
 

 

2018-2019 

MTH 4902: Honors Project II 

 

Optimal design of simple step-stress accelerated life tests for one-shot 
devices under Weibull distributions 

 

 

 

Supervisor: Dr. LING Man Ho, Alpha 

Name: Hu Xuwen 

Student ID:  

 

A Thesis Submitted to  

The Education University of Hong Kong 

for the Degree of Bachelor of Education (Primary) – Mathematics 

April 2019 



 

 

ii 

STATEMENT OF ORIGINALITY 

 

I, Hu Xuwen, hereby declare that I am the sole author of the thesis and the material 

presented in this thesis is my original work except those indicated in the 

acknowledgement. I further declare that I have followed the University’s policies and 

regulations on Academic Honesty, Copyright and Plagiarism in writing the thesis and 

no material in this thesis has been submitted for a degree in this or other universities. 

 

 

 

 

 

 

 

 



 

 

iii 

ABSTRACT 

“One-shot” devices are widely used in many fields nowadays. All of these devices 

can be used only once and then they will be destroyed extensively, which is called “one-

shot” devices. Weibull distribution presents a more flexible model than Exponential 

distribution, is adopted in this paper. Optimal deign for sample allocation with simple 

step-stress accelerated life test under a Weibull cumulative exposure distribution will 

be designed. In this paper we get the information matrix after obtaining derivatives of 

observed log-likelihood function, and asymptotic covariance matrix of the model 

parameters in order that optimal design that minimized the asymptotic variance of 

estimate of the reliability at a mission time of simple step-stress accelerated life test 

using maximum loglikelihood estimation under normal conditions in terms of one 

decided variable, sample allocation. Also, a procedure that determines the sample 

allocation with the termination time, inspection time, stress level and normal condition 

are given. Simulation studies are conducted to show the process of optimal design is 

reliable.  
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Introduction 

Nowadays, more and more high-technique devices are used in many fields and give us 

a safe and convenient daily life. In our life the airbags of automobile reduce damage to 

the minimum when having an accident; battery could provide electrical power to 

devices in a limited condition, and rockets help us to explore the outer space. All of 

these devices have the same characteristic, that is, just only can be used once and then 

they have to be rebuilt or destroyed extensively. These machines are called “one-shot” 

devices. Although these products give us so many conveniences, their reliability still 

likes a “secret”. If the reliability at a mission time could be obtained in their life, 

producers and experiment conductor can make better use of “one-shot” devices. 

Avoiding to infinite labor and expenditure continuously is spent on these devices, 

practitioners devised a method to observe the failure product more quickly than they 

would under normal conditions. Over the years, the terminology “accelerated life test” 

has been used to describe all such method. In accelerated life testing (ALT), devices 

are experienced under a high-level condition to shorten the failure time. Typically, 

stresses are temperature, vibration, humidity, voltages currents, cycling rate. Escobar 

and Meeker (2006) completely reviewed several accelerated test models planning, 

statistical models for acceleration and methodologies of parameter estimation. 



 

 

2 

Trevisanello et al. (2008) studied the 1-W high brightness light-emitting diodes (LEDs) 

to several stress conditions in short-term accelerated life test. Zheng et al. (2018) 

investigated the aging performance of grease-based magnetorheological fluids (G-

MRFs) at elevated temperature in accelerated life test.  

There are many types of accelerated life test. Constant life test (CSALT) is one of 

the accelerated life tests, which devices only run under one stress level in the whole 

process either normal condition or pre-specified condition. Yang (1994) explored an 

accelerated life test plan with four-level constant stresses in different censoring time. 

Chen et al. (2012) designed a constant stress level accelerated life test of type-I censored 

data with two different constant stress level on non-rectangular test region. Sari et al. 

(2009) carried out a model for actual LED lamps with bivariate constant stress model. 

Later, Balakrishnan and Ling (2014) discussed optimal sample allocation, inspection 

frequency and number of inspections at each stress level by using asymptotic variance 

approach with the constant-stress accelerated life test under Weibull distribution.  

Another type of accelerated life test is step-stress accelerated life test (SALT) also 

called as partially accelerated life test, in which only stress level was changed at pre-

specific time (Gouno & Balakrishnan, 2005). Besides, progress-stress accelerated life 

test is similar to the step-stress accelerated life test, but the stress levels in the progress-
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stress accelerated life is a continuous (progressive) function. Yin and Sheng (1987) 

derived the distribution of mean lifetime with progress-stress accelerated life test in 

which stress level is proportional to time under Weibull distribution or exponential 

distribution. Subsequently, Lin and Fei (1991) proposed a methodology to estimate 

mean lifetime at a normal condition in a progressive-stress accelerated life test. Wang 

and Fei (2004) presented estimated lifetime in tampered failure rate model with 

progressive stress accelerated life test under Weibull distribution and conducted a 

Monte-Carlo simulation. More specifically, simple step-stress accelerated life test 

(SSALTs) is a particular step-stress accelerated life test. In this testing, devices have to 

run under original stress at the first stage and then only change the stress to the other 

condition once at the same time (Ebrahem, 2012). Zhao and Elsayed (2005) proposed 

a general accelerated life model and likelihood formulation for accelerated life test for 

Weibull distribution and lognormal distribution. 

Compare to the constant-stress model, simple step-stress accelerated life test 

needs less sample size and could save more time and expenditure in the experiment 

(Ling, 2019). Many scholars showed their strong interests and have conducted kinds of 

research for simple step-stress accelerated life test. Bhattacharyya and Soejoeti (1989) 

presented a statistical model and its properties, inferred lifetime and a regression 
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structure in simple step-stress accelerated life test. Alhadeed and Yang (2005) 

introduced the optimal times of changing stress level for the simple step-stress test plan, 

predicted the lifetime of products and provided a range of parameters value under log-

normal distribution. Fard and Li (2009) extended the results of Alhadeed and Yang 

(2005) to Weibull distribution for failure data time by using the Khamis-Higgins (K-H) 

model. Kateri and Balakrishnan (2008) conducted a study to infer the parameters of a 

simple step-stress model under Weibull distribution and interval estimation for Type-

II censoring data. Later, Sha and Pan (2014) did a similar research and further compared 

the difference between Weibull cumulative model and Weibull proportional hazard 

model for simple step-stress accelerated life test.  

Although simple step-stress life test is a prevalent method used in many kinds of 

literatures, the different model and distribution would lead to a different result even 

using simple step-stress accelerated life test. There are three conventional models: 

tampered failure-rate model (Bhattacharyya & Soejeoti, 1989), tampered random 

variable model (DeGroot & Goel, 1979) and cumulative exposure model (Nelson, 1980; 

Nelson, 1990). Introduced by Nelson (1980), specimens only depend on the current 

stress and current cumulative fraction failed in the remaining lifetime regardless of 

accumulation history. Additionally, cumulative exposure (CE) model is widely adopted 
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in engineering reliability studies. Alhadeed and Yang (2005) designed an optimal time 

of changing stress level with cumulative exposure model under log-normal distribution. 

Fard and Li (2009) also used cumulative exposure model under exponential distribution 

to estimate the reliability at mission time. Dorp and Mazzuchi (2005) analyzed varying-

stress reliability tests by using Bayesian approaching under Weibull cumulative 

exposure model.  

Besides, gamma distribution (Balakrishnan & Ling, 2014), exponential 

distribution (Balakrishnan & Ling, 2012; Balakrishnan et al., 2015), Weibull 

distribution (Bai & Kim, 1993; Balakrishnan & Mitra, 2012; Balakrishnan & Ling, 

2013), log-normal distribution (Alhadeed & Yang, 2005;), log-logistic distribution 

(Ebrahem, 2012), Birnbaum – Saunders distribution (Sun & Shi, 2016) and lognormal 

distribution are some of the distributions commonly used for engineering reliability 

analysis. Lognormal distribution usually models some failure data caused by corrosion 

and chemical reactions. Zhao and Elasyed (2005) presented a likelihood function model 

for the lognormal distribution. Balakrishnan and Ling (2014) analyzed left-or-right 

censored data under gamma distribution and obtained the asymptotic confident interval 

to estimate the life distribution under normal condition. Also, Balakrishnan et al. (2012) 

developed Expectation Maximization (EM) algorithm to estimate the model parameters 



 

 

6 

and furthermore compare to estimation obtained by Inequality Constrained Least 

Squares (ICLS) under exponential distribution. The exponential distribution is a 

popular distribution used in practice, and the hazard function is constant (does not 

depend on time). Ling (2019) presented an EM algorithm to conduct an optimal design 

of sample allocation, stress level, inspection time under exponential distribution. 

Ebrahem (2012) designed optimum times of changing stress level plans under the log-

logistic model and used maximum likelihood estimation to construct interval for 

estimated parameters. Birnbaum-Saunders distribution is a model for the number of 

cycles necessary to force a fatigue crack to grow to a critical size derived by Birnbaum 

and Saunders (1969). Sun and Shi (2016) used Bayesian method to obtain parameter 

focusing on Type II censoring data under Birnbaum–Saunders distribution.   

Weibull distribution is a continuous probability distribution which used to 

describe various situations of observed failure of components, commonly applied in 

engineering studies to assess the reliability of products, lifetime and model failure time. 

Bai and Kim (1993) used monograph to find the optimal stress and time for Type-I 

censoring data in the design under Weibull distribution. Balakrishnan and Mitra (2008) 

developed EM algorithm for left truncated and right censored data under Weibull 

distribution and constructed the confidence interval for estimated parameters. Kateri 
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and Balakrishnan (2008) did a similar research but focused on Type II censoring data. 

Balakrishnan and Ling (2013) also presented EM algorithm to estimate the parameters 

and constructed confidence interval but based on binary data under Weibull distribution. 

Nandi and Dewan (2010) estimated parameters of Maximum likelihood estimation of 

Marshall- Olkin Bivariate Weibull distribution and test the performance of proposed 

estimators through simulation studies. Furthermore, Weibull distribution has a unique 

linkage with exponential distribution. Especially when the shape parameter equals to 

one which means the hazard rate is constant over time, Weibull distribution would 

reduce to the exponential distribution. In this case, the performance of the devices does 

not depend on time. When Weibull distribution has an increasing hazard function, it 

presents the failure rate would increase as time goes on which is a feature most devices 

have. Also, if the older machines have a better performance, shape parameter of 

Weibull distribution (hazard rate) would be smaller than one. Weibull distribution has 

certain analytical advantages over the exponential distribution and shows its flexibility 

to fit various traits of devices. Therefore, the Weibull distribution would be adopted in 

this research and also discuss three situations of shape parameter separately.  

When performing a reliability analysis of these devices, the exact lifetime is very 

difficult to collect due to incomplete data. Truncation and censoring are two distinct 
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phenomena cause the incomplete data to happen. Left censoring data are the specimens 

have already failed before the study started. Right censoring occurs when data failure 

after the study ends or the subjects quit the study before it ends. Meanwhile, there are 

two specific types of right censoring: Type-I censoring and Type-II censoring. In Type-

I censoring, the time of study is fixed and in the whole process the number of failures 

is random. Study continues to run until a pre-specified number of failures occur, the 

study time is arbitrary, which is called Type-II censoring. Besides, right truncation 

occurs that the whole sample of specimens is failed before the study starts. In left 

truncation, we only observe those lifetimes of those individuals exceed the truncation 

time. In practical, the difference between the censored data and truncated data is that 

the number of censored data is known and the number of truncated are unknown or 

undiscovered. In this paper, the data we considered is neither Type-I censoring data nor 

Type-II censoring data. Left-truncated and right-censoring data will be considered in 

this paper. Also, for those who study the “one-shot” devices under Weibull cumulative 

exposure distribution, most of them use EM algorithm to estimate the mean lifetime at 

normal condition, but reliability estimation is scarce. Also, most literatures in the 

simulation studies consider several variables in terms of stress level, sample allocation 

and inspection time and so on. Detailed considering sole variable is scarce in the 

engineering research. Therefore, simple step-stress accelerated life test under Weibull 
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distribution would be adopted and then estimate the reliability under normal condition 

at a mission time in terms of one decision variable, sample allocation.  

Fisher (1922) proposed the method of Maximum likelihood estimation in his 

influential paper which has become one of the most important tools to estimate 

parameters for statisticians. Maximum likelihood estimation (MLE) is a statistical 

method to estimate the parameters in the mathematical model especially for log-

location-scale distribution (Kleinbaum & Klein, 2010). Maximum likelihood 

estimation requires less restriction of any kinds on the characteristics of the independent 

variables compare to commonly used Least square estimation (LSE). The variables in 

maximum likelihood estimation could be nominal, ordinal or interval. Yang (1994) 

found the maximum likelihood to minimize the asymptotic variance of the mean 

lifetime at pre-specified stress and inspection time. Ebrahem (2012) used maximum 

likelihood estimation to investigate the parameters from the Fisher information matrix 

and minimized the asymptotic variance of the reliability. Kateri and Balakrishnan (2008) 

also used the same method to obtain the minimum asymptotic variance and further 

analyzed the bias and mean square error of estimated parameters. Scheike and Sun 

(2007) applied the maximum likelihood estimation to develop EM algorithm to 

determine tied survival data. By using the experience of these literatures for reference, 
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maximum likelihood estimation will be used in this paper to estimate the parameter in 

Weibull distribution, and the asymptotic variance of the reliability under normal 

condition at mission time would be studied.  

Optimal design, the selection of the best alternative is the phase of design 

optimization (Papalambros & Wilde, 2000) where the design describes as a system 

defined by designed variables, parameters and constants. Meanwhile, there are many 

optimality information-based criteria; possible criteria are G-, D-, A-, E-, and I-

optimality criteria. Smith (1918) introduced the G-optimality is a “prediction criterion” 

and minimized predicted variance. A-optimality principle was carried out by the 

Chernoff (1953) to minimize the trace of the inverse of information matrix which 

minimize the average variance of the estimates. Ehrenfeld (1955) presented E-

optimality criteria to maximize the minimum eigenvalue of the information matrix. In 

many engineering reliability research, the optimal design is very common and has 

attached great attention from scholars. Bai and Kim (1993) designed an optimal plan of 

the time to change stress. Fard and Li (2009) also constructed an optimal design with 

minimizing asymptotic variance of reliability at mission time. Balakrishnan and Ling 

(2014) also designed optimal plan with constant - stress accelerated life test. Ling (2019) 

presented simple-step stress accelerated life test plans for one-shot devices. Optimal 
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design would be conducted in this research, set sample allocation as only one 

determined variable while stress level and inspection time are given and then the 

procedure of optimal plan also will be explained.  

The rest of the article is organized as follows. Section II presents a simple step-

stress model under Weibull cumulative exposure distribution and corresponding 

cumulative hazard function, reliability function and probability density function. In 

Section III, we provide a detailed process to find asymptotic variance of maximum 

likelihood estimation based on observed Fisher information matrix and find the 

optimal sample allocation which minimize the standard error of the reliability. A few 

simulation studies with different shape parameter in several settings will be conducted 

in chapter IV. Some limitations will be given in chapter V. Finally, we will make 

some concluding remarks of this paper in chapter VI.  
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Model and Description 

Suppose 0< "#$ < "#%, '$ < '%,	and )$ < )% . First, put all K	devices to the stress 

level )$. And '$ devices are tested at pre-specified time "#$, record the number of 

failures *$. Next, the remaining devices '% = ' − '$ exposed to the stress level )% 

under pre-specified inspection time "#% , and also recorded the number of failures 

*%.	The data of one-shot devices under simple step-stress accelerated life test can be 

summarized as Table 1. Given the one-shot devices data . = {"#0, '0, *0, )0, 1 = 1,2	}. 

 

Table 1�data of one-shot devices under SSALTs 

Assume the reliability of devices in this research that follows Weibull distribution. 

Consequently, cumulative hazard function 5(7) is the integral of the hazard function. 

The hazard function is the ratio of the probability density 9(7)  to the reliability 

function :(7). The hazard function describes the instantaneous failure rate at any time 

rather than a probability. Reliability function (or complementary cumulative 

Stage Inspection time Tested devices failures Stress level 

1 "#$ '$ *$ )$ 

2 "#% '% = ' − '$ *% )% 
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distribution function)		:(7) is the probability that a unit survives beyond time x and 

the sum of the reliability function and the cumulation distribution function ;(7) in 

always one. Then, probability density function 9(7) is the probability that variable 

takes the value which is the value ) and cumulation distribution function ;(7) is 

integral of probability density function 9(7).	 

Cumulative hazard function, reliability function and probability density function 

under Weibull distribution would be derived as 

 

5(7) =

⎩
⎪
⎨

⎪
⎧	@ A

BC
D
E
,																															0 < 7 ≤ "#$

	H
IJ
IC
KLCMANKLC

BJ
O
E

		,																					7 > "#$
	

, 

:(7) = expT−H(t)W =

⎩
⎪
⎨

⎪
⎧	exp(−@ A

BC
D
E
),																															0 < 7 ≤ "#$

	exp	(−H
IJ
IC
KLCMANKLC

BJ
O
E

	)		,																		7 > "#$
	

, 

And                       

9(7) = −:X(7)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

	
Y
Z$[

(7)\N$exp(−]
7
Z$
^
E

),																																																						0 < 7 ≤ "#$

Y
Z%[

(
Z%
Z$
"#$ + 7 − "#$)\N$	exp	(−`

Z%
Z$
"#$ + 7 − "#$

Z%
a

E

)			,					7 > "#$
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Where 	Z$	 and Z%  are the scale parameters at first stage and second stage 

respectively, and Z$ > 0, Z% > 0. Also assumed Weibull scale parameters have a log-

linear relationship with stress levels (Wang & Kececioglu, 2000). The log-linear form 

is commonly used in accelerated life test, the form as  

Z0=b(cdMcCef) 

For the easily notate these symbols in the remaining part, we make θ= {gh, g$, i} as 

the model parameter to estimate.  
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Optimal design of Simple-Step Accelerated Life Test 

The only determined variable is sample allocation, then presents a procedure to find 

maximum likelihood estimation of the estimated parameters and discusses how to 

choose an optimal sample allocation when stress level, inspection time and 

termination time are given. 

Information matrix used to describe the amount of information data provide about 

an unknown parameter (Lehman & Casella, 1998). Louis (1982) pointed out a 

technique for computing the information matrix extracted from the Missing 

Information Principle. The information matrix could be derived when complete 

information and missing information matrix held. The complete information matrix 

and missing information matrix as follow,  

"jklmnoAo = −p q
r%Tℓj(t)W

rt%
u 

"l0vv0wx	 = −p q
r%(log(9(70||., t)))

rt%
u 

And Information matrix is the difference between complete information matrix and 

missing information matrix as,  

"(t) = "jklmnoAo − "l0vv0wx 
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The aim that developing the information matrix is estimating the standard error of 

reliability. Balakrishnan and Ling (2013) stated that the information matrix is 

equivalent to the expectation of the second derivative of the observed log-likelihood 

function. In the one-shot devices testing data, the observed log-likelihood function is 

given by 

ℓ(t) =~*0 logT1 − :("#0; t)W + ('0

%

0Ä$

− *0)log	(:("#0; t)) + ÅÇ*É7g*7	 

 

The second-derivative of the observed log-likelihood function is obtained as follow:  

r%ℓ(t)
rgmrgÑ

=~H
r%:("#0; t)
rgmrgÑ

O

%

0Ä$

]−
*0

1 − :("#0; t)
+
'0 − *0
:("#0; t)

^

−~H
r:("#0; t)
rgm

O H
r:("#0; t)
rrgÑ

OÖ
*0

(1 − :("#0; t)%
+

'0 − *0

T:("#0; t)W
%Ü

%

0Ä$

 

r%ℓ(t)
rg0rY

=~H
r%:("#0; t)
rg0rY

O

%

0Ä$

]−
*0

1 − :("#0; t)
+
'0 − *0
:("#0; t)

^

−~H
r:("#0; t)

rg0
O H
r:("#0; t)

rY
OÖ

*0
(1 − :("#0; t)%

+
'0 − *0

T:("#0; t)W
%Ü

%

0Ä$

, 
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where  

r:("#0; t)
rgh

= á0h:("#0)k	 

r:("#0; t)
rg$

= á0$:("#0)k	 

r:("#$; t)
rY

= −á$h:("#0) ln ]
"#$
Z$
^	 

r:("#%; t)
rY

= −á%h:("#0) ln ]
"#$
Z$

+
äã% − äã$

Z%
^ 

á$l = ]
"#$
Z$
^
[N$

]
"#$
Z$
^ )$l 

	á%l = ]
"#$
Z$

+
äã% − äã$

Z%
^
[N$

]
"#$
Z$

)$l +
äã% − äã$

Z%
)%l^ 

 

Furthermore, the Fisher information matrix is the negation of the expectation of 

second derivatives of the log-likelihood function,  

"(t) = −p q
r%ℓ(t)
rt0rt|

u 

Through inverting the information matrix could be gained the asymptotic covariance 

matrix of the MLEs of the model parameters. The variance of the MLEs of the 

reliability under normal conditions by using the delta method after obtaining the first-

order derivatives of the reliability with different model parameters.  
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						"(t) = −p q
r%ℓ(t)
rt0rt|

u =~]
'0

:("#0)
+

'0
1 − :("#0)

^ H
r:("#0; t)
rgm

O H
r:("#0; t)
rgÑ

O ,

%

0Ä$

 

Where p =0,1,2 and q =0,1,2 when g% = Y 

At first stage, put the å$ percentage of all K devices to stress level, and remaining 

devices (1 − å$) of all devices to stress level )%	at second stage. Let '0 = 'å0 with 

å% = 1 − å$, ç0 = :("#0)N$ + (1 − :("#0))N$, é0\ =
èê(KLf;ë)

ècí
. Therefore, the 

fisher information matrix is  

−p q
r%ℓ(t)
rt0rt|

u

= ' ì
å$ç$é$h

% + (1 − å$)ç%é%h
% å$ç$é$hé$$ + (1 − å$)ç%é%hé%$ å$ç$é$hé$% + (1 − å$)ç%é%hé%%

å$ç$é$hé$$ + (1 − å$)ç%é%hé%$ å$ç$é$$
% + (1 − å$)ç%é%$

% å$ç$é$$é$% + (1 − å$)ç%é%$é%%
å$ç$é$hé$% + (1 − å$)ç%é%hé%% å$ç$é$$é$% + (1 − å$)ç%é%$é%% å$ç$é$%

% + (1 − å$)ç%é%%
%

î 

= ' ï
ñhh+Éhhå$ ñ$h+É$hå$ ñ%h+É%hå$
ñ$h+É$hå$ ñ$$+É$$å$ ñ%$+É%$å$
ñ%h+É%hå$ ñ%$+É%$å$ ñ%%+É%%å$

ó 

Where	ñ\\ = ç%é%\
% , ñlw = ç%é%lé%w, É\\ = ç$é$\

% − ç%é%\
% , Élw = ç$é$lé$w −

ç%é%lé%w.  

The determinant of information matrix equals to zero. Therefore, the information 

matrix would reduce to a 2 × 2  matrix. We assume shape parameter of Weibull 

distribution Y is known, remaining parameters gh and g$ are unknown.  
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Therefore, the advanced information matrix just remains entries consist of gh and 

g$ as follow,  

−p q
r%ℓ(t)
rt0rt|

u = ' ô
ñhh+Éhhå$ ñ$h+É$hå$
ñ$h+É$hå$ ñ$$+É$$å$

ö 

The asymptotic covariance matrix of the MLEs of the model parameters is the inverse 

of the information matrix, it becomes 

õë = "N$(t) =
1
ú
ù
ñ$$+É$$å$ −(ñ$h+É$hå$)

−(ñ$h+É$hå$) ñhh+Éhhå$
û, 

Where ú = 'T(ñ$$+É$$å$)(ñhh+Éhhå$W − (ñ$h+É$hå$)%).  

The variance of the MLEs of the reliability under the normal operating condition  

  													õêü(A) = †Xõë†		 = [áh:(7)k á$:(7)k]	õë ù
áh:(7)k
á$:(7)k

û 

with áh = @ A
Bd
D
[N$

@ A

Bd
D and á$ = @ A

Bd
D
[N$

@ A

Bd
D )h. 

Where P is 2 × 1	column vector consists of first-order derivatives of the reliability 

respect to the model parameters gh, g$. õë is the inverse of the information matrix. 

Then, 

					õêü(A) = †Xõë† 

=
:(7)%Y%((áh

%ñ$$ − 2áhá$ñ$h + á$
%ñhh) + (áh

%É$$ − 2áhá$É$h + á$
%Éhh)å$)

'((ñ$$ñhh − ñ$h
% ) + (ñ$$Éhh + ñhhÉ$$ − 2ñ$hÉ$h)å$ + (ÉhhÉ$$ − É$h

% )å$
%  
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(ñ$$ñhh − ñ$h
% ) equals to zero, (ñ$$Éhh + ñhhÉ$$ − 2ñ$hÉ$h) and (ÉhhÉ$$ − É$h% ) are 

opposite number. Therefore,   

õêü(A) 

=
:(7)%Y%((áh

%ñ$$ − 2áhá$ñ$h + á$
%ñhh) + (áh

%É$$ − 2áhá$É$h + á$
%Éhh)å$)

'((ñ$$Éhh + ñhhÉ$$ − 2ñ$hÉ$h)å$(1 − å$)
 

As mentioned before, the intention of optimal design is to minimize the standard error 

of reliability based on sample allocation as follow,  

å$ = arg min
hß®Cß$

Å$ + Å%å$
å$(1 − å$)

= arg min
hß®Cß$

Å$
å$
+
Å$ + Å%
1 − å$

 

Where Å$ =
ê(A)J\J(T©d

J™CCN%©d©C™CdM©C
J™ddW

´(™CCvddM™ddvCCN%™CdvCd)
 and 

 Å% =
ê(A)J\J(©d

JvCCN%©d©CvCdM©C
Jvdd)

´(™CCvddM™ddvCCN%™CdvCd)
. 

The variance of reliability would get the minimum value when first derivative è ≠̈

è®C
 

equals to zero, the value of å$ is  

å$ = (1 + Æ
Å$ + Å%
Å$

)N$ = (1 + Æ
ç$(áhé$$ − á$é$h)%

ç%(áhé%$ − á$é%h)%
)N$ 

Since ', )$, )%, )h "#$, "#%, are given, the number of devices will be tested under 

inspection "#$ and "#% are '$ = 'å1 (rounded to the nearest integer) and '% =

' − '$. Therefore, the standard error of reliability is  
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ÉbT:ü(7)W = Ø:ü(7) =
:(7)Y(∞ç$(áhé$$ − á$é$h)% + ∞ç%(áhé%$ − á$é%h)%)

∞'ç$ç%(é$hé%$ − é$$é%h)

=
±

√'
. 

With ± =
ê(A)\(∞≥C(©d¥CCN©C¥Cd)JM∞≥J(©d¥JCN©C¥Jd)J)

∞≥C≥J(¥Cd¥JCN¥CC¥Jd)
.  

We can find that standard error of the estimated reliability is in inverse proportion to 

the square root of the sample size '. Additionally, ± is a non-linear function with 

"#$ , 	"#% , 	)$  and )% . The optimization tools could help us to minimize non-linear 

function, for example optim in R. The process that determines the sample allocation in 

R is, 

1. Set stress level )$ and )%, inspection time "#$ and "#%, the normal condition 

time )h, termination time 7, and shape parameter Y;  

2. Compute (gµh, gµ$) that minimizes the C by using an optimization tool;  

3. Find ('$, '%, :ü(7)) with (gµh, gµ$) 

In the process, (ç$, ç%, é$h, é$$, é%h, é%$) could be obtained from (:("#$), 

:("#%), "#$, "#%, )$, )%). ± can be derived from (ç$, ç%, é$h, é$$, é%h, é%$,	7, 

)h). We could find that the minimum sample size required in the experiment when the 

standard error of reliability is given, 
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' ≥ (
±

Éb(:ü(7))
)% 

Consequently, ('$, '%) can be collected from (', ç$, ç%, é$h, é$$, é%h, é%$).  
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Simulation studies 

Fard and Li (2009) conducted an optimal design with Type-I censoring data to 

estimate the mean lifetime; Alhadeed and Yang (2005) designed optimal times of 

changing stress level under log-normal cumulative exposure model. In this research, 

we conduct an analogous simulation study with electro-explosive devices of simple 

step-stress accelerated life test under Weibull cumulative exposure distribution. The 

simple step-stress accelerated life test would run to estimate the reliability under the 

normal operating stress, )h = 25 with scales parameters gh = 5.5, g$ = −0.05 and 

the shape parameter Y are discussed in several cases. We will discuss the procedure 

of optimal design case by case in the following paragraph.  

In Table 2 to Table 7, presenting the cases of three situations with failure rate 

increase (Y > 1), constant rate (Y = 1) and decrease (Y < 1). Under different settings, 

the optimal design would be examined. Furthermore, the simulation study under each 

optimal design with 10,000 random experiments and use simulate Binomial function 

(rbinom) in R with 1 − :$ and 1 − :% failure rate to generate the failure number 

*$ and *% respectively. Then using optim in R to obtain the gµh and gµ$, and then 

using gµh  and gµ$  to find the optimal sample allocation and estimated reliability. 

Based on the 10,000 estimated reliability to get the standard error Éb(:ü(7))  of 
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maximum likelihood of reliability under the normal condition and compare the 

theoretical consequences to the results from the simulation experiments.  
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Table 2: Optimal design of simple step-stress accelerated life test with k>1, t=60 

and corresponding simulated mean reliability and standard error 

Setting SSALT plan Simulated results  

Y )$ )% "#$ "#% Éb(:üh(7)) '$ '% ∏̂ É̂ R(t) 

2 35 55 10 20 0.005 295942 39067 0.4807 0.0064 0.4807 

2 35 55 10 20 0.01 73985 9767 0.4805 0.0128 0.4807 

2 35 55 10 20 0.05 2959 391 0.4782 0.0637 0.4807 

2 35 55 10 20 0.1 740 98 0.4731 0.1200 0.4807 

3 35 55 10 20 0.005 1050855 70784 0.5341 0.0058 0.5342 

3 35 55 10 20 0.01 262714 17696 0.5339 0.0116 0.5342 

3 35 55 10 20 0.05 10508 708 0.5307 0.0577 0.5342 

3 35 55 10 20 0.1 2627 177 0.5341 0.1160 0.5342 

5 35 55 10 20 0.005 13506041 235051 0.6317 0.0054 0.6318 

5 35 55 10 20 0.01 3376510 58763 0.6315 0.0106 0.6318 

5 35 55 10 20 0.05 135060 2351 0.6264 0.0535 0.6318 

5 35 55 10 20 0.1 33765 588 0.6118 0.1120 0.6318 

7 35 55 10 20 0.005 165332166 749340 0.7143 0.0052 0.7143 

7 35 55 10 20 0.01 41333041 187335 0.7141 0.0102 0.7143 

7 35 55 10 20 0.05 1653322 7493 0.7077 0.0534 0.7143 

7 35 55 10 20 0.1 413331 1873 0.6877 0.1173 0.7143 
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Table 3: Optimal design of simple step-stress accelerated life test with k>1 in 

different settings and corresponding simulated mean reliability and standard error 

Setting SSALT plan Simulated results  

Y )$ )% 7 "#$ "#% Éb(:üh(7)) '$ '% ∏̂ É̂ R(t) 

2 35 55 30 10 20 0.005 55496 7326 0.8325 0.0064 0.8327 

2 35 55 30 10 20 0.01 13874 1831 0.8325 0.0013 0.8327 

2 35 55 30 10 20 0.05 555 73 0.8193 0.0695 0.8327 

2 35 55 30 10 20 0.1 139 18 0.7734 0.1720 0.8327 

3 35 55 60 15 30 0.005 328591 35838 0.5342 0.0062 0.5342 

3 35 55 60 15 30 0.01 82148 8959 0.5340 0.0125 0.5342 

3 35 55 60 15 30 0.05 3286 358 0.5296 0.0623 0.5342 

3 35 55 60 15 30 0.1 821 90 0.5131 0.1253 0.5342 

5 35 55 60 20 40 0.005 6031806 80695809 0.6292 0.0158 0.6318 

5 35 55 60 20 40 0.01 1508951 20173953 0.5891 0.0934 0.6318 

5 35 55 60 20 40 0.05 60318 806958 0.4418 0.0879 0.6318 

5 35 55 60 20 40 0.1 15080 201739 0.4274 0.0708 0.6318 

7 40 60 60 10 20 0.005 41811408 414824 0.7143 0.0042 0.7144 

7 40 60 60 10 20 0.01 10452827 103706 0.7142 0.0086 0.7144 

7 40 60 60 10 20 0.05 418113 4148 0.7104 0.0434 0.7144 

7 40 60 60 10 20 0.1 104528 1037 0.6951 0.0940 0.7144 

 

 



 

 

27 

Table 4: Optimal design of simple step-stress accelerated life test with k=1, t=60 

and corresponding simulated mean reliability and standard error 

Setting SSALT plan Simulated results  

Y )$ )% 7 "#$ "#% Éb(:üh(7)) '$ '% ∏̂ É̂ R(t) 

1 35 55 60 10 20 0.005 89947 22557 0.4249 0.0071 0.4249 

1 35 55 60 10 20 0.01 22487 5639 0.4248 0.0141 0.4249 

1 35 55 60 10 20 0.05 899 226 0.4246 0.0713 0.4249 

1 35 55 60 10 20 0.1 225 56 0.4234 0.1403 0.4249 

1 35 55 60 15 30 0.005 65095 18006 0.4248 0.0073 0.4249 

1 35 55 60 15 30 0.01 16274 4501 0.4249 0.0147 0.4249 

1 35 55 60 15 30 0.05 651 180 0.4242 0.0738 0.4249 

1 35 55 60 15 30 0.1 163 45 0.4194 0.1415 0.4249 

1 40 60 60 10 20 0.005 111664 36883 0.4249 0.0056 0.4249 

1 40 60 60 10 20 0.01 27916 9221 0.4249 0.0111 0.4249 

1 40 60 60 10 20 0.05 1116 369 0.4247 0.0547 0.4249 

1 40 60 60 10 20 0.1 279 92 0.4227 0.1064 0.4249 

1 40 50 60 10 20 0.005 356063 177112 0.4249 0.0068 0.4249 

1 40 50 60 10 20 0.01 89016 44278 0.4249 0.0137 0.4249 

1 40 50 60 10 20 0.05 3561 1771 0.4242 0.0669 0.4249 

1 40 50 60 10 20 0.1 890 443 0.4224 0.1291 0.4249 
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Table 5: Optimal design of simple step-stress accelerated life test with k=1 in 

different settings and corresponding simulated mean reliability and standard error 

Setting SSALT plan Simulated results  

Y )$ )% 7 "#$ "#% Éb(:üh(7)) '$ '% ∏̂ É̂ R(t) 

1 35 55 30 10 20 0.005 52920 13271 0.6518 0.0072 0.6519 

1 35 55 30 10 20 0.01 13230 3318 0.6518 0.0144 0.6519 

1 35 55 30 10 20 0.05 529 133 0.6477 0.0723 0.6519 

1 35 55 30 10 20 0.1 132 33 0.6340 0.1457 0.6519 

1 40 60 30 10 20 0.005 65697 21700 0.6518 0.0548 0.6519 

1 40 60 30 10 20 0.01 16424 5425 0.6518 0.0111 0.6519 

1 40 60 30 10 20 0.05 657 217 0.6449 0.0552 0.6519 

1 40 60 30 10 20 0.1 164 54 0.6387 0.1100 0.6519 

1 40 50 30 10 20 0.005 209488 104204 0.6519 0.0068 0.6519 

1 40 50 30 10 20 0.01 52372 26051 0.6517 0.0136 0.6519 

1 40 50 30 10 20 0.05 2095 1042 0.6484 0.0671 0.6519 

1 40 50 30 10 20 0.1 524 260 0.6388 0.1316 0.6519 

1 35 55 60 10 30 0.005 77846 16441 0.4248 0.0067 0.4249 

1 35 55 60 10 30 0.01 19462 4110 0.4249 0.0135 0.4249 

1 35 55 60 10 30 0.05 779 164 0.4227 0.0664 0.4249 

1 35 55 60 10 30 0.1 195 41 0.4149 0.1303 0.4249 
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Table 6: Optimal design of simple step-stress accelerated life test with k<1, t=60 in 

different settings and corresponding simulated mean reliability and standard error 

 

 

Setting SSALT plan Simulated results  

Y )$ )% "#$ "#% Éb(:üh(7)) '$ '% ∏̂ É̂ R(t) 

0.2 35 55 10 20 0.001 1051578 399369 0.3793 0.0016 0.3793 

0.2 35 55 10 20 0.005 42063 15975 0.3793 0.0079 0.3793 

0.2 35 55 10 20 0.01 10515 3994 0.3796 0.0157 0.3793 

0.2 35 55 10 20 0.05 420 160 0.3977 0.1109 0.3793 

0.2 35 55 15 30 0.001 1006602 384640 0.3793 0.0016 0.3793 

0.2 35 55 15 30 0.005 40264 15386 0.3796 0.0075 0.3793 

0.2 35 55 15 30 0.01 10066 3846 0.3798 0.0159 0.3793 

0.2 35 55 15 30 0.05 402 154 0.3981 0.1157 0.3793 

0.5 35 55 10 20 0.001 1348200 447165 0.3964 0.0015 0.3965 

0.5 35 55 10 20 0.005 53928 17887 0.3965 0.0077 0.3965 

0.5 35 55 10 20 0.01 13482 4472 0.3967 0.0153 0.3965 

0.5 35 55 10 20 0.05 539 179 0.3986 0.0767 0.3965 

0.5 40 50 10 20 0.001 6108686 3726857 0.3965 0.0014 0.3965 

0.5 40 50 10 20 0.005 244348 149074 0.3965 0.0070 0.3965 

0.5 40 50 10 20 0.01 61087 37268 0.3964 0.0137 0.3965 

0.5 40 50 10 20 0.05 2443 1491 0.3970 0.0689 0.3965 
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Table 7: Optimal design of simple step-stress accelerated life test with k<1 with 

different settings and corresponding simulated mean reliability and standard error 

 

Setting SSALT plan Simulated results  

Y )$ )% 7 "#$ "#% Éb(:üh(7)) '$ '% ∏̂ É̂ R(t) 

0.2 35 55 30 10 20 0.001 1024286 389004 0.4300 0.0016 0.4300 

0.2 35 55 30 10 20 0.005 40972 15560 0.4302 0.0078 0.4300 

0.2 35 55 30 10 20 0.01 10243 3890 0.4303 0.0157 0.4300 

0.2 35 55 30 10 20 0.05 409 156 0.4442 0.1102 0.4300 

0.2 35 55 30 15 30 0.001 980478 374657 0.4300 0.0016 0.4300 

0.2 35 55 30 15 30 0.005 39219 14986 0.4301 0.0078 0.4300 

0.2 35 55 30 15 30 0.01 9805 3746 0.4300 0.0159 0.4300 

0.2 35 55 30 15 30 0.05 392 150 0.4455 0.1097 0.4300 

0.5 35 55 60 15 30 0.001 1177537 403181 0.3965 0.0015 0.3965 

0.5 35 55 60 15 30 0.005 47102 16127 0.3965 0.0078 0.3965 

0.5 35 55 60 15 30 0.01 11775 4032 0.3964 0.0155 0.3965 

0.5 35 55 60 15 30 0.05 471 161 0.3991 0.0774 0.3965 

0.5 40 50 30 10 20 0.001 5251373 3203817 0.5199 0.0014 0.5199 

0.5 40 50 30 10 20 0.005 210055 128153 0.5198 0.0068 0.5199 

0.5 40 50 30 10 20 0.01 52514 32038 0.5197 0.0139 0.5199 

0.5 40 50 30 10 20 0.05 2101 1281 0.5199 0.0689 0.5199 
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By and large, it is observed that the mean of the estimated reliability and standard 

error are very close to the theoretical result. The numerical examples show the shape 

parameter Y increase, the reliability and sample allocation also would increase which 

means the large hazard rate need a large sample allocation. Meanwhile, shorten the 

termination time significantly increase the reliability. Changing inspection time IT$, 

IT%, stress level )$ and )% do not provide extra information to collect the reliability 

information, since reliability only involves termination time and hazard rate. 

On the other hand, the inspection time and stress level would have an impact on 

the optimal sample size. when the shape parameter Y is fixed, increasing standard 

error significantly reduces sample sizes, it means the smaller sample size the more 

variance because the less information that specimens give. Also, extending both 

inspection time "#$ and "#% or increasing both stress level )$ and )% significantly 

reduce sample allocation. Also, the termination time 7  would give the effect of 

reliability, prolonging experimental time 7 would increase its corresponding required 

sample size. Moreover, more specimens are required with a narrow range of stress 

levels (increase the stress level )$  and decrease the stress level )% ). From the 

numerical examples, in order to effectively collecting data the sample size in the first 

inspection stage is larger than sample allocation in the second stage.  
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Limitation 

This research aims to make a reference in real application. When having the expected 

standard error, we could infer the minimum required specimen size; also, the 

limitation of budget (maximum sample size is fixed) could deduce the standard 

deviation of the experiment. However, in this project, we assume the hazard rate 

(shape parameter) is known. The hazard rate in the real application not always be the 

integer that we considered in this project, even without knowing information about 

hazard rate. Therefore, known hazard rate is unrealistic.  

Also, the inspection time we only considered is equally space in simulation 

study. We reviewed two cases, "#$ and "#% are 10 and 20, in another case "#$ and 

"#% are 15 and 30. The test time for devices in first stage and second stage are the 

same. The unequally space for the inspection time was not considered in this paper, 

the optimal inspection times may not equal.  

Besides, the exact inspection times and stress levels are known but these values 

we assumed may not the optimal decision for these devices. In real life, many 

conditions are difficult to controlled so that seldom information was known; 

sometimes we just know the range of the stress level. Consequently, the settings we 

deliberated is hard to match up with actual situations.   
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Conclusion 

The simple step-stress accelerated life test for one-shot devices was studied in this 

thesis. The information matrix was derived and used it to minimize the asymptotic 

variance. The optimal design is effectively collecting one-shot device testing data that 

the asymptotic variance of the maximum likelihood estimation of the reliability is 

minimized. Additionally, process of deciding the optimal sample allocation was 

analyzed. Furthermore, collected the sample allocation from simulated study at the 

normal condition with different settings. 

Simulation studies with several scenarios show the procedure is absolutely reliable 

for simple step-stress accelerated life test since the simulated reliability and standard 

error of reliability are very closed to theoretical results. Also, there are some findings 

from the simulation studies: 1) When the shape parameter is fixed, the sample allocation 

would significantly reduce along with increasing the standard error. 2) The reliability 

and sample size increase when the shape parameter Y increases with the same standard 

error. 3) Prolonging the experiment time 7 reduce the reliability and more devices are 

required and vice versa. 4) Changing inspection time IT$, IT% and stress level )$, )% 

would not give more information about reliability. 5) Decreasing the range of stress 

level substantially increase the sample allocation. From the simulation study, it is 
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realized that the reliability greatly depends on shape parameter and termination time 

rather than inspection time and stress level. The experiment get a good effect that 

sample allocation at least around one-thousand. 

In real world, the information about the specimens and the conditions are scarce, 

the stress levels, inspection time are difficult to control. Based on the restriction of this 

project, we only considered inspection times are 10 and 20 in first stage and second 

stage respectively which may not the optimal inspection time for one-shot devices. It is 

a great practical interest to design more variables in the future research, such as stress 

level, inspection time and sample allocation which will more correspond to facts. 

In this research, we designed the devices tested under only two stages under 

different stress level and inspection time. It is realized that the determinant of 

information matrix equals to zero and information matrix has to reduce. If the 

determinant of information matrix in three or more stages in the simple step-stress 

accelerated life test exists, the hazard rate does not assume as known parameter which 

is more practical in the real. It is of great interest to design a simple step-stress 

accelerated life test under multiple stages and investigate the optimal sample allocation. 

The Expectation-Maximization (EM) algorithm is the most powerful technique to 

effectively derived the maximum likelihood estimation and many scholars have done it 
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in many researches. In our study, there are many censored data. Although Maximum 

likelihood could find the best model for the data, it does not work well especially for 

the incomplete data. Expectation Maximization algorithm needs multi-step process to 

tweak the model to fit the data. But it repeats E-step and M-step until the model is stable 

which involve much calculus and conditional probability, becomes challenging. In the 

future research, the Expectation-Maximization algorithm would accomplish with 

Maximum estimation algorithm so that effectively obtain the maximum likelihood 

estimation of model parameter. Also, many scholars conducted sensitivity analysis 

(Ling, 2019) to determine the effect of mis-specification of planning value to the design 

and examine the robustness of the design. Ling and Balakrishnan (2017) analyzed the 

mis-specification model for Weibull distribution. The mis-specification parameters 

commonly exist in real practice, it is worth investigating the mis-specification of the 

planning values. 

Furthermore, decreasing the standard error significantly enlarge the sample size. In 

practical, it means the cost of experiment will substantial increase. It is of great interest 

for predict budget so that researcher could make a better decision with a limited funds.  
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