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ABSTRACT

We use a large California database of over 32,000 hourly observations in the 45-
month period of April 2010 through December 2013 to document the ex post
variable profit effects of multiple fundamental drivers on natural-gas-fired elec-
tricity generation. These drivers are the natural-gas price, system loads, nuclear
capacities available, hydro conditions, and renewable generation. We find that
profits are reduced by increases in generation from nuclear plants and wind farms,
and are increased by increases in the natural-gas price and loads. Solar generation
has a statistically insignificant effect, although this will likely change as solar
energy increases its generation share in California’s electricity market. Our find-
ings support California’s adopted resource adequacy program under which the
state’s load-serving entities may sign long-term bilateral contracts with generation
developers to provide sufficient revenues to enable construction of new natural-
gas-fired generation plants.
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1. INTRODUCTION

This paper is motivated by Professor Paul Joskow’s insightful observation that: “Revenue
adequacy has emerged as a problem in many organized wholesale electricity markets and has been
of growing concern in liberalized electricity markets in the U.S. and Europe. The revenue adequacy
or ‘missing money’ problem arises when the expected net revenues from sales of energy and
ancillary services at market prices provide inadequate incentives for merchant investors in new
generating capacity or equivalent demand-side resources to invest in sufficient new capacity to
match administrative reliability criteria at the system and individual load serving entity levels”
(Joskow, 2013, p. i).
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1. PG&E is a large local distribution company (LDC) that serves Northern California. It had an annual peak demand of
20,916 MW in 2013. Southern California Edison (SCE) is the state’s other large LDC and serves Southern California. Its
annual peak demand in 2013 was 22,498 MW.

2. The price volatility with occasional spikes has led to extensive research on electricity price behavior (e.g., Johnsen,
2001; Bessembinder and Lemmon, 2002, 2006; Longstaff and Wang, 2004; Knittel and Roberts, 2005; Park et al., 2006;
Haldrup and Nielsen, 2006; Mount et al., 2006; Weron, 2006; Guthrie and Videbeck, 2007; Benth and Koekebakker, 2008;
Karakatsani and Bunn, 2008; Redl et al., 2009; Janczura and Weron, 2010; Marckhoff and Wimschulte, 2009; Douglas and
Popova, 2011). That volatility has also engendered extensive research on electricity derivatives and risk management (e.g.,
Deng et al., 2001; Lucia and Schwartz, 2002; Eydeland and Wolyniec, 2003; Burger et al., 2004; Kleindorfer and Li, 2005;
Deng and Oren, 2006; Deng and Xia, 2006; Woo et al., 2006b; Huisman et al., 2009; Camona and Ludkovski, 2008;
Ryabchenko and Uryasev, 2011; Thompson, 2013).

3. These policies are detailed in Haas et al. (2008), Schmalensee (2009), Barroso et al. (2010), Pollitt (2010), Alagappan
et al. (2011), Woo et al. (2011a), Zarnikau (2011), Yatchew and Baziliauskas (2011), and Green and Yatchew (2012).

Joskow’s observation applies to California and mirrors the concern of Peter Griffes, a
senior manager of Pacific Gas and Electric Company (PG&E):1 “Energy revenues based on com-
petitive prices are often not compensatory to cover longer-term cost of building and operating a
new plant. For example, in the California market in 2013, the Department of Market Monitoring
estimated that energy market revenues for a new combined cycle plant would be $296.39/kW-yr.
in comparison to the $256.78/kW-yr. in operating costs and $175.80/kW-yr. in annualized fixed
costs” (Griffes, 2014, p. 27).

The “missing money” problem stems from two transformative events that took place in
the electricity industry around the turn of the century. The first event comprises the electricity market
reforms that have resulted in competitive wholesale markets in parts of Europe, North America,
South America, Australia, and New Zealand (Sioshansi and Pfaffenberger, 2006; Woo et al., 2006a;
Sioshansi, 2013). Wholesale electricity spot-market prices are inherently volatile due to: (a) daily
fuel-cost variations, especially for the natural gas that is now widely used by combustion turbines
(CT) and combined-cycle gas turbines (CCGT); (b) hourly weather-sensitive demands with intra-
day and inter-day fluctuations, which must be met in real time by generation and transmission
facilities already in place; (c) planned and forced outages of electrical facilities; (d) hydro conditions
for systems with significant hydro resources; (e) carbon-price fluctuations affecting thermal gen-
eration that uses fossil fuels; (f) transmission constraints that cause transmission congestion and
generation re-dispatch; and (g) lumpy capacity additions that can only occur with long lead times
(Li and Flynn, 2006; Bunn and Fezzi, 2007; Woo et al., 1998, 2007; Tishler et al., 2008; Newcomer
et al., 2008).2

These volatile spot-market prices, even with occasional spikes during hours of severe
shortage, may not suffice to justify the generation investment necessary for reliable grid operation
(Neuhoff and De Vries, 2004; Wangensteen et al., 2005; Roques et al., 2005; Newbery, 2010;
Milstein and Tishler, 2012; Brattle Group, 2012; CAISO, 2014c). To remedy the “missing money”
problem, capacity markets were introduced in the late 1990s in the U.S. deregulated markets of
California, New York, PJM, and New England (Spees et al., 2013). A notable exception is Texas
(Brattle Group, 2012), which continues to use an energy-only market design with a high price cap
(e.g., US$7,000/MWH in 2014) to provide generation investment incentives.

The second event contributing to the “missing money” problem is the development of
wind and solar generation in many parts of the world due to resource abundance (e.g., Hoogwijk
et al., 2004; Lu et al., 2009; Marini et al., 2014) and government policies that include easy and
low-cost transmission access, financial incentives (e.g., feed-in-tariffs, government loans and grants,
and tax credits), and quota programs (e.g., renewable portfolio standards (RPS)), cap-and-trade
programs for carbon emissions certificates, and renewable-energy credits).3
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4. Unlike the rich literature on electricity price behavior and dynamics and risk management (supra note 2), the literature
on the empirical effect of renewable resources, including wind, on the conventional generation investment incentives is
sparse.

5. http://www.lao.ca.gov/reports/2013/calfacts/calfacts_010213.aspx
6. For discussions of the DR programs and their benefits, see e.g., Figueiredo et al. (2005), Brattle Group (2007), FERC

(2008), Su and Kirschen (2009), Woo and Greening (2010), and Woo et al. (2008, 2014b).
7. Following a referee’s suggestion, we explicitly include hydro conditions in the profit analysis that is reported below.
8. We focus on these resources because (a) their random as-available output presents integration challenges to the

CAISO’s reliable grid operation, and (b) their output fluctuations move the state’s market prices via the merit-order effect.
Further, our exploratory analysis indicated that biogas, biomass, and geothermal resources have small positive but statisti-
cally insignificant (p-value�0.05) price effects. As these positive price effects are unexpected and counter-intuitive, we
exclude biogas, biomass, and geothermal generation from our analysis.

9. The 1-MW size assumption is reasonable because a CT’s size is 50MW to 200 MW and a CCGT’s size is 500 MW
to 800 MW (CEC, 2010, p. 49, Table 11), which is dwarfed by the state’s vast fleet of natural-gas-fired generation plants,
totaling almost 50,000 MW as reported in http://energyalmanac.ca.gov/electricity/electric_generation_capacity.html.Adding

Wind generation displaces thermal generation with relatively high fuel costs and reduces
wholesale market prices (European Wind Energy Association, 2010). This price-reduction effect,
also known as the merit-order effect, has been demonstrated through model simulations (e.g., Mo-
rales and Conejo, 2011; Traber and Kemfert, 2011), as well as through regression analysis of market
data for Spain (Gelabert et al., 2011; Gil et al., 2012), Germany (Sensfuß et al., 2008), Denmark
(Munksgaard and Morthorst, 2008; Jacobsen and Zvingilaite, 2010), Australia (Cutler et al., 2011),
Texas (Woo et al., 2011b), PJM (Gil and Lin, 2013), the Pacific Northwest (Woo et al., 2013), and
California (Woo et al., 2014a). While benefiting electricity consumers (e.g., Gil and Lin, 2013; Woo
et al., 2011a, 2013, 2014a), the merit-order effect weakens the investment incentive for the CT and
CCGT, as documented by the simulation study of Traber and Kemfert (2011), the regression analysis
of Woo et al. (2012), and the descriptive assessment of Steggals et al. (2011).4

The goal of this paper is to answer the question: what moves the ex post variable profit of
natural-gas-fired generation in California, the ninth largest economy in the world?5 Based on a
regression analysis of a large sample of over 32,000 hourly observations over the 45-month period
of April 2010 through December 2013, our answer disentangles the state’s “missing money” prob-
lem, thereby highlighting the challenges in developing energy policies for a clean, reliable, and
affordable electricity future (CEC, 2014). In particular, wind and solar generation development
tends to reduce energy market prices in California. But it may also reduce investment incentives
for the CT and CCGT, whose flexibility is essential for the California Independent System Operator
(CAISO) to maintain the state’s load-resource balance in real time (Griffes, 2014; CAISO, 2014a).
Similarly, while expanding demand response (DR) programs can clip the state’s peak demand,6 it
may also cut the market price spikes that afford the most profitable opportunities for a CT or a
CCGT plant.

Our regression-based analysis comprehensively examines the ex post, or realized, profit
effects of a set of fundamental drivers on natural-gas-fired generation in California. These drivers
include the natural-gas price, system loads, nuclear capacities available, hydro conditions,7 and
renewable-generation resources of small hydro, solar, and wind.8 We are unaware of any study that
has undertaken a similar examination to jointly assess the profit effects of all these drivers within
a single empirical analysis.

Based on the background information in Section 2, we choose California for our analysis
of the ex post variable profit, which is defined here as the non-negative per MWH payoff,
V = max(hourly price—per MWH variable generation cost, 0), from an assumed 1-MW ownership
of natural-gas-fired generation.9 For conciseness, we use the term “profit” to mean “ex post variable
profit” throughout the rest of the paper.
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a CT or CCGT to the state’s fleet is unlikely to alter the state’s market prices or the unit’s ability to sell its output at these
prices. Hence, a generation unit’s total profit per year is its per MW profit per year times its MW size.

10. “The state’s ‘loading order’ is a guiding policy which places energy efficiency (using less energy to do the same
job) and demand response (modifying energy usage when needed for optimal grid operation) as top priorities for meeting
California’s energy needs. Next, the loading order calls for renewable resources and distributed generation. To produce the
energy needed by a growing population and recovering economy, maximizing the use of these ‘preferred resources’ becomes
even more important as California works toward reducing greenhouse gas emissions to 80 percent below 1990 levels by
2050.” (CEC, 2014, p. 1).

11. http://www.cpuc.ca.gov/PUC/energy/Procurement/RA/
12. California’s 2013 population was 38.3 million and its GDP was $2,207 billion, both of which rank first in the U.S.

(http://www.bea.gov/regional/bearfacts/action.cfm).
13. Except for the 15-minute stream-flow data from the U.S. Geological Survey (USGS) (http://waterdata.usgs.gov/nwis/

rt) and the daily nuclear capacity availability data from the U.S. Nuclear Regulatory Commission (http://www.nrc.gov), all
our data are from the CAISO (www.caiso.com).

Consistent with what one would expect, we find that an increase in load within an electric
region tends to increase profits from a gas turbine. Profits are reduced by increases in generation
from baseload nuclear plants and wind farms. Our data analysis, however, reveals that changes in
solar generation have a statistically insignificant effect on the profitability of natural-gas plants,
although one may anticipate that this will change as solar energy increases its generation share in
California’s electricity market. Though raising a natural-gas power-plant’s operating cost, an in-
crease in natural-gas prices nonetheless enhances the plant’s profits.

This paper makes the following contributions. First, the analysis is new and comprehen-
sive, and extends the extant studies, which in the main focus on the profit effect on market prices
of a single resource such as wind generation (Steggals et al., 2011; Traber and Kemfert, 2011; Woo
et al., 2012) or nuclear generation (Traber and Kemfert, 2012).

Second, the paper reports the diminishing investment incentives for natural-gas-fired gen-
eration under California’s adopted energy policy that promotes DR and renewable energy.10 It
corroborates the positive price and profit effects of nuclear-generation-plant shutdowns in Germany,
which were estimated by Traber and Kemfert (2012).

Third, its finding of diminishing investment incentives supports the state’s adopted re-
source-adequacy program: “[e]ach LSE [load serving entity] is required to file with the [California
Public Utilities] Commission demonstrating that they have procured sufficient capacity resources
including reserves needed to serve its aggregate system load on a monthly basis. Each LSE’s system
requirement is 100 percent of its total forecast load plus a 15 percent reserve, for a total of 115
percent.”11

Finally, the paper enriches the extant literature by presenting an approach that can be used
to analyze the profits from natural-gas-fired generation in other deregulated electricity markets that
have data similar to those of California (e.g., Alberta and Ontario in Canada; Texas, PJM, New
York and New England in the U.S; Germany and Spain in Europe; and Australia and New Zealand
in the Asia Pacific region). For example, the same approach can be used to analyze how the
retirement of baseload coal-power plants, aimed at reducing emissions of coal-fired generation
(Venkatesh et al., 2012), affects the profit of natural-gas-fired generation.

The paper proceeds as follows: Section 2 provides the background for our analysis; Section
3 presents our methodology; Section 4 describes our data and documents their construction; Section
5 presents our results; and Section 6 provides general conclusions.
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14. For details of the crisis, see e.g., Woo (2001), Joskow and Khan (2002), Jurewitz (2002), Borenstein (2002), and
Wolak (2003).

15. For a description of the CAISO’s price-determination process, see http://www.caiso.com/market/Pages/Market-
Processes.aspx; and http://www.caiso.com/market/Pages/ProductsServices/Default.aspx

16. A map of the CAISO’s electric regions is available at: http://oasis.caiso.com/mrioasis/logon.do;jsessionid =
62154A776235A9D611AE51B0BDB82B2C

17. Natural-gas-fired generation comprised 61% of the state’s 2013 in-state installed capacity of 78,133 MW (http://
energyalmanac.ca.gov/electricity/electric_generation_capacity.html). Of the 46,532 operational power plants in California
that use natural gas as their primary fuel (CEC’s database of California power plants, http://energyalmanac.ca.gov/power-
plants/Power_plants.xls, accessed on March 6, 2015), there are approximately 20,392 MW from CCGT plants (including
cogeneration combined cycle), representing approximately 43% of total gas-fired capacity, and 11,470 MW from CTs,
approximately 25% of the total gas-fired fleet in California. The remaining gas fired fleet includes steam plants and internal
combustion engines. Because of their lower heat rates, the CCGTs are more likely to be at the margin than the CTs.

18. During the low-demand hours of 02:00 and 05:00, California’s market prices can become negative due to the
minimum-load condition when the system load cannot fully absorb the non-dispatchable generation output from nuclear
plants and wind farms. As a result, negative prices are used to induce dispatchable generation (e.g., CCGT) owners to curtail
their outputs so as to maintain the state’s real-time load-resource balance (CAISO, 2014a; Griffes, 2014).

19. Thanks to the shale-gas boom in the U.S., natural-gas prices began a steep decline in 2008 that bottomed out in
2012. Prices have subsequently risen due to the increased use of natural gas, which is relatively clean and inexpensive by
comparison with the oil and coal used in fossil-fuel electricity generation (Venkatesh et al., 2012).

2. BACKGROUND

In addition to the state’s size12 and data availability,13 we choose California for our study
because it has features that enable an estimation of the profit effects of a set of fundamental drivers.
First, the CAISO uses a nodal market design with real-time markets (RTM) and day-ahead markets
(DAM) that are intended to improve system operation and prevent a repeat of the 2000–2001 energy
crisis.14 Based on locational marginal pricing (Bohn et al., 1984; Hogan, 1992), these RTM and
DAM prices15 allow us to compute the per MWH profit of a natural-gas-fired generation plant in
each of the state’s two major electric regions of NP15 in Northern California and SP15 in Southern
California.16

Second, California’s generation mix is dominated by natural-gas-fired generation plants,17

implying that the state’s marginal generation unit is likely fueled by natural gas, except for the non-
peak hours during which the market prices can become negative.18 This allows us to analyze the
dependence of the realized profit on the natural-gas price.19 The effect on profit of the natural-gas
price is unclear a priori. While a decrease in the price of natural gas reduces the operating costs of
a natural-gas-fired generation plant, it also reduces the wholesale market price of electricity and
therefore the plant’s operating revenues.

Third, the state’s planned central generation stations are CT and CCGT (CEC, 2014,
p.138). Those stations help replace the capacity of the San Onofre nuclear power plant, which was
lost due to its January 31, 2012 shutdown and subsequent retirement caused by the premature wear
on over 3,000 tubes in 15,000 places (CEC, 2014, Chapter 6). The San Onofre shutdown was
estimated to have increased the state’s wholesale market prices by $6 to $9/MWH (Woo 2014a).
This suggests a positive profit effect that may also occur elsewhere because of the planned nuclear-
generation shutdowns and construction moratorium in the aftermath of the March 11, 2011 Fuku-
shima nuclear disaster (Baetz, 2011; Faris, 2011; Traber and Kemfert, 2012; Joskow and Parson,
2012; Wald, 2013).

Fourth, the state’s hourly loads are weather-sensitive, with afternoon demand spikes that
typically occur on hot summer weekdays (Miller et al., 2008). A load reduction due to the state’s
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20. The stations constituted 15.7% of the state’s 2013 in-state installed capacity of 78,133 MW (http://energyal-
manac.ca.gov/electricity/electric_generation_capacity.html).

21. “With California facing one of the most severe droughts on record, Governor Brown declared a drought State of
Emergency in January [2015] and directed state officials to take all necessary actions to prepare for water shortages. The
state has continued to lead the way to make sure California is able to cope with an unprecedented drought.” (http://ca.gov/
drought/).

22. Renewable generation made up 18.8% of the state’s 2013 in-state installed generation capacity of 78,133 MW,
comprising biomass generation of 1,128 MW, geothermal generation of 2,703 MW, small- hydro generation of 1,609 MW,
solar generation of 3,072 MW, and wind generation of 6,205 (http://energyalmanac.ca.gov/electricity/elec-
tric_generation_capacity.html).

23. See Energy & Environmental Economics (2014), a report jointly sponsored by California’s five largest electric
utilities to analyze the operational impact of a 40% or 50% RPS by 2030, as well as the analysis by the CAISO using a
40% RPS level for a 2024 planning case (http://www.caiso.com/Documents/Presentation_2014LTPPSystemFlexibility
Study_SHcall.pdf).

24. While CEC (2010, p. 14, Table 14) reports the per kW-year fixed O&M costs, we do not include them in our per-
MWH variable profit calculation. For a new CT (or CCGT) to be financially viable, its total variable profit per year ( =
average per-MWH variable profit∗annual MWH output) needs to cover the per kW-year fixed O&M costs, depreciation,
and return on investment.

activation of its DR programs tends to reduce market prices during severe capacity shortages. The
profit effect of the DR-load reduction, however, is not well documented.

Fifth, California has central hydro stations that mainly reside in the north,20 the outputs of
which decline as a result of a prolonged drought, such as the current on-going drought that is not
expected to end anytime soon.21 While improved hydro conditions tend to reduce market prices
(e.g., Woo et al., 2007, 2013), little is known about their profit effect.

Finally, California’s legislated RPS requires renewable generation to meet a preset share
of the state’s electricity consumption by a targeted year.22 Having adopted a 33% RPS by 2020, the
state is now investigating the challenges in achieving a 40% or 50% RPS by 2030.23 The state’s
rich data on renewable generation help determine the profit effect of the state’s renewable energy
development.

3. METHODOLOGY

3.1 Profit Formula

We first define the hourly ex post variable profit, whose formula is necessary for our data
construction and profit-effect estimation. For expositional ease, where there is minimal risk of
confusing the reader, we suppress subscripts whose eventual inclusion in the formal regression
model delineates our observations with respect to region (j), hour-of-the-day (h), day-of-the-week
(d), month-of-the-year (m), and day-in-the-sample (t). Based on CEC (2010), the daily per MWH
variable cost of a natural-gas-fired generation plant is:

C = H (G + T) + OM, (1)

where H = heat rate (MMBTU/MWH) = rate of converting natural gas into electricity, G = daily
natural-gas price ($/MMBTU), T = transportation cost for natural gas ($/MMBTU), and
OM = variable O&M cost of generation ($/MWH).24

This is the pre-published version published in 
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25. The same payoff concept underlies the valuation of a tolling agreement, which is a useful instrument for risk
management and project financing (Stern, 1998; Deng et al., 2001; Eydeland and Wolyniec, 2003; Deng and Oren, 2006;
Deng and Xia, 2006; Ryabchenko and Uryasev, 2011; Thompson, 2013).

26. Computing the profit effect of a single driver (e.g., wind generation) based on a Tobit-type model entails a multi-
step simulation process (e.g., Woo et al., 2012, pp. 216–217). When there are multiple drivers to consider, the computation
of their profit effects becomes tedious and time-consuming, unlike the relatively simple approach proposed below.

Suppose the hourly market price is P ($/MWH). The plant’s hourly profit from 1-MW of
generation ownership is:

V = max(P–C, 0), (2)

which is also the hourly payoff of an hourly call option with a daily-varying strike price equal to
C.25 As will be shown below, up to 90% of the state’s hourly V values are zero. While a Tobit-type
model (Maddala, 1983) can reveal how V varies with its drivers (Woo et al., 2012), the profit effects
of the drivers are not easily inferred.26

There is an alternative calculation of V whose implications for the profit effects of the
drivers from a standard linear-regression analysis are more transparent. Specifically, we define the
hourly per MWH procurement cost of a local distribution company (LDC) owning natural-gas-fired
generation to be:

Y = min(P, C). (3)

The latter measures what the LDC pays for 1 MWH of electricity, since the LDC can buy from the
market if P�C, and self-generate otherwise (Woo et al., 2006b).

We can now compute the hourly per MWH profit as:

V = P–Y. (4)

We verify the validity of equation (4) by considering the following two cases:

• Case 1: P�C and V = max(P–C, 0) = P–C. As Y = min(P, C) = C, we find P–Y = P–C = V.
• Case 2: P≤C and V = max(P–C, 0) = 0. As Y = min(P, C) = P, we find P–Y = 0 = V.

Unlike the V data series with many zeros, the P and Y data series have few zeros and can be
analyzed using standard regression techniques (e.g., Woo et al., 2006b).

Based on equation (4), the profit effect of a driver X (which can be the natural- gas price,
system load, nuclear capacity available, renewable generation, or hydro condition) is the arithmetic
difference of two marginal effects:

∂V/∂X = ∂P/∂X–∂Y/∂X. (5)

Equation (5) enables us to readily infer ∂V/∂X after our estimation of the market price and per MWH
procurement cost regressions. While the regression-based approach is not new (Woo et al., 2006b),
our innovation lies in the use of the regressions’ coefficient estimates to identify and quantify the
profit effects of a set of fundamental drivers on natural-gas-fired generation.

This is the pre-published version published in 
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27. Our initial data exploration decisively rejects (p-value�0.0001) the assumption of constant intercepts, a finding also
reported in Woo et al. (2011b, 2014a).

3.2 Linear Regression Model

Our profit-effect estimates are derived from the parameter estimates for a system of seem-
ingly unrelated regressions (SUR). Based on Woo et al. (2006b, 2014a), we empirically identify
six linear regressions for California’s two electric regions:

Pjht = αjhdmt + αjGGjt + αj1X1ht + . . . + αj11X11ht + ejht; (6.a)

Yjht = βjhdmt + βjG Gjt + βj1X1ht + . . . + βj11X11ht + ljht; (6.b)

Zjht = hjhdmt + hjG Gjt + hj1X1ht + . . . + hj11X11ht + gjht. (6.c)

The left-hand-side (LHS) variables are the hourly RTM price (Pjht), the per MWH pro-
curement costs based on the 1-MW ownership of a CCGT (Yjht), and the per MWH procurement
costs based on the 1-MW ownership of a CT (Zjht), for region j = 1, 2, during hour h = 1, . . . , 24,
on sample day t = 04/20/2010, . . . , 12/31/2013. Section 4 below details the construction of these
LHS variables.

The time-dependent intercepts are αjhdmt, βjhdmt, and hjhdmt, which represent linear functions
of binary indicators to control for the effects of hour-of-the-day, day-of-the-week, and month-of-
year. Specifically, let: Iht denote the indicator that is equal to unity during hour h, and is zero
otherwise; Idt denote the indicator that is equal to unity when day t falls on d = 1 (Monday), . . . , 7
(Sunday), and is zero otherwise; and Imt denote the indicator that is equal to unity when day t occurs
during m = 1 (January), . . . , 12 (December), and is zero otherwise. Then, αjhdmt = αj + RhdhIht +
RdddIdt + RmdmImt, where the respective sums are over h = 1, . . . , 23, d = 1, . . . 6, and m = 1, . . . , 11.
Hence, the d’s are the coefficients to be estimated in the regression process and αj is the regression’s
constant intercept. The other time-dependent intercepts are similarly determined.27

The right-hand-side (RHS) variables are the profit drivers, including the daily natural-gas
price Gjt which is region-specific and the metric variables (X1ht, . . . X11ht) that measure hourly system
loads, daily nuclear capacities available, hourly hydro conditions measured by three Northern Cal-
ifornian rivers’ stream flows, and hourly renewable generation outputs. Section 4 below describes
these RHS variables in greater detail.

The slope coefficients of the RHS variables measure the drivers’ marginal effects on the
hourly RTM price and the per MWH procurement costs. We hypothesize that: (a) the coefficients
for the daily natural-gas price and hourly loads are positive, since an increase in each of these
drivers should tend to raise both the hourly RTM price and the per MWH procurement costs; and
(b) the coefficients for the daily nuclear capacities available, hourly stream flows, and hourly re-
newable generation are negative, since an increase in each of these drivers should tend to reduce
the hourly RTM price and the per MWH procurement costs.

The random-error terms are ejht, ljht and gjht, which may well be contemporaneously and
serially correlated. To allow for this contingency, we employ the iterated seemingly unrelated re-
gression (ITSUR) method in PROC MODEL of SAS (2004) to jointly estimate the six regressions
for the two electric regions, yielding the results reported in Section 5.

The underlying arguments in support of our chosen specification are as follows:
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28. To form these interaction terms, we first define a binary indicator Dht for the standard period definition used in
bilateral trading: (a) the on-peak period of 06:00–22:00, Monday–Saturday; and (b) the off-peak period of the remaining
hours (Woo et al., 2013). This indicator equals unity if hour h on day t is in the on-peak period, and is zero otherwise. Each
interaction term is the product of Dht and a profit driver. Including these interaction terms doubles the number of slope
coefficients to be estimated.

• Linear functional form. Equation (4) states that the hourly profit is the arithmetic difference
between the hourly market price and the procurement cost, which lends support to our pref-
erence for the linear form over, say, a logarithmic functional form. Still further, using a double-
log form would have excluded about 4% of the sample, because of the negative market prices.

• Transparent and readily interpreted coefficient estimates. The chosen specification helps
achieve our primary goal of estimating the effect upon profits of a given driver. Consider, for
example, the estimates for the natural-gas-price coefficients of (αjG, βjG, hjG), denoted here
by ajG, bjG and qjG. Equation (5) implies that the profit effect of the natural-gas price is the
arithmetic difference of the coefficient estimates: (ajG –bjG) for a CCGT and (ajG –qjG) for a
CT. Based on Mood et al. (1974, p. 179), we can readily find each profit-effect estimate’s
variance (e.g., var(ajG –bjG) = var(ajG)–2cov(ajG, bjG) + var(bjG)), which enables us to subject
that effect to a t-test of the null hypothesis that there is a zero profit effect.

• Large number of slope coefficients. The hourly price data are noisy, making precise detection
of profit effects difficult. Even with the parsimonious specification given by equations (6.a)–
(6.c), we already have 6∗12 = 72 slope coefficients to estimate and interpret for the funda-
mental drivers, to say nothing of the 6∗ (23 + 6 + 11) = 240 coefficients attached to the six
time-dependent intercepts. Adding more RHS variables would not seem to improve the in-
sights gleaned from our profit-effect estimation. In particular, before settling on our final
specification, we did indeed include in our estimations various interaction terms that allowed
the slope coefficients to vary by trading period.28 The majority of the expanded regressions’
coefficient estimates are statistically insignificant (p-value�0.05), an indication of over-spec-
ification that produces imprecise estimates. To account for possible nonlinearities, we also
re-estimated the system of equations including both squared and interaction terms formed by
the drivers to account for possible nonlinearities. Once again the result was that a majority
of the coefficient estimates were statistically insignificant (p-value�0.05).

• Serial correlation. Our data decisively reject (p-value�0.0001) the null hypothesis of no serial
correlation. As a result, we initially assumed that our random-error terms followed an AR(5)
process, which led us to ultimately conclude that an AR(4) process is the empirically appro-
priate specification that yields the statistically significant (p-value�0.05) parameter estimates
shown in Section 5 below.

• Empirical plausibility of the results. As discussed below, our regression results are empirically
plausible. That is, most of the slope-coefficient estimates have the hypothesized sign and are
of plausible size.

4. DATA

4.1 Data Construction

This subsection details the construction of our data sample. To construct the per MWH
variable cost C as defined in equation (1), we make the following assumptions:
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29. We verified that minor variations in H do not materially alter our statistical results.
30. These natural-gas prices are used by the CAISO (CAISO, 2013, 2014b). Hence, they can better represent California’s

marginal fuel costs that drive the CAISO’s DAM and RTM prices than the state’s wholesale natural-gas prices at hubs like
PG&E Citygate and SoCal Citygate. A map of the major Western natural-gas hubs is available from the U.S. Federal Energy
Regulatory Commission at https://www.ferc.gov/market-oversight/mkt-gas/western.asp

31. We verified that minor variations in T do not materially alter our statistical results.
32. CEC (2010, pp. 54–56, Tables 14–16) reports three variable cost ranges: (1) average case: $2.69 to $4.17/MWH;

(2) high case: $3.42 to $9.05/MWH; and (3) low case: $0.79–$2.19/MWH. Hence, we assume a $5/MWH variable cost
which is approximately the mid-point for the combined range of $0.79–$9.05/MWH.

33. We use the 12 5-minute intra-hour RTM prices to compute the average RTM price for each hour. We choose not to
use the 5-minute RTM price data in our analysis for the following reasons. First, equation (2) assumes an hourly dispatch,
rather than a 5-minute dispatch. Second, except for the daily natural-gas price and nuclear capacity data, all the metric
variables are measured through hourly data. Finally, 0.99 is the correlation between (a) the hourly payoffs based on the
hourly RTM prices, and (b) the hourly averages of the 5-minute payoffs based on the 5-minute RTM prices. This almost
perfect correlation holds for both NP15 and SP15, thus obviating any concern that our use of hourly RTM price data may
yield results notably different from those based on the 5-minute RTM price data.

34. http://www.energy.ca.gov/nuclear/california.html.
35. http://www.srpnet.com/about/stations/paloverde.aspx
36. http://www.nrc.gov/reading-rm/doc-collections/event-status/reactor-status/index.html

• Heat rate (MMBTU/MWH). The heat rate is H = 7 for a CCGT and H = 9 for a CT (CEC,
2010, p.49, Table 11).29

• Daily natural-gas price ($/MMBTU). The natural-gas price is G1t = CAISO’s daily PGE2 gas
index for Northern California and G2t = CAISO’s daily SCE1 gas index for Southern Cali-
fornia (CAISO, 2013).30

• Natural-gas transportation cost ($/MMBTU). The transportation cost is T = $0.5 (CAISO,
2014b).31

• Variable O&M cost ($/MWH). This variable cost is OM = 5 (CEC, 2010, p. 54, Table 14).32

We make several additional assumptions for our data construction:

• Sample period. Our sample period is the 45-month period of 04/20/2010 to 12/31/2013, which
results in 32,448 hourly observations. The starting date reflects when the CAISO first reported
hourly renewable generation. The ending date reflects the end of the calendar year of 2013.

• Hourly market prices ($/MWH). These prices are RTM and DAM hourly prices that are
available from the CAISO.33 These prices, along with the variable costs per MWH, allow us
to use equation (3) to compute the procurement costs per MWH for electric region j = 1 for
NP15 and j = 2 for SP15. The resultant per MWH procurement costs for region j are:
Yjht = min[Pjht, 7 ∗ (Gjt + T) + OM] for the CCGT and Zjht = min[Pjht, 9∗ (Gjt + T) + OM] for
the CT.

• Hourly system loads (MW). These are the hourly loads published by the CAISO for the state’s
two large LDCs: PG&E in Northern California and Southern California Edison (SCE) in
Southern California.

• Daily nuclear capacities available (MW). A nuclear plant’s daily capacity available is its
installed capacity multiplied by the plant’s daily availability factor. PG&E’s Diablo Canyon
plant’s installed capacity is 2,160 MW and that of SCE’s San Onofre plant was 2,150 MW.34

The Palo Verde plant in Arizona has an installed capacity of 3,739 MW and is partially owned
by SCE (15.8%), the Southern California Public Power Authority (10.2%), and the Los An-
geles Department of Water and Power (5.7%).35 The daily availability factors for the three
plants come from the U.S. Nuclear Regulatory Commission.36
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37. We do not to use the CAISO’s hydro generation to measure the state’s hourly hydro conditions because the hourly
hydro generation may be endogenous due to its response to the system loads and market prices. The stream-flow data for
the three rivers come from:

• http://waterdata.usgs.gov/ca/nwis/uv/?site_no = 11530500&PARAmeter_cd = 00065,00060 for the Klamath River;
• http://waterdata.usgs.gov/ca/nwis/uv/?site_no = 11446500&PARAmeter_cd = 00065,00060 for the American River;

and
• http://waterdata.usgs.gov/ca/nwis/uv/?site_no = 11447650&PARAmeter_cd = 00065,00060 for the Sacramento

River.

A complete list of California’s stream-flow data at 492 sites is available at: http://waterdata.usgs.gov/ca/nwis/current/
?type = flow

38. We do not include biogas, biomass, and geothermal for reasons given in supra note 8.
39. We thank a referee for suggesting the analysis in this subsection.
40. See CAISO (2014c, pp.66–68).
41. Assuredly, one can use the ARIMA method (e.g., PROC FORECAST in SAS (2004)) to make reasonable day-

ahead forecasts for such drivers as the natural-gas price, nuclear capacities available, and stream flows. The quality and
reliability of such forecasts, however, may invite questions as to the empirical validity of our analysis of ex post profits
(e.g., “Are the forecasts constructed by the authors reflective of those used by market participants?” “Are the authors’
forecasts sensitive to the choice of forecasting technique?”). While the CAISO publishes day-ahead load forecasts (http://
oasis.caiso.com/mrioasis/logon.do�essionid = 8BE96B340BDE4D2C4772E65DB499B2CC), it only publishes day-ahead
forecasts for solar and wind generation since December 2012, through its OASIS site (http://oasis.caiso.com/mrioasis/
logon.do�essionid = 03863D12C2A297D0BB3CBB82798A69A7). As a result, we do not have day-ahead forecast data for
the highly unpredictable solar and wind generation for the entire sample period.

• Hourly hydro conditions (000ft3/second). The hydro conditions are proxied by the U.S. Geo-
logical Survey’s hourly average of the 15-minute stream flows for the three major rivers in
Northern California: the Klamath near the California-Oregon border, and the American and
Sacramento in the Central Valley.37 Figure 1 portrays the daily averages of the 15-minute
stream flows of these rivers, which reflect the worsening drought in California. The Klamath’s
flows are moderately correlated (r�0.65) with those of the American and Sacramento rivers.
The flows of the American and Sacramento, however, are highly correlated (r = 0.81).

• Hourly renewable generation (MW). The three generation sources are small hydro, solar, and
wind generation, the data for which are published by the CAISO.38

4.2 DAM or RTM Prices?

We now consider which of the two price series—the DAM or the RTM—would be more
appropriate to use for our profit analysis.39 At first blush, the DAM prices seem preferable, since
over 95% of the MWH traded in the CAISO’s markets are settled at the DAM prices.40 Nonetheless,
we decided to use the RTM prices, thereby circumventing the difficulty noted by Woo et al. (2013)
of obtaining day-ahead forecast data to properly match with the DAM price data.41

Our decision is also supported by the following observations. First, Figures 2 and 3 show
that on average a $1/MWH movement in the DAM prices is matched by a $1/MWH movement in
the RTM prices.

Second, the owner of a CT (or CCGT) can always choose to transact in the RTM or DAM,
even though the RTM has a smaller trading volume than the DAM. The hourly DAM-based profits
are likely to be less than the hourly RTM-based profits because (a) these profits are the payoff of
a call option, and (b) the hourly DAM prices are less volatile than the hourly RTM prices. Using
the cost and price data described in the last subsection, Table 1 confirms that for the entire sample
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Table 1: Descriptive Statistics for DAM- and RTM-based Profits ($/MWH) for the Period of
04/20/2010 through 12/31/2013 under the Heat Rate Assumptions of H = 7
MMBTU/MWH for a CCGT and H = 9 MMBTU/MWH for a CT

NP15 SP15

H = 7
MMBTU/MWH

H = 9
MMBTU/MWH

H = 7
MMBTU/MWH

H = 9
MMBTU/MWH

Statistic DAM RTM DAM RTM DAM RTM DAM RTM

Mean 1.99 5.78 0.52 4.70 2.84 7.79 0.97 6.65
S.D. 5.77 35.57 4.10 34.35 7.24 46.05 5.08 44.72
Minimum 0 0 0 0 0 0 0 0
Maximum 142.41 882.52 134.69 876.08 134.03 1,347.61 125.16 1,340.63

42. The share of negative prices is 4.28% for NP15 and 4.20% for SP15.

period, the average DAM-based profits are $0.52/MWH to $2.84/MWH. These profits are substan-
tially less than the average RTM-based profits of $4.70/MWH to $7.79/MWH.

4.3 Descriptive Statistics

Panel A of Table 2 reports the descriptive statistics for the RTM price and per MWH
procurement-cost data used in our regression analysis. To address possible concerns about a spurious
price regression due to non-stationary data (Granger and Newbold, 1974), we apply the Phillips-
Perron unit-root test (Phillips and Perron, 1988) and determine that all data series in Panel A are
stationary.

The hourly price data have means of $33/MWH for NP15 and $35/MWH for SP15. The
data are volatile, as reflected in their respective standard deviations of $39/MWH and $49/MWH,
minimum values of –$107/MWH and –$164/MWH,42 and maximum values of $910/MWH and
$1,377/MWH. Relative to the price data, the per MWH procurement-cost data have lower means,
and much smaller standard deviations and maximum values, principally because generation own-
ership caps the per MWH procurement costs well below the market price spikes.

Panel B shows the comparable statistics for the profit drivers. The natural-gas-price data
series are non-stationary and have means of $4.17/MMBTU for NP15 and $4.32/MMBTU for SP15.
The remaining series, however, are stationary.

The PG&E and SCE hourly load data are volatile and have large standard deviations and
maximum values. The statistics for the available nuclear capacities suggest that, during the sample
period, each nuclear plant had high capacity availability, unless it was shut down, as in the case of
the San Onofre plant. There are three hourly non-dispatchable renewable-generation series: small
hydro, solar, and wind. Their statistics suggest that the three series are highly volatile. The average
wind generation is about 3.0 times the size of the average small-hydro generation, and 3.6 times
the size of the average solar generation.

Rows 2 to 7 of Table 3 report that the hourly prices are positively correlated (r = 0.63).
The hourly prices and per MWH procurement costs are also positively correlated and at times
strongly so (r≥0.50). Finally, the per MWH procurement costs are highly correlated (r�0.88).

The last 12 rows of Table 3 report the coefficients of correlation of the hourly prices and
per MWH procurement costs with their respective drivers. Even though these coefficients are quite
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Table 2: Descriptive Statistics, where h = hour index = 1, . . . , 24, t = day index = 04/20/2010,
. . . , 12/31/2013 under the Heat Rate Assumptions of H = 7 MMBTU/MWH for a
CCGT and H = 9 MMBTU/MWH for a CT

Panel A: Real-time Market Prices and per MWH Procurement Costs

Variable definition

Stationary at the
5% significance

level? Mean S.D. Minimum Maximum

P1ht: NP15 hourly real-time market price ($/MWH) Yes 33.02 39.09 –107.15 910.06
Y1ht: NP15 hourly procurement cost at H = 7 MMBTU/

MWH = Min[P1ht, 7∗ (G1t + T) + OM]
Yes 27.26 11.86 –107.15 55.96

Z1ht: NP15 hourly procurement cost at H = 9 MMBTU/
MWH = Min[P1ht, 9∗ (G1t + T) + OM]

Yes 28.34 13.17 –107.15 70.52

P2ht: SP15 hourly real-time market price ($/MWH) Yes 35.22 49.47 –164.12 1,377.04
Y2ht: SP15 hourly procurement cost at H = 7 MMBTU/

MWH = Min[P1ht, 7∗ (G2t + T) + OM]
Yes 27.45 12.44 –164.12 66.53

Z2ht: SP15 hourly procurement cost at H = 9 MMBTU/
MWH = Min[P1ht, 9∗ (G2t + T) + OM]

Yes 28.59 13.82 –164.12 84.11

Note: Cost-data assumptions: (a) G1t = CAISO’s daily PGE2 price index ($/MMBTU); (b) G2t = CAISO’s daily SCE1 natural-
gas price index ($/MMBTU); (c) T = natural-gas transportation cost = $0.5/MMBTU; and (d) OM = natural-gas generation
variable O&M cost = $5/MWH.

Panel B: Profit Drivers

Variable definition

Stationary at the
5% significance

level? Mean
Standard
deviation Minimum Maximum

G1t: Daily PGE2 natural-gas price index ($/MMBTU) for
NP15

No 4.17 0.60 2.57 6.78

G2t: Daily SCE1 natural-gas price index ($/MMBTU) for
SP15

No 4.32 0.62 2.73 8.29

X1ht: Hourly PG&E load (MW) Yes 12,193.05 1,921.94 8,569 21,180
X2ht: Hourly SCE load (MW) Yes 12,122.99 2,406.29 7,947 23,276
X3t: Daily nuclear capacity available: Diablo Canyon

(MW)
Yes 2,041.65 426.12 0 2,160

X4t: Daily nuclear capacity available: San Onofre (MW) Yes 2,023.41 509.83 0 2,150
X5t: Daily nuclear capacity available: Palo Verde (MW) Yes 3,393.73 564.76 1,249 3,739
X6ht: Hourly stream flow (000ft3/sec): Klamath River Yes 14.47 15.15 2.30 152.0
X7ht: Hourly stream flow (000ft3/sec): American River Yes 3.60 3.48 0.83 31.18
X8ht: Hourly stream flow (000ft3/sec): Sacramento River Yes 20.47 13.95 0 87.0
X9ht: Hourly small hydro generation (MW) Yes 350.99 105.69 56.0 646.0
X10ht: Hourly solar generation (MW) Yes 286.49 521.59 0 2,893
X11ht: Hourly wind generation (MW) Yes 1,049.77 853.95 –21.0 4,215

Note: The San Onofre plant’s descriptive statistics are based on the observations before the plant’s shutdown on January
31, 2012, as the plant’s capacity available is zero after the shutdown. Negative wind generation occurs due to on-site plant
use.

low (⎪r⎪�0.38), they are broadly consistent with what one would expect: (a) the prices and per
MWH procurement costs are positively correlated with the loads and natural-gas prices; and (b)
they are negatively correlated with the nuclear capacities available, hydro conditions, and renewable
generation. The notable exception is solar generation, which has small but positive correlation
coefficients (r�0.17).

Table 4 reports the share of sample observations with zero hourly profits, as well as the
mean hourly profits over the 45-month sample period. The share of hours with zero profit is large,
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Table 3: Correlation Coefficients; the San Onofre Plant’s Correlation Based on the Data
before the Plant’s Shutdown on January 31, 2012 under the Heat Rate Assumptions
of H = 7 MMBTU/MWH for a CCGT and H = 9 MMBTU/MWH for a CT

Variable definition P1ht Y1ht Z1ht P2ht Y2ht Z2ht

P1ht: NP15 hourly price ($/MWH) 1 0.437 0.508 0.627 0.391 0.446
Y1ht: NP15 hourly procurement cost ($/MWH) at

H = 7
0.437 1 0.981 0.322 0.896 0.873

Z1ht: NP15 hourly procurement cost ($/MWH) at
H = 9

0.508 0.981 1 0.372 0.882 0.888

P2ht: SP15 hourly price ($/MWH) 0.627 0.322 0.372 1 0.394 0.469
Y2ht t: SP15 hourly procurement cost ($/MWH) at

H = 7
0.391 0.896 0.882 0.394 1 0.981

Z2ht t: NP15 hourly procurement cost ($/MWH) at
H = 9

0.446 0.873 0.888 0.469 0.981 1

G1t: Daily PGE2 natural-gas price index ($/MMBTU) 0.081 0.234 0.235 0.055 0.223 0.219
G2t: Daily SCE1 natural-gas price index ($/MMBTU) 0.073 0.220 0.223 0.053 0.221 0.217
X1ht: Hourly PG&E load (MW) 0.218 0.325 0.351 0.189 0.346 0.366
X2ht: Hourly SCE load (MW) 0.197 0.321 0.342 0.211 0.354 0.376
X3t: Daily nuclear capacity available: Diablo Canyon

(MW)
0.008 0.070 0.066 –0.003 0.057 0.049

X4t: Daily nuclear capacity available: San Onofre
(MW)

–0.078 –0.151 –0.141 –0.057 –0.128 –0.122

X5t: Daily nuclear capacity available: Palo Verde
(MW)

–0.026 –0.056 –0.058 –0.006 –0.033 –0.033

X6ht: Hourly stream flow (000ft3/sec): Klamath River –0.047 –0.214 –0.199 –0.037 –0.202 –0.185
X7ht: Hourly stream flow (000ft3/sec): American River –0.026 –0.159 –0.146 –0.023 –0.138 –0.125
X8ht: Hourly stream flow (000ft3/sec): Sacramento

River
–0.036 –0.173 –0.159 –0.023 –0.152 –0.137

X9ht: Hourly small hydro generation (MW) –0.013 –0.192 –0.171 0.009 –0.135 –0.113
X10ht: Hourly solar generation (MW) 0.059 0.167 0.168 0.056 0.163 0.164
X11ht: Hourly wind generation (MW) –0.089 –0.184 –0.180 –0.089 –0.174 –0.174

43. Woo et al. (2012) document similarly large shares for the ERCOT market.
44. There is a noticeable drop in the share of zero-profit hours for the CCGT’s heat rate of H = 7 MMBTU/MWH

between 2012 and 2013, which may be attributable to the state’s worsening drought.

up to 94% for a CT,43 showing that natural-gas-fired generation is unprofitable for a majority of the
year.44 These data also highlight the necessity of using a Tobit-type model to directly analyze the
ex post profit data in a regression analysis (Maddala, 1983), unless one circumvents the problem,
as we do here. For the entire sample period, the NP15 mean profit is $5.8/MWH for a CCGT and
$4.7/MWH for a CT, about $2/MWH less than the corresponding SP15 mean profits.

5. RESULTS

5.1 Regression Results

Table 5 presents our hourly regression results that do not include the coefficient estimates
related to the time-dependent intercepts. The following observations speak to the empirical plau-
sibility of these results.

This is the pre-published version published in 
The Energy Journal, available online at: 
http://dx.doi.org/10.5547/01956574.37.3.cwoo.



Name /ej373/ej373_0_Woo/Mp_46        04/29/2015 03:03PM     Plate # 0 pg 46   # 18

46 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

Table 4: Sample Shares with Zero Profit and Mean Profits ($/MWH) for the Period of 04/
20/2010 through 12/31/2013 under the Heat Rate Assumptions of H = 7 MMBTU/
MWH for a CCGT and H = 9 MMBTU/MWH for a CT

Panel A: NP15

Heat rate H = 7 MMBTU/MWH Heat rate H = 9 MMBTU/MWH

Year

Sample share
with zero

hourly profit

Mean of
positive hourly

profits
Mean of all

hourly profits

Sample share
with zero

hourly profit

Mean of
positive hourly

profits
Mean of all

hourly profits

2010 80.13% 38.849 7.720 92.99% 94.134 6.600
2011 87.90% 44.685 5.407 94.35% 81.394 4.598
2012 87.35% 44.799 5.668 94.31% 88.403 5.030
2013 69.84% 16.187 4.883 91.08% 35.054 3.128
All years 81.41% 31.068 5.775 93.20% 69.098 4.699

Panel B: SP15

Heat rate H = 7 MMBTU/MWH Heat rate H = 9 MMBTU/MWH

Year

Sample share
with zero

hourly profit

Mean of
positive hourly

profits
Mean of all

hourly profits

Sample share
with zero

hourly profit

Mean of
positive hourly

profits
Mean of all

hourly profits

2010 80.54% 49.752 9.684 91.75% 102.664 8.473
2011 88.42% 54.150 6.268 94.01% 90.496 5.419
2012 86.71% 63.653 8.460 92.34% 100.222 7.679
2013 70.39% 24.710 7.316 90.88% 61.101 5.570
All years 81.61% 42.358 7.791 92.29% 86.217 6.650

First, the adjusted R2 is 0.20 for the NP15 price regression and 0.16 for that of SP15.
These relatively modest values reflect the noisy and volatile hourly price data. By contrast, the
hourly per MWH procurement-cost regressions have adjusted R2 values above 0.56, chiefly because
the per MWH procurement costs are far less volatile than the market prices.

Second, relying on the criterion of a p-value�0.05, which is used throughout the rest of
the paper, the positive AR parameter estimates are statistically significant. Their regression-specific
sum is less than 0.6, thus suggesting a stationary AR(4) error process. Hence, the regression resid-
uals do not follow a random walk and the regression results in Table 5 are not subject to spurious
interpretation (Davidson and MacKinnon, 1993, Chapter 19).

Third, most of the slope-coefficient estimates for the drivers are statistically significant and
have the hypothesized sign. Specifically, 59 (82%) of the 72 slope-coefficient estimates are statis-
tically significant. There are two insignificant load-related estimates: (1) Northern California’s
hourly PG&E load in the Southern California SP15 price regression; and (2) Southern California’s
hourly SCE load in the Northern California NP15 price regression. The statistical insignificance of
these estimates is understandable, because of the locational difference between loads and prices
and the occasional transmission congestion on the Path 15 interface between Northern and Southern
California. Out of the 18 estimates associated with the stream flows of the three rivers, 12 are
insignificant. In response to a referee’s comment, however, we retain the stream flows as RHS
variables to explicitly account for the impact of hydro conditions.

Fourth, all of the estimated slope coefficients have the “right” sign, except for the three
that are associated with the stream flow of the Klamath River and that of the American River. The
Klamath River’s stream flow has two statistically significant coefficient estimates in the price re-
gressions. These two estimates are judged to have the “wrong” sign, because one would expect
improved hydro conditions to induce lower market prices.
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Table 5: Hourly Regression Results with p-values in ( ) for the Period of 04/20/2011
through 12/31/2013 under the Heat Rate Assumptions of H = 7 MMBTU/MWH for
a CCGT and H = 9 MMBTU/MWH for a CT

NP15 SP15

Variable definition
Hourly price

($/MWH)

Hourly
procurement

cost
($/MWH) at

H = 7

Hourly
procurement

cost
($/MWH) at

H = 9
Hourly price

($/MWH)

Hourly
procurement

cost
($/MWH) at

H = 7

Hourly
procurement

cost
($/MWH) at

H = 9

Adjusted R2 0.1999 0.5923 0.5938 0.1565 0.5631 0.5613
Root mean squared

error
34.8644 7.5498 8.3669 45.0853 8.2071 9.1495

AR(1) parameter 0.2840
(� .0001)

0.4063
(� .0001)

0.3956
(� .0001)

0.2277
(� .0001)

0.3892
(� .0001)

0.3753
(� .0001)

AR(2) parameter 0.0880
(� .0001)

0.0628
(� .0001)

0.0712
(� .0001)

0.1085
(� .0001)

0.0615
(� .0001)

0.0724
(� .0001)

AR(3) parameter 0.0205
(� .0001)

0.0549
(� .0001)

0.0546
(� .0001)

0.0089
(0.0489)

0.0481
(� .0001)

0.0484
(� .0001)

AR(4) parameter 0.0138
(0.0016)

0.0203
(� .0001)

0.0229
(� .0001)

0.0296
(� .0001)

0.0212
(� .0001)

0.0240
(� .0001)

Gt: Daily electric
region-specific
natural-gas price
($/MMBTU)

8.6469
(� .0001)

7.5861
(� .0001)

8.3414
(� .0001)

9.6302
(� .0001)

7.8269
(� .0001)

8.5377
(� .0001)

X1ht: Hourly PG&E load
(MW)

0.0087
(� .0001)

0.0025
(� .0001)

0.0032
(� .0001)

0.0011
(0.0840)

0.0017
(� .0001)

0.0020
(� .0001)

X2ht: Hourly SCE load
(MW)

0.0001
(0.8947)

0.0005
(� .0001)

0.0006
(� .0001)

0.0071
(� .0001)

0.0012
(� .0001)

0.0017
(� .0001)

X3t: Daily nuclear
capacity available:
Diablo Canyon (MW)

–0.0020
(0.0266)

–0.0010
(� .0001)

–0.0011
(� .0001)

–0.0033
(0.0027)

–0.0016
(� .0001)

–0.0019
(� .0001)

X4t: Daily nuclear
capacity available:
San Onofre (MW)

–0.0031
(� .0001)

–0.0024
(� .0001)

–0.0027
(� .0001)

–0.0048
(� .0001)

–0.0028
(� .0001)

–0.0032
(� .0001)

X5t: Daily nuclear
capacity available:
Palo Verde (MW)

–0.0034
(0.0002)

–0.0006
(0.0140)

–0.0012
(� .0001)

–0.0023
(0.0427)

–0.0005
(0.0387)

–0.0009
(0.0019)

X6ht: Hourly stream flow
(000ft3/sec): Klamath
River

0.0934
(0.0086)

–0.0056
(0.5706)

0.0001
(0.9909)

0.0987
(0.0246)

–0.0074
(0.4768)

–0.0016
(0.8899)

X7ht: Hourly stream flow
(000ft3/sec):
American River

0.0581
(0.7330)

–0.0832
(0.0766)

–0.0986
(0.0578)

–0.1109
(0.5961)

–0.0443
(0.3632)

–0.0629
(0.2462)

X8ht: Hourly stream flow
(000ft3/sec):
Sacramento River

–0.0686
(0.1392)

–0.0582
(� .0001)

–0.0551
(� .0001)

–0.0360
(0.5280)

–0.0594
(� .0001)

–0.0565
(� .0001)

X9ht: Hourly small hydro
generation (MW)

–0.0196
(0.0006)

–0.0232
(� .0001)

–0.0251
(� .0001)

–0.0244
(0.0006)

–0.0238
(� .0001)

–0.0253
(� .0001)

X10ht: Hourly solar
generation (MW)

–0.0020
(0.0214)

–0.0018
(� .0001)

–0.0020
(� .0001)

–0.0040
(0.0001)

–0.0021
(� .0001)

–0.0023
(� .0001)

X11ht: Hourly wind
generation (MW)

–0.0060
(� .0001)

–0.0032
(� .0001)

–0.0037
(� .0001)

–0.0084
(� .0001)

–0.0037
(� .0001)

–0.0043
(� .0001)

Note: For brevity, this table does not report the coefficient estimates for the intercept and the binary indicators that indicate
statistically-significant (p-value≤0.05) time-dependence of the hourly real-time market prices and procurement costs.
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45. The market-based heat-rate interpretation is based on a competitive electricity market in which the market price
tracks the per MWH variable cost of the marginal generation unit. Suppose there is no capacity shortage so that the market
price of P ($/MWH) is equal to the unit’s per MWH cost C in equation (1). The marginal effect of the natural-gas price G
($/MMBTU) on P is ∂P/∂G = (∂P/∂C) (∂C/∂G). While ∂P/∂C = 1, we need to find ∂C/∂G. Let TVC denote the unit’s total
variable cost for producing Q MWH. Invoking Shephard’s Lemma (Varian, 1992, p. 74), ∂TVC/∂G is the plant’s total natural-
gas consumption. As ∂(TVC/Q)/∂G = ∂C/∂G is the per MWH fuel requirement, we find ∂P/∂G = ∂C/∂G is the marginal
market-based heat rate (MMBTU/MWH).

Finally, the sizes of the estimated slope coefficients pass the test of plausibility. In partic-
ular, the coefficient estimates for the natural-gas price in both price regressions indicate that the
market-based marginal heat rate over the sample period is 8.65 MMBTU/MWH in Northern Cali-
fornia and 9.63 per MMBTU/MWH in Southern California.45 These market-based marginal heat
rates are in line with our heat-rate assumptions of 7 MMBTU/MWH for the CCGT and 9 MMBTU/
MWH for the CT.

The coefficient estimates for the other drivers in the price regressions, namely, hourly
loads, daily nuclear capacities available, and hourly renewable generation, are very similar to those
reported in Woo et al. (2014a) for the 33-month sample period of April 2010 through December
2012. The interpretation of these coefficient estimates as marginal effects is straightforward, and
we omit it for the sake of conciseness.

Turning our attention to the coefficient estimates for the per MWH procurement-cost re-
gressions, we find that (a) they generally have the same sign as those in the price regressions, and
(b) they are generally smaller in size than those in the price regressions. These results again would
be in line with our prior conjectures in light of the capping effect of generation ownership on the
per MWH procurement costs.

5.2 Profit Effects

Based on equation (5), Table 6 reports the estimated profit effects of each of the 12 fun-
damental drivers. Each estimate measures the marginal change in profit due to a marginal increase
in the associated driver. These profit-effect estimates lead to the following inferences.

First, the estimated profit effect of the natural-gas price suggests that a $1/MMBTU in-
crease tends to increase profit by as much as $1.80/MWH for SP15 at the assumed heat rate of
H = 7 MMBTU/MWH for a CCGT. Only that one estimate, however, is statistically significant,
although under a more lax standard of statistical significance, say a p-value≤0.10, the estimate of
$1.06/MWH at H = 7 MMBTU/MWH for NP15 would also pass muster. All four estimates, how-
ever, have the hypothesized sign.

Second, a 1-MW increase in the PG&E (SCE) load has a small, positive and statistically
significant effect on the NP15 (SP15) profit, but has no impact on the SP15 (NP15) profit.

Third, increasing nuclear generation tends to reduce profits, but its estimated effects are
only significant for the San Onofre and Palo Verde plants in the SP15 and NP 15 regions, respec-
tively.

Fourth, the profit effects of the river flows are mixed. The flow at the Klamath River has
a positive and statistically significant profit effect, in both regions, which in the main is due to the
unanticipated result shown in Table 5 of the river’s stream flow having a positive effect on price.

Fifth, small-hydro and solar generation in Northern California have statistically insignifi-
cant profit-effect estimates. This is in accordance with the estimates in Table 5 that show that small-
hydro and solar generation have comparable impacts on both price and procurement costs in the
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Table 6: Profit-Effect Estimates with p-values in ( ) under the Heat Rate Assumptions of
H = 7 MMBTU/MWH for a CCGT and H = 9 MMBTU/MWH for a CT

NP15 SP15

Variable definition H = 7 H = 9 H = 7 H = 9

Gt: Daily electric-region-specific natural-gas price ($/MMBTU) 1.0608
(0.0999)

0.3055
(0.6244)

1.8033
(0.0214)

1.0924
(0.1516)

X1ht: Hourly PG&E load (MW) 0.0062
(� .0001)

0.0055
(� .0001)

–0.0006
(0.3522)

–0.0008
(0.1728)

X2ht: Hourly SCE load (MW) –0.0005
(0.2323)

–0.0005
(0.1581)

0.0059
(� .0001)

0.0054
(� .0001)

X3t: Daily nuclear capacity available: Diablo Canyon (MW) –0.0010
(0.2266)

–0.0009
(0.2743)

–0.0017
(0.1128)

–0.0014
(0.1640)

X4t: Daily nuclear capacity available: San Onofre (MW) –0.0007
(0.0828)

–0.0004
(0.3020)

–0.0020
(� .0001)

–0.0016
(0.0015)

X5t: Daily nuclear capacity available: Palo Verde (MW) –0.0028
(0.0011)

–0.0022
(0.0074)

–0.0017
(0.1074)

–0.0014
(0.1931)

X6ht: Hourly stream flow (000ft3/sec): Klamath River 0.0990
(0.0033)

0.0933
(0.0042)

0.1060
(0.0117)

0.1003
(0.014)

X7ht: Hourly stream flow (000ft3/sec): American River 0.1413
(0.3820)

0.1567
(0.3158)

–0.0666
(0.7399)

–0.0480
(0.8055)

X8ht: Hourly stream flow (000ft3/sec): Sacramento River –0.0104
(0.8141)

–0.0134
(0.7524)

0.0234
(0.6682)

0.0206
(0.6983)

X9ht: Hourly small hydro generation (MW) 0.0036
(0.5129)

0.0055
(0.2969)

–0.0006
(0.9286)

0.0009
(0.8977)

X10ht: Hourly solar generation (MW) –0.0002
(0.8525)

0.0000
(0.9898)

–0.0019
(0.0527)

–0.0017
(0.0777)

X11ht: Hourly wind generation (MW) –0.0028
(� .0001)

–0.0023
(� .0001)

–0.0047
(� .0001)

–0.0041
(� .0001)

46. For example, California is expanding its solar-energy development under the state’s solar-energy initiative (http:/
/www.gosolarcalifornia.ca.gov/csi/index.php). This may introduce a structural change that our regressions cannot capture.
Nonetheless, an outright rejection of the results of our regression analysis by reason of a possible structural change is
unproductive, because the same reason can rule out any regression analysis of ex post prices and profits that are necessarily
recorded from actual market data.

north. In Southern California, however, where solar generation plays a greater role, the negative
profit of solar generation is more pronounced and close to being statistically significant (p-
value = 0.053) at the assumed heat rate of H = 7 MMBTU/MWH for a CCGT. The magnitude of
this effect, however, is less than half that of wind.

Finally, wind generation has negative and statistically significant profit effects, which is
consistent with the main finding in the extant literature on the merit-order effect of wind generation,
and its ensuing impact on generation investment incentives.

5.3 Profit Changes

As an illustrative application of our profit-effect estimates, we estimate the profit changes
resulting from each of a series of hypothetical events. These profit-change estimates aid our un-
derstanding of how each event may impact the incentives to invest in natural-gas-fired generation.
One should bear in mind, however, that rather than being predictive, the estimated changes are only
indicative of what might occur in the future, because the hypothetical events will not necessarily
materialize in that future, and our parameter estimates may not be sufficiently robust over more
extended sample periods to shore up our confidence in any predictions about that future.46
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Table 7: Estimated Profit Changes ($/MWH) by Hypothetical Event under the Heat Rate
Assumptions of H = 7 MMBTU/MWH for a CCGT and H = 9 MMBTU/MWH for
a CT; Each number in ( ) = Estimated Profit Change � Mean Profit in the “No
change” Row; Statistically-Significant (p-value�0.05) Estimated Profit Changes in
Bold

NP15 SP15

Event description H = 7 H = 9 H = 7 H = 9

No change to reflect the sample period’s ex post conditions 5.775 4.699 7.791 6.650
+ $1/MMBTU increase in the natural-gas price 1.0608

(0.1840)
0.3055

(0.0651)
1.8033

(0.2318)
1.0924

(0.1645)
–1,000 MW due to PG&E’s DR-load reduction for 60 hours per

year ( = 10 days per year for 6 hours of 12:00–18:00)
–0.0427

(–0.0074)
–0.0375
(–0.008)

0.0040
(0.0005)

0.0057
(0.0009)

–1,000 MW due to SCE’s DR-load reduction for 60 hours per
year ( = 10 days per year for 6 hours of 12:00–18:00)

0.0031
(0.0005)

0.0036
(0.0008)

–0.0405
(–0.0052)

–0.0372
(–0.0056)

–1,075 MW due to the loss of 1/2 of the 2,150-MW Diablo
Canyon plant’s capacity

1.1073
(0.192)

0.9675
(0.2062)

1.8168
(0.2335)

1.548
(0.2331)

–1,246 MW due to the loss of 1/3 of the 3,739-MW Palo Verde
plant’ capacity

3.5022
(0.6074)

2.7793
(0.5924)

2.1437
(0.2756)

1.6826
(0.2534)

+ 175.5 MW due to a 50% increase in the average small hydro
generation of 351 MW

0.6248
(0.1084)

0.9635
(0.2054)

–0.1071
(–0.0138)

0.1492
(0.0225)

+ 146 MW due to a 50% increase in the average small solar
generation of 286 MW

–0.0215
(–0.0037)

0.0014
(0.0003)

–0.2774
(–0.0357)

–0.2460
(–0.037)

+ 525 MW due to a 50% increase in the average wind
generation of 1,050 MW

–1.4910
(–0.2586)

–1.2285
(–0.2619)

–2.4465
(–0.3145)

–2.1368
(–0.3218)

Notes: (1) The profit numbers in the “no change” row are the sample mean profits in Table 2. An estimated profit change
is the estimated profit effect multiplied by the change in the driver due to the event. (2) We do not compute the estimated
profit change for the San Onofre plant because the average profit numbers in Table 2 have already captured the effect of
the plant’s shutdown. More importantly, a counter-factual computation for the San Onofre plant is meaningless, as the plant’s
shutdown is permanent. (3) We assume that the 50% increase [ = (50%/33%)–1�0.5)] in renewable generation is caused
by California’s raising the 33%-RPS to a 50%-RPS.

47. The EIA identified export scenarios resulting in U.S. natural-gas prices for producers at 4% to 11% more than
the AEO 2014 reference case over the 2015–40 period (http://www.eia.gov/analysis/requests/fe/pdf/lng.pdf). That study
indicates that larger gas demand from higher economic growth assumptions could also lead to projected increases in gas
prices by more than $1/MMBTU in the 2020–2025 period.

Table 7 describes these hypothetical events and reports the estimated profit changes under
the ceteris paribus assumption:

Suppose there is a $1/MMBTU increase in the natural-gas price. That increase reflects the
increasing demand for natural gas due to the U.S. economic recovery and rising natural-gas ex-
ports.47 The estimated profit increases can be as high as 23% of the sample’s mean profits, as shown
by the statistically-significant SP15 estimate for a CCGT with H = 7 MMBTU/MWH. The profit
effects, however, are relatively small and statistically insignificant for a CT with H = 9 MMBTU/
MWH, chiefly because the natural-gas price increase has similar impacts on the market price and
the CT’s fuel cost.

• Suppose there is a 1,000-MW DR-load reduction that occurs 60 hours per year, reflecting our
assumption of 10 DR days per year during California’s peak hours of 12:00–18:00 (Moore
et al., 2010). The 1,000-MW DR-load reduction is based on the state’s DR target of 5% and
PG&E’s and SCE’s system annual peaks in 2013. We find the change in estimated profit as
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48. To be sure, the estimate reported here reflects the average profit effect of a load change, based on our regression
analysis. That profit effect can be smaller than the profit effect during the peak hours. Our possible understatement of the
profit impact, however, is mitigated by the load increase that likely occurs in the shoulder-peak hours immediately before
and after a DR-event. For example, critical-peak pricing tends to shift end-use loads in the critical-peak hours to the shoulder-
peak hours (e.g., Faruqui and Segici, 2010). Thus, when the DR-load reduction during the peak hours is compensated for
by the load increase in the shoulder-peak hours, the profit effect estimable from our regression analysis is empirically
plausible.

49. This is based on a 26% reduction in profit � 50% increase in wind generation.
50. This is based on a 32% reduction in profit � 50% increase in wind generation.
51. This is based on the estimated profit reduction of 8% to 13% caused by a 40% increase in wind generation.
52. This is based on the estimated profit reduction of 12% to 33% caused by a doubling in wind generation.

the hourly load’s average profit effect∗1,000 MW ∗ (60 hours / 8760 hours). Though statis-
tically significant, the estimated profit reductions are less than 1% of the sample’s mean
profits, implying that when the number of DR hours is small, the estimated profit reductions
are also likely to be small.48

• Suppose the Diablo Canyon nuclear plant loses one of its two reactors. While statistically
insignificant, the estimated profit increases are about 20% of the sample’s mean profits.

• Suppose the Palo Verde nuclear plant loses one of its three reactors. The estimated profit
increases are large and statistically significant for NP15, and mount up to 60% of the sample’s
mean profits. This may be attributable to the increased exports from the NP15 to SP15 region
after loss of the unit.

• Suppose there is a 50% (175.5 MW) increase in the average small-hydro generation due to
California’s raising its RPS from 33% to 50% of electricity usage. The estimated profit
changes are mixed and statistically insignificant.

• Suppose there is a 50% increase (146 MW) in the average solar generation due to the state
raising its RPS from 33% to 50% of electricity usage. The profit- reduction estimates are
statistically insignificant and equal to only 0% to 4% of the sample’s mean profits.

• Suppose there is a 50% increase (525 MW) in the average wind generation due to California’s
raising its RPS from 33% to 50% of electricity usage. The estimated profit reductions are
statistically significant and equal to 26% to 32% of the mean profits. These estimated reduc-
tions imply that wind generation’s negative profit-elasticity estimates are –0.5349 to –0.64,50

which are larger in size than the negative estimates of –0.20 to –0.33 for Texas (Woo et al.,
2012)51 and –0.12 to –0.33 for Germany (Trabert and Kamfert, 2011).52

In summary, these estimated profit changes show that the natural-gas price, DR-based load
reduction, nuclear capacity available, and wind generation can have statistically significant impacts
on the ex post profits of natural-gas-fired generation. Except for the DR-load reduction, the esti-
mated impacts can be quite large, which corroborates the commonly held view regarding the “miss-
ing money” problem.

6. CONCLUSION

The profit-change estimates in Table 7 suggest that an increase in generation investment
incentives in California might occur given an increase in natural-gas prices and the loss of a nuclear
reactor, whose occurrence is uncertain. In contrast, we know with certainty that California has a
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53. http://www.cpuc.ca.gov/PUC/energy/Procurement/RA/
54. CPUC, “2014 Final RA Guide”, http://www.cpuc.ca.gov/NR/rdonlyres/0C2512A4-AE6C-4BB7-BC0D-

75D2F40741BA/0/Final2014RAGuide.docx
55. It would be particularly useful to examine whether the profit impact of solar generation remains stable over the

next two to three years. Our regression results presently show that: (a) incremental solar generation has less than half the
downward profit effect for SP-15 Southern California gas generators as incremental wind generation; and (b) incremental
solar generation does not have a statistically significant profit effect in Northern California. In light of the “duck curve” in
CAISO (2014a), which portrays the state’s net afternoon hourly loads resulting from the projected vast solar expansion, it
would be useful to know whether this relative impact of solar versus wind will continue to hold as solar grows to become
a larger share of total renewable generation than wind, or whether the impact of solar generation on profits will greatly
change with its growth.

legislated 33% RPS by 2020 target that is now being implemented. Based on Table 7, this known
development of renewable energy is projected to reduce the state’s generation investment incentives.

The expected growth of renewable energy in California highlights the need for resource-
adequacy requirements to address the state’s diminished incentives to invest in natural-gas-fired
generating capacity, absent increases in natural-gas prices or additional nuclear power plant closures.
Under the state’s adopted resource-adequacy program “[e]ach LSE’s system requirement is 100
percent of its total forecast load plus a 15 percent reserve, for a total of 115 percent.”53 In compliance
with its system requirement, an LDC such as PG&E prepares a long-term procurement plan for the
approval of the California Public Utilities Commission, announces its capacity needs based on the
approved procurement plan, and issues requests for proposals (RFP) to buy conventional and re-
newable generation, as well as DR resources.54

Under the LDC’s RFP process, a developer of a new CCGT (or CT) may submit its
proposal for a long-term contract, which presumably contains sufficient revenues to cover the
annualized fixed and variable costs of the new plant. The winning proposal and the subsequently
signed contract of a chosen developer should contain sufficient revenues to enable the new plant’s
construction.

We would be remiss if we failed to acknowledge the potential pitfalls in our analysis. First,
our mixed and unanticipated results related to the hydro conditions in California suggest that im-
proved modeling of the state’s hydro conditions is an area that merits future attention. An extensive
exploration of how to better represent the state’s hydro conditions is complex and well beyond the
scope and intent of the current paper.

Second, our estimated profit changes assume that the estimated regressions are sufficiently
stable as to allow us to make these computations. California’s electricity industry is undergoing
such on-going changes as the retirement of old thermal plants and rapid expansion of solar gener-
ation. These changes may render this assumption inappropriate. With additional data to be collected
in the next two to three years, however, one can re-estimate and update the estimated system of
regressions, an effort that will take pride of place on our future research agenda.55

Third, our analysis assumes 1-MW generation ownership, which presumes that a natural-
gas-fired generation plant can sell as much output as it desires at the prevailing market prices. But
renewable energy procurement by LDCs to comply with the state’s RPS may limit the owner’s
sales volume. We have not investigated this volume effect, an important aspect of the revenue
adequacy problem noted by Griffes (2014).

Finally, our regression-based approach is an ex post profit analysis, thanks to its unavoid-
able use of historical recorded data. To the extent that the future does not resemble the past, our
approach would be inappropriate for making long-term inferences about the incentives for invest-
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ment in natural-gas-fired generation, which would justify the development and use of a market-
simulation model along the lines of Morales and Conejo ( 2011) and Traber and Kemfert (2011,
2012).
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