 is shown in Figure II(a).

5. The tree in Figure II(b).

6. The tree in Figure II(c).

7. The tree in Figure II(d).

8. The tree in Figure II(e).

In order to show five colors are enough for Alice to win the game, we need
to give a strategy of Alice for choosing and coloring an edge in each of her
turns such that Lemma 2 holds. Before that, we first prove that Theorem 1
can be derived from Lemma 2. In the meantime, we would give another
lemma that there would be at most one unpermitted subtree after each move
of Bob.

Lemma 2. Suppose after an Alice’s move, each subtree is either completely
colored or permitted; then, no matter what Bob’s move is in his turn, Alice
may keep all subtrees completely colored or permitted after her next move.

Proof of Theorem 1. It is sufficient to prove that Alice always has an
available move in her turns. Since Bob can skip any of his turns and the
tree is assumed finite, Alice loses the game if and only if Alice doesn’t have
a move in some of her turns.
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(a) An example of type 4. (b) Type 5

(c) Type 6. Vertex r exists if w is a 4-
vertex. (d) Type 7

(e) Type 8

Figure II: Permitted types 4-8 subtrees.
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Next, we prove that Alice always has a move such that, right after her
moves, all subtrees are permitted or completely colored, by induction on the
number of Alice’s turns. In her first turn, she only needs to face a 0- or
1-LCT, so it is clear that she can make a move, and, right after her first
move, each subtree has at most 2 colored edges. All subtrees are then either
completely colored or of type 1. As a result, if Lemma 2 holds, by induction,
Alice can keep all subtrees permitted if they are not completely colored after
each of her turns.

Lemma 3. If Bob colors an edge of a permitted subtree, at most one of the
two subtrees formed is unpermitted.

Proof of Lemma 3. Suppose T is a permitted subtree and that Bob is going
to color one edge of T . Since, on the one hand, any subtree with at most
three colored edges is permitted, so two unpermitted subtrees must have at
least eight colored edges in total. On the other hand, after Bob has colored
an edge of T , the two newly formed subtrees should have two more colored
edges than that were in T , because the edge which has just been colored is
double counted in the two subtrees. Therefore, the lemma holds if the total
number of colored edges of T is less than 6. We can also see that each of
types 1, 2, 6 and 7 subtrees has less than six colored edges.

Suppose T is of type 3. Bob would only color any edge of the uncolored
path of length at most three. At least one of the subtrees then formed is
completely colored or of type 3.

Suppose T is of type 4. When Bob colors any one edge of P , one of the
two newly formed subtrees must be completely colored, of type 1 or of type
3; when Bob colors other edges, one of the two newly formed subtrees must
contain only one colored edge, and so is permitted.

Suppose T is of types 5 or 8. No matter which edge Bob colors, one of the
two newly formed subtrees must contain at most three colored edges, and so
is permitted.

Proof of Lemma 2 and Alice’s strategy

Owing to the property shown in Lemma 3 that Bob will generate at most
one unpermitted subtree in each of his move, Alice’s task is to turn F , the
unpermitted subtree if any, or, otherwise, a permitted subtree, to permitted
or completely colored subtrees, in each of her turns in order to maintain all
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subtrees being permitted. In the following, we will first introduce Alice’s
strategies for handling types 1 and 2 subtrees and the unpermitted subtrees
which would be generated by Bob in his last move on subtrees of types 1 and
2. After that, we will give, one by one, Alice’s strategies for handling subtrees
of each of types 3 to 8 and the unpermitted subtrees which were generated by
Bob in his last move on subtrees of types 3 to 8, respectively. We note that 1)
all subtrees are permitted if the color just added by Bob is removed; 2) some
subtrees may belong to two permitted types simultaneously, for example,
types 2 and 3. In this case, Alice may use any one of the strategies for
dealing with these two types of subtrees.

Types 1 and 2 subtrees

We first consider unpermitted subtrees generated from a subtree of type
1 or 2 by Bob in his last move. For those from type 1, at most one of them
contains a star-node. For those from type 2, any 5-LCT obtained by coloring
an edge of a 4-LCT with one 4-SN must consist of one 4-SN and one 3-
SN. In addition, all types 1 and 2 subtrees contain zero and one star-node,
respectively. Therefore, F , the subtree Alice is going to put a color on its
edge, may contain zero, one or two star-nodes. The following is a proposed
strategy of Alice for dealing with these cases with respect to the number
of star-nodes in F . Unless specified otherwise, Alice may use any available
colors which can form the desired types of subtrees.

• F does not have star-nodes.

Alice may color any edge to make subtrees which are completely col-
ored, of type 1 or type 2.

• F has exactly one star-node v.

(I) F is a 3-LCT:

– If F has three colored star-edges, Alice may color the remaining
star-edge to make a completely colored and a type 1 subtrees.

– If F has at most two colored star-edges, Alice may color a star-
edge to make one type 1 and one type 2 subtrees.

(II) F is a 4-LCT:
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Figure III: An exception in Alice’s strategy: under the constraint that d(u) ≥ 3.

– If F has exactly three colored star-edges, Alice may color the
remaining star-edge to make one completely colored and one type
1 subtrees.

– Given that F has exactly two colored star-edges. If F is the sub-
tree in Figure III, Alice may color edge e with 1 to make one type
1 and one type 6 subtrees. Otherwise, Alice may color a star-edge
to make one type 1 and one type 2 subtrees. After Alice colored
that star-edge, a 4-LCT with one star-node and three colored star-
edges will be formed, and this 4-LCT must be permitted in this
case.

– Given that F has exactly one colored star-edge. The 4-SN v is
adjacent to at most one 4-vertex. If this 4-vertex exists, say u,
Alice may color the star edge vu to to make one type 1 subtree
and a 4-LCT with the 4-SN v and exactly two colored star-edges.
Because v is not adjacent to any 4-vertex in the 4-LCT, the 4-LCT
is neither the one in Figure I(b) nor I(c), which implies it is of
type 2. Similarly, if the 4-vertex adjacent to v doesn’t exist, Alice
may color any star-edge to make one type 1 subtree and a 4-LCT
with exactly two colored star-edges of type 2.

– If F has no colored star-edges, Alice may color any star-edge to
make one type 1 and one type 2 subtrees.

• F has exactly two star-nodes: Two 3-SN when F is a 4-LCT, or a 4-SN
v and a 3-SN u when F is a 5-LCT.

(I) F is a 4-LCT:

Alice may color any edge on the star-path to form two 3-LCTs. Both
of them are of type 2.

(II) F is a 5-LCT:
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– Suppose v and u are not adjacent. If v is incident with three col-
ored star-edges, Alice may color the remaining star-edge incident
with v to make one completely colored and one type 2 subtrees.
If v is incident with two colored star-edges, she may color the
star-edge incident with v and on the star-path to form two type
2 subtrees. If v is incident with one or no colored star-edge, she
may color the star-edge incident with u and on the star-path to
form two type 2 subtrees because the formed 4-LCT with a 4-SN
has at most one colored star-edge.

– Suppose v and u are adjacent. There is always an available color
for uv, i.e., uv should not be surrounded by edges with five colors
on them. If not, before Bob’s last move, at least four colors were
on the edges surrounding uv such that the subtree containing uv
was not permitted. Then, Alice may put an available color to
uv only if no unpermitted subtrees would form. It is clear that
when uv is colored, F would be separated into one 4-LCT with
a 4-SN v and one 3-LCT with a 3-SN u, where the former is
type 2 (permitted) unless it is a subtree shown in Figures I(a),
I(b) or I(c) while the latter must be type 2 (permitted). That
means, Alice should not color uv only if one of the subtrees in
Figures I(a), I(b) and I(c) would turn up. In the following, we
introduce alternative strategies of Alice in dealing with those three
cases. We first consider that the subtree in Figures I(a) shows up
after Alice has colored uv. Referring to Figures IV(a) and IV(b),
you can see 1) if no edge with color 4 is incident with u, Alice
can put color 4 on uv instead, and 2) if u in IV(b) is of degree 4
and a = 2 or 3, before Alice putting color 1 on uv, F is of type
6 (permitted); 3) if u in IV(b) is of degree 4 and a = 1 or 5, by
removing the color from any one colored edge, the subtree would
become unpermitted. This contradicts that F was generated from
a permitted subtree by Bob in his last move. Hence, the two cases
shown in Figures IV(a) and IV(b) are the only possibilities of
unpermitted F that the subtree in Figures I(a) would appear if
Alice colors uv of it.

Then Alice can adjust her strategies for these two cases by putting
colors on other edges as shown in Figures V(a) and V(b), respec-
tively, instead of coloring uv, to make one type 1 and one type 6
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(a) d(w) ≥ 3. (b) d(w) ≥ 3.

Figure IV: Subtree in Figure I(a) appears if Alice colored uv with 1.

(a) Coloring the edge with 2 or 3.
(b) Coloring the edge
with a.

Figure V: Adjusted strategies of Alice for dealing with subtrees in Figure IV(a) and Fig-
ure IV(b). Alice will generate one type 1 and one type 6 subtrees for (a); type 1 and type
3 for (b).

subtrees, and one type 1 and one type 3 subtrees, respectively.

If the subtree in Figure I(b) turns up after Alice has colored uv on
F , Figure VI(a) shows the only possible case while Figure VI(b)
shows the adjusted strategy of Alice, which generates one subtree
of type 1 and the other of types 4 or 7.

Similarly, if the subtree in Figure I(c) turns up after Alice has
colored uv on F , Figure VII(a) shows the only possible case while
Figure VII(b) shows the adjusted strategy of Alice, which gener-
ates one subtree of type 1 and the other type of 4.

Type 3-8 subtrees

We then introduce Alice’s strategy, one by one, for types 3 to 8 in the
following. In the rest of the proof, Alice may need to use an appropriate
color to generate the desired types of subtrees.

• Type 3 subtrees: all uncolored edges inducing a path P of length at
mostm, 1 ≤ m ≤ 3, with at least two available colors for each uncolored
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(a)
(b) Coloring the edge with a or 1 if a
is unavailable.

Figure VI: Subtree in Figure I(b) appears if Alice colored uv with 1, and the corresponding
adjusted strategy of Alice. Alice will generate one type 1 and one type 4 subtrees if the
path represented by the dashed edge is trivial; otherwise, type 1 and type 7.

(a) (b)

Figure VII: Subtree in Figure I(c) appears if Alice colored uv with 1, and the corresponding
adjusted strategy of Alice. Alice will generate one type 1 and one type 4 subtrees.
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edge if m > 1 and one available color for the only uncolored edge if
m = 1.

Alice may color the edge in the middle if the path induced by uncolored
edges is of length 3 or may color any edge if the length of the path is
shorter to form completely colored and/or type 3 subtrees. Bob can
generate an unpermitted subtree only if P is of length 3 and Bob colors
one of its end edges. In this case, Alice may color the middle edge to
leave one uncolored edge with at least one available color.

• Type 4 subtrees: all uncolored edges inducing the union of a path,
v0v1 . . . vm with m = 3 or 4, and a tree at vm where no colored edges
are incident with the vertices of the tree, and there are at least two
available colors for v0v1, . . . , vm−2vm−1 and four for vm−1vm.

We first note that, in all type 4 subtrees, vm−1 is of degree at most 3
and incident with at most one colored edge. Alice may color vm−1vm
with an appropriate color to generate from a type 4 subtree one type
1 and one type 3 subtrees.

When Bob colors an edge of a subtree of this type, Alice may respond
as shown in the following table to generate permitted subtrees.

Bob’s
act

Alice’s
response

Generated subtrees

v0v1 v2v3 Completely colored, Type 1 and Type 3
v2v3 v1v2v3v4 One Type 1 and Two Type 3
v1v2 vm−1vm

Completely colored, Type 1 and Type 3

Others
One Type 1 and one Type 3 plus one

completely colored or one Type 1

• Type 5 subtrees.

It can be checked that only types 1, 3 and 4 subtrees will be generated
if Bob colored any one of the edges incident with s, except us. If Bob
colored us, Alice may color vu to generate one completely colored and
one type 3 subtrees. If Bob colored other edges, Alice may color us
to generate types 1, 3 and/or completely colored subtrees. Moreover,
Alice can color us with color 2 on a type 5 subtree to generate one type
1 and one type 3 subtrees.
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• Type 6 subtrees.

Since v is of degree 4, at most one of w and u is of degree 4. Suppose
w is a 3-vertex. When vu is colored, a type 6 subtree is turned to one
type 1 and one type 3. If Bob colors any edge other than vu, Alice may
color vu to generate completely colored, types 1, 2 and/or 3 subtrees.

Suppose w is a 4-vertex. Then r is of degree at most 3 and u is a
3-vertex. Hence, Alice can color us with 1 to generate one type 5 and
one type 1 subtrees and respond to Bob’s acts as shown in the following
table.

Bob’s act Alice’s response Generated subtrees
us wv

Type 1, Type 2 and Type 3
wv

us with the
same color

vu
rw with the
same color Two Type 1 and one Type 3

rw vu
Others

incident with r us with 1 or 2
Two Type 1 and one Type 4

Others of an
uncolored
s-branch

Two Type 1 and one Type 5

Others of an
uncolored
r-branch

rw with 2 Two Type 1 and one Type 4

• Type 7 subtrees.

If Bob colors rw or wv, Alice may color vu to generate one Type 1 and
one Type 2 plus one completely colored or one Type 3 subtrees, respec-
tively. If Bob colors vu or us, Alice may color wv to make completely
colored, types 1, 2 and/or 3 subtrees. In the remaining cases, if color
1 or 2 is available for us, Alice may color us with 1 or 2 to generate
one type 6 or one type 8 plus other subtrees of types 1 or 2; if color
1 and 2 are both unavailable for us, Alice may use the move shown in
Figure VIII.

• Type 8 subtrees.
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Figure VIII: When color 1 and 2 are both unavailable for us, Alice can color the edge
incident with s with 3 to make one type 1 and one type 4 subtrees.

Figure IX: When e is surrounded by edges with colors 1, 2 and 3, Alice can color the edge
adjacent to e with 3 to generate one type 1 and one type 3 subtrees.

If Bob colored any edge in his turn such that e is surrounded by edges
with colors 1, 2 and 3 as shown in Figure IX, Alice can respond accord-
ingly as shown in the same figure. If Bob colored e, Alice can color e′.
In all other cases, Alice may color e with 1 or 2.
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