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Abstract 

 Cluster sampling is widely applied in social science. Respondents recruited from the 

same clusters may behave more similarly than those from different clusters in terms of their 

general proficiency, as well as their response patterns. The homogeneity of general 

proficiency refers to global person dependence (GPD), which can be adequately accounted 

for by means of multilevel modeling. Local person dependence (LPD) describes some kinds 

of interpersonal interactions that are conditional on respondents' proficiency levels, implying 

that person residuals are not locally independent when fitting a standard (e.g., Rasch) model. 

Many item response theory (IRT) models have been developed to create a multilevel structure 

for describing GPD, but few address the occurrence and influence of LPD.  

This study was intended to develop a new class of Rasch models for clustered samples 

to account for GPD and LPD jointly so that the two kinds of dependence can be quantified. In 

brief, I developed a new set of IRT models for integrating multilevel structures on the 

measured latent trait(s) and a component of random item difficulty across person clusters. 

The simple models for dichotomous and polytomous responses were displayed in sequence, 

and the extensions to multiple tests and many-faceted data were illustrated on top of the basic 

forms. These models can be easily implemented by means of WinBUGS, a freeware 

application used for Bayesian analysis. A series of simulations were carried out to examine 

the parameter recovery of the new models, as well as the consequences of fitting standard 

models without considering LPD. The results indicated that the parameters of the new models 

can be recovered very well, and that ignoring LPD by fitting standard models elicits biased 

estimation and inflated GPD.  

The technique of cluster analysis is to group subjects in accordance with the 

homogeneity among a set of variables. Therefore, it may be helpful to assess the occurrence 

of LPD, and how respondents within a cluster are grouped together, especially when the 



iv 
 

magnitude of LPD is substantial. The effectiveness of hierarchical cluster analysis (HCA) in 

exploring the dependence of person residuals was examined. It was found that HCA was 

useful for recovering respondents’ true membership by means of the homogeneity 

information among person residuals, but it was not always sensitive to LPD.  

Four empirical examples – the National Longitudinal Study of Adolescent Health (Add 

Health) project, the Impact of Community Policing Training and Program Implementation on 

Police Personnel in Arizona study, the International Civic and Citizenship Study in 2009, and 

the Love Relationship Scale for couples – were used to demonstrate the new models. In the 

first and second examples particularly, items were designed to measure a single latent trait, 

whereas in the third and fourth examples, items were assembled as different subtests 

measuring distinct, but correlated, latent traits. It was found that, in these four examples, the 

clustered samples exhibited various degrees of LPD on items. As for the findings in the 

simulations, fitting simpler models without regarding the influence of LPD yielded shrunken 

scales and inflated GPD. 

Finally, conclusions were drawn based on the findings, in which the importance of the 

consideration of LPD when dealing with clustered samples was emphasized, and the 

implications of how to interpret LPD were discussed. Limitations in the LPD modeling 

approach and in HCA for accessing LPD also were addressed. Suggestions for future studies 

also were provided.  

 

 Keywords: clustered sample, local person dependence, Rasch models, multidimensional 

item response theory. 
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Chapter 1: Introduction 

1.1 Motivation 

Item response theory (IRT) models are developed to conduct categorical responses and 

have been widely applied in academic disciplines, including education, psychology, sports, 

and marketing. Local independence is one of the important assumptions in IRT models. There 

are two major kinds of violations of the assumption: local item dependence (LID) and local 

person independence (LPD). In LID, item residuals in a test are dependent, and in LPD, 

person residuals in a test are also dependent. If the assumption of local independence is 

violated, fitting a standard model would result in biased parameter estimates and a misleading 

conclusion (Yen, 1993). Many factors that may cause LID have been investigated, including 

testlet or item-bundle structures (Wainer, Bradlow, & Wang, 2007; Wang & Wilson, 2005), 

negatively worded items (Wang, Chen, & Jin, 2015), and non-ignorable missingness (Glas & 

Pimentel, 2008; Holman & Glas, 2005), among others. Many studies (Chen & Wang, 2007; 

Tuerlinckx, & De Boeck, 2001; Wang & Jin, 2016) have shown that test 

reliability—equivalently, the precision of measurement—can be seriously inflated or deflated 

when the magnitude of violation is substantial. Compared with the great attention that has 

been paid to LID, the effect of LPD has not been properly investigated so far.  

Let’s say you have a two-dimensional data matrix Y summarizing N persons responding 

to I items with J categories. Also, ynij = 1 if person n gets score j on item i; otherwise, ynij = 0. 

In this case, the likelihood function, which is the simple product of the probabilities for all 

responses, can be formulated as the following: 

  
  


N

n

I

i

J

j

y
nij

nijPL
1 1 1

)(,| δθY ,                     (1) 

in which Pnij is the probability of endorsing score j for person n on item I, and  and  are 

person and item parameters, respectively. Based on the likelihood function, the estimates of 
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person and item parameters can be derived by means of maximum likelihood estimation or 

Bayesian inference. It should be noted that the expression of the likelihood function is valid 

only if the local independence assumption is met, i.e., when person and item parameters are 

unable to fully account for the interrelationships among items (or persons), suggesting the 

existence of LID (or LPD), in which case, the nuisance would interfere with the estimation, 

and biased parameter estimates may be generated. 

1.2 Global and local dependence 

In this paper, the general terminology of dependence refers to two specific notions: 

global dependence and local dependence. Because item responses collected through tests or 

instruments are usually two-faceted data, including item characters and person latent traits, 

the concepts of item dependence and person dependence are sequentially introduced in this 

section.  

Global item dependence, which is also realized as the internal consistency of a test, 

refers to the dependence of item scores between items. Because items assembled in a test are 

designed to measure the common construct, they are expected to be homogeneous in their 

contents (Wilson, 2004). Global item dependence can be quantified by computing the 

Cronbach’s  or the inter-item correlations, and a high value is usually demanded. In most 

cases, practitioners are reluctant to accept a low value of Cronbach  or averaged inter-item 

correlations, as this implies that the items are too divergent to measure the target proficiency. 

In the case of low global item dependence, one should review the original items carefully and, 

when necessary, remove inappropriate items from the test. 

Comparatively, LID refers to the idea that, after conditioning on item and person 

parameters, item residuals are not purely random errors and still relate to each other. The 

existence of LID suggests that, in addition to the intended-to-be-measured latent trait, there is 

some covariation among item responses. For instance, testlet-based items, which are linked 
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by a common stimulus (e.g., a reading passage or a figure), are widely applied in educational 

and psychological tests. It has been acknowledged that items within the same testlet may not 

be locally independent because knowing or not knowing the answer to an item may influence 

the chances of success on other items in the same testlet (Yen, 1993). Under such a case, 

fitting standard IRT models will result in biased parameter estimates (Sireci, Thissen, & 

Wainer, 1991; Wainer, Bradlow, & Du, 2000; Wainer, Bradlow, & Wang, 2007; Wang & 

Wilson, 2005). Another example is the wording effect. In the social sciences, to minimize 

acquiescence in responding to rating-scale items, inventories are usually a mix of positively 

and negatively worded items (DeVellis, 2005; Kieruj & Moors, 2013). In most cases, 

responses to negatively worded items are coded in reverse, so that all items on the scale are 

presumed to go in the same wording direction. A series of experiments, however, showed that 

responding to positively and negatively worded items involves two different cognitive 

processes, and that more mental processes are required when responding to negatively 

worded items (Bassili & Scott, 1996; Chessa & Holleman, 2007; Kamoen, Holleman, Mak, 

Sanders, & van den Bergh, 2011). In other words, not only the general latent trait, but also 

one specific factor for the wording effect are measured in negatively worded items. If the 

wording effect is not considered in data analysis, the essential assumption of local 

independence would be violated because the residuals between negatively worded items are 

correlated. 

Global person dependence (GPD) is defined as the general similarity among people 

regarding measured proficiency on a test. It is convincing that, to some extent, people within 

the same cluster (or subgroup) may show more similar testing behavior than do people in 

different clusters. For example, pupils within a school have more similar academic ability 

than do those from different schools (Opdenakker, Van Damme, De Fraine, Van Landeghem, 

& Onghena, 2002); family members may provide similar perspectives when they are 
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recruited in the same survey (Deal, 1995; Jager, Bornstein, Putnick, & Hendricks, 2012); and 

citizens who live in the same geographical area have a more homogeneous incidence of a 

specific disease than do citizens in other areas (Langford, Leyland, Rasbash, & Goldstein, 

1999). For some decades, researchers have attempted to deal with person-clustering 

structures by means of multilevel models (Bock, 1989; Burstein, 1980; Fox, 2005; Langford 

et al., 1999) so that GPD can be adequately quantified. The idea of multilevel modeling will 

be briefly reviewed in the next chapter. 

Finally, LPD is defined as residual dependence among persons. In practice, it is often the 

case that, based on respondents' proficiency levels, local dependencies exist among persons’ 

residuals. An example can be found in the context of ability tests, when response residuals for 

students within a cluster are not independent, i.e., apart from measured academic ability and 

measured item properties, an extra factor functioning among these students in their responses. 

For instance, answer copying (Belov, 2011; Cizek, 1999), which is very common on ability 

tests, entails a group of examinees showing illegitimate similarities in their response patterns. 

Test tempering, which is when students’ responses are changed by teachers or invigilators 

after tests are completed, is another method of cheating on ability tests (Wollack, Cohen, & 

Eckerly, 2015). LPD also can be found when students in a class are taught to use a specific 

testing skill to respond to specific items (Eberbach & Crowley, 2009). In addition, a 

phenomenon that is well known in consumer research is when respondents in different 

countries exhibit substantial cross-national differences in the parameter estimates of items 

measuring consumer attitudes (de Jong, Steenkamp, & Fox, 2007; Steenkamp & Baumgartner, 

1998), implying the possibility of LPD. In a national-level health census, the “neighborhood 

effect” was found, concerning the idea that neighborhood-level characteristics are associated 

with the occurrence of major mental disorders (Menezes, Georgiades, & Boyle, 2011). More 

examples are provided in the following discussion. It should be noted that multilevel 
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modeling assumes that observed responses are locally independent. When LPD exists behind 

observed responses, the local independence assumption is violated, and multilevel models 

will not function normally.  

1.3 Importance 

The main purpose of this study is to develop a new class of IRT models that incorporates 

the idea of random items into existing multilevel IRT models to account for LPD and to 

illustrate how these models can be carried out through Markov chain Monte Carlo (MCMC) 

estimation by using the freeware application WinBUGS (Spiegelhalter, Thomas, Best, & 

Lunn, 2007). The proposed approach has three substantial advantages. First, it recognizes the 

conceptual difference between GPD and LPD. In the new approach, GPD and LPD are 

exclusively formulated in different parameterizations so that the two kinds of dependence are 

no longer confounded. Second, it helps purify measurement scales because the contamination 

of potential LPD is sufficiently removed. Finally, the purified scale can improve the precision 

of person measures and ensure unbiased statistical inferences.  

The specific research questions to be answered in this study are: 

1. How does one develop a series of IRT models to consider GPD and LPD jointly in 

different testing scenarios? 

2. Can the parameters in the proposed models be recovered by WinBUGS? What are the 

crucial factors in the parameter recovery? 

3. What are the consequences of fitting standard multilevel IRT models when LPD is 

substantial, but ignored? 

4. Except for the IRT modeling to LPD, how effectiveness is the performance of the 

conventional approach in detecting LPD? 

5. How applicable are these methods to empirical data? 
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1.4 Overview of Chapters 

The remainder of the dissertation is organized as follows. Relevant IRT models are 

reviewed in Chapter 2. In Chapter 3, an introduction to the new class of IRT models for 

clustered samples is presented, along with a non-IRT approach for detecting LPD. In Chapter 

4, the designs for a series of simulations are presented to evaluate the parameter recovery of 

the new models and the consequences of ignoring LPD by fitting conventional models under 

various conditions. The applicability of HCA is also examined. In Chapter 5, four empirical 

examples are provided for illustration purposes. The presentation of these examples is 

arranged in line with the complexity of the implemented models. Finally, in Chapter 6, I 

summarize the main findings and conclude the study by presenting a discussion of the results, 

along with directions for future research. 
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Chapter 2: Literature Review 

2.1 Review of standard IRT models 

 IRT models were developed to analyze categorical responses (Embretson & Reise, 2000; 

Lord, 1980). For example, the famous Rasch model (Rasch, 1960) defines the log-odds of the 

two probabilities for a dichotomous response as: 

in
ni

ni

P

P










0

1log ,                             (2) 

in which Ptni0 and Ptni1 stand for the probabilities of scoring 1 and 0, respectively, on item i (i 

= 1,…, I) for person n (n = 1,…, N); n is the latent ability of person n; and i is the difficulty 

of item i. The dichotomous Rasch model is also called the one-parameter logistic model 

because only a single parameter (i.e., item difficulty) is specified for each item. Likewise, the 

two- and three-parameter logistic models (Birnbaum, 1968) are proposed by adding slope and 

asymptotic parameters. The slope parameter is commonly interpreted as the item 

discrimination, whereas the asymptotic parameter is viewed as the guessing parameter, 

especially for multiple-choice items. 

Many IRT models have been developed to analyze polytomous responses. Let there be 

an item scored as 0, 1, …, J. For example, the partial credit model (PCM; Masters, 1982), 

which is one of the Rasch family models for categorical data, can be expressed as: 

ijn
jni

nij

P

P














 )1(

log ,                           (3) 

in which Pnij and Pni(j – 1) are the probabilities of endorsing options j and j – 1 on item i (i = 

1,…, I) for person n (n = 1,…, N); n is the measured latent trait for person n; and ij is the 

j-th threshold parameter for item i. When the same scoring rubric is applied to all items, one 

can impose the constraint that the differences between two adjacent thresholds across items 

are equal:  
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)(log
)1(

jin
jni

nij

P

P
















,                         (4) 

in which j is the j-th deviation from the i. Equation 4, thus, becomes the rating-scale model 

(RSM; Andrich, 1978). Similarly, if the PCM is generalized by incorporating the slope 

parameter, then the generalized partial credit model is formed (Muraki, 1992).  

 In the aforementioned models, the analyzed samples are treated as unique individuals 

and are deemed independent of each other, i.e., these models are unable to indicate the 

similarity between and within clusters. Certainly, one can investigate how similar the latent 

traits among a group of persons are by means of person estimates, but the derived values may 

be attenuated because the measurement errors of person estimates are neglected in the 

subsequent analysis (Mislevy, 1991). 

2.2 Multilevel modeling 

In large-scale educational and psychological testing programs, test-takers often have a 

multilevel structure. For example, in the Program for International Student Assessment (PISA; 

Organization for Economic Cooperation and Development, 2014), approximately 150 schools 

are first randomly selected from a country, and approximately 40 students are then randomly 

sampled from each sampled school. Such a multiple-stage sampling creates a multilevel data 

structure.  

Multilevel modeling is a generalization of regression models (Stephen & Anthony, 2002). 

For example, let g (g = 1, …, G) index the groups (e.g., schools) and Yng be the academic 

ability of person n in group g. At Level 1, Yng can be regressed on a set of Level 1 predictors 

x1, …, xQ, such as gender, socioeconomic status, and IQ. At Level 2, the regression 

parameters at Level 1 can be further regressed on group predictors w1, …, wS, such as school 

type and school size: 

Level 1: ng

Q

q
qngqggng exY  

1
0 ,                    (5) 
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Level 2: g

S

s
sgsg uw 0

1
0000  



,                    (6) 

g

S

s
sgsg uw 1

1
1101  



,                    (7) 

  

Qg

S

s
sgQsQQg uw  

1
0 .                    (8) 

It is assumed that ) ,0(~ 2
eng Ne  , and ) ,(~ uΣ0u MVNg . If data have more than two levels 

(e.g., schools are randomly selected from school districts), equations 6–8 can continue for 

more levels. 

In recent years, IRT-based multilevel models have been developed (Fox, 2005; Fox & 

Glas, 2001; Kamata, 2001; Katama & Vaughn, 2011; Maier, 2001) so that item parameters, as 

well as regressed coefficients, can be estimated jointly in one computer run. For example, 

when considering a simple, two-level structure (without predictors at Level 1 or 2) in the 

Rasch model, the multilevel Rasch model (MRM) becomes: 

inging
ngi

ngi

P

P











)(log

0

1 ,                  (9) 

in which ng is the latent trait of person n within group g; g is the mean of ng for group g; 

and n is the regressed residual following a normal distribution with a mean of zero and 

variance of `2
 . If the dataset includes many groups, say, more than 30, it may be reasonable 

to assume that g follows a normal distribution with a mean of  and a variance of 2
 . 

Because the MRM is a random-intercept model with a logit link (Roudenbush & Bryk, 2002), 

the intra-class coefficient (ICC) can be referred to as the effect size of GPD: 

22

2








ICC .                            (10) 
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According to Hox (2010), the values of .05, .10, and .15 could be the guidelines for small, 

medium, and large effect sizes, respectively, in judging the extent of ICC. When Level 1 or 

Level 2 covariates are available, the latent variable ng can be further regressed, such as the 

decompositions in equations 5–8. 

Although multilevel models successfully take multilevel structures into account, this 

does not imply that the local independence assumption is no longer required. Conditional on 

ng, the responses between persons are still assumed to be locally independent, i.e., multilevel 

modeling is a useful technique for quantifying GPD, but fails to take LPD into consideration.  

2.3 Modern IRT models for LPD 

Few IRT models have been developed specifically to test the LPD assumption among 

subjects’ responses. One of the IRT models is the response dependence of subjects model 

(RDSM; Cristante & Robusto, 1999; Robusto & Cristante, 2010), which belongs to the 

family of Rasch models and can quantify dependence within small groups. Unlike common 

IRT models, the analyzed unit in the RDSM is a well-defined cluster (e.g., a family), rather 

than individual respondents. The RDSM is essentially built upon the binomial model and 

takes the form of Equation 11: 

 )12(log
)1(















ggig

xgi

gix Nx
P

P
,                   (11) 

in which Pgix and Pgi(x – 1) are the probabilities of getting total scores x and x – 1 on item i for 

cluster g (g = 1,…, G); Ng is the size of cluster g; g is the location on the measured scale of 

cluster g; i is the location parameter of item i; and g is the dependence parameter of cluster 

g. The RDSM treats a total of Ng respondents belonging to the same cluster as replications of 

the same event, and it assumes that these respondents have an equal probability of getting a 

score on an item. As noted, the chi-square statistic can be applied on a contingency table, in 

which the number of items chosen by each person is compared with the other persons’ 
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decisions to test the adequacy of equal probability. The value of g determines the shape of 

the binomial distribution. When g = 0, the distribution is uniform; when g > 0, the 

distribution is unimodal; and when g < 0, the distribution is concave. Therefore, the 

occurrence of person dependence can be judged according to the interaction of the value of 

g by equal probability. Cristante and Robusto (1999) illustrated that when g is less than a 

critical value, it can be concluded that the responses for members within cluster g are 

dependent, whereas when g is larger than the critical value, both dependence and 

independence are possible because independence can be made on the basis of unequal 

probability.  

Although the RDSM can isolate the influence of person dependence successfully, it has 

three major limitations in its application. First, the items must be dichotomous, which is a 

serious limitation because most survey inventories adopt polytomous items. In other words, if 

the survey items are designed in a Likert-type scale structure, the RDSM becomes 

inapplicable. Second, although one can test the assumption of equal probability in the RDSM, 

an estimate of the latent trait for each respondent is not available. Such a strategy may cause 

one to question whether it makes sense to combine individual scores (Ganong, 2003). Finally, 

the RDSM accounts for general person dependence at the test level, but it ignores the reality 

that the extent of dependence may vary across items.  

A multilevel model for dual local dependence (Jiao, Kamata, Wang, & Jin, 2012) was 

developed to account for item and person clustering simultaneously. The model is an exact 

conjunction of multilevel IRT models and testlet models:  

)(
0

1log indign
ngid

ngid

P

P











,                   (12) 

in which Pngid1 and Pngid0 are the probabilities of scoring 1 and 0 for person n on item i within 

testlet d; n is the person-specific ability for person n; g is the group-specific ability for 
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cluster g; j is the difficulty for item i; and nd(i) is the random effect of person n on item i 

within testlet d. Accordingly, the variance of nd(i) stands for the magnitude of item 

dependence, whereas the variance of g represents the magnitude of person dependence. 

Equation 12 can be easily generalized to two- or three-parameter models and more complex 

models for polytomous responses. 

In comparing Equations 9 and 12, one can conclude that the multilevel model proposed 

by Jiao et al. (2012) is an extension of Equation 9, which considers LID among items in a 

testlet additionally. Based on the illustration in multilevel modeling, it suggests that Jiao et al. 

(2012) assumed local independence between persons, i.e., they considered GPD rather than 

LPD.  

2.4 Differential item functioning models 

The occurrence of LPD is relevant to the issue of measurement non-invariance. When 

LPD is observed, it refers to an unfair situation in which participants with the same level of a 

latent trait, but from different clusters, have an unequal probability of endorsing an item. 

Such an unfair situation is usually interpreted as differential item functioning (DIF; Holland 

& Wainer, 1993) in the literature because the item-characteristic curves vary across groups. In 

recent decades, many statistical techniques have been developed for DIF assessment, and 

they can be classified roughly into IRT-based and non-IRT approaches (Magis, Béland, 

Tuerlinckx, & De Boeck, 2010). IRT-based approaches, such as the likelihood ratio test 

(Cohen, Kim, & Wollack, 1996), Lord’s chi-square test (Lord, 1980), Raju’s signed area 

method (Raju, 1988, 1990), and multiple indicators and multiple causes method (Finch, 2005; 

Wang & Shih, 2010; Wang, Shih, & Yang, 2009), are fit to data, and statistical tests are 

implemented to compare item parameters (or derived item characteristic curves) from 

different groups. Consequently, an item is flagged as DIF if a difference of item parameters 

between groups is significant. Non-IRT approaches in DIF assessment include the 
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Mantel-Haenszel method (Holland & Thayer, 1988; Mantel & Haenszel, 1959), logistic 

regression (Rogers & Swaminathan, 1993; Swaminathan & Rogers, 1990), the delta method 

(Angoff & Ford, 1973), standardization (Dorans & Kulick, 1986), and SIBTEST (Shealy & 

Stout, 1993), among others. These procedures do not have any requirements for specific 

forms of item-response functions and large sample sizes; therefore, they are computationally 

simple.  

When modeling DIF in the dichotomous Rasch model, the log-odds of the two 

probabilities of item i for person n within group g are expressed as: 

iging
ngi

ngi

P

P






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




0

1log ,                           (13) 

in which ig stands for the group-specific advantage/disadvantage for group g, and the sum of 

i1, i2,…, iG is constrained at zero for identification. Because the influence of DIF 

formulated in Equation 13 is uniform across the latent continuum within a group, the 

differential function on item difficulty is also called uniform DIF. Usually, respondents are 

classified into a focal group (F) and a reference group (R) in most DIF studies. When 

investigating whether item i is fair toward the two groups, the null hypothesis of iF = iR = 0 

is set. The null hypothesis is rejected, and item i is flagged as DIF when the DIF size of |iF – 

iR| is significantly larger than the critical value; otherwise, item i is temporarily deemed 

DIF-free. Linacre (2016) provided a guideline, similar to the Educational Testing Service 

(ETS) DIF category, for judging the effect size of DIF in the Rasch models. Category A (DIF 

< 0.43) comprises items with negligible or no DIF, Category B (DIF ≥ 0.43) comprises items 

with slight-to-moderate DIF, and Category C (DIF ≥ 0.64) comprises items with 

moderate-to-large DIF.  

There are three major approaches to DIF detection. The first is the multiple-group 

comparison approach, in which one reference group is identified and compared with multiple 
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focal groups on a DIF statistic for each item (Finch, 2016; Kim, Cohen, & Park, 1995; Magis, 

Raîche, Béland, & Gérard, 2011; Penfield, 2001). The advantage of the multiple group 

comparison approach is its conceptual simplicity. The selected univariate statistic for the DIF 

assessment between two groups could be generalized to a multivariate statistic for conducting 

multiple-group comparisons simultaneously. When two or three grouping factors (e.g., male 

and female; Asian and non-Asian) are available, traditionally, one could conduct multiple DIF 

analyses by considering one grouping factor at a time, or one could conduct one analysis by 

combining all grouping factors into a pseudo grouping factor (e.g., Asian male, Asian female, 

non-Asian male, and non-Asian female). The second is the factorial analysis of variance 

(ANOVA) approach (Jin, Chen, & Wang, 2015; W.-C. Wang, 2000), in which multiple 

grouping factors are jointly included in an analysis to decompose their influences into main 

effects and interactions. It outperforms the two traditional analyses, especially when grouping 

factors exhibit interactions. Noticeably, when large numbers of groups are considered, the 

third approach, namely the random DIF approach, is the most efficient (de Jong & Steenkamp, 

2010; de Jong, Steenkamp, & Fox, 2007), i.e., DIF across groups is assumed to follow a 

normal distribution:  

  ),0(~ 2

i
Nig  .                               (14) 

Thus, the variance of i indicates the magnitude of DIF for item i.  

One can realize the random DIF approach as a type of cross-random effect model. As 

commented by De Boeck (2008), not only the person parameters, but also the item 

parameters can be treated as random effects. The term random item parameter actually 

functions in two forms. One is random across items, referring to when using a random 

distribution is feasible to account for the characteristics of items gathered in a pool. The other 

one is random across persons within items, referring to when the interaction between person 

and item contributes to the randomness of item parameters, i.e., the random DIF approach is 



15 
 

aligned with the concept of random across person groups/clusters within items. 
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Chapter 3: Methodologies 

3.1 Model development  

 Adding a random variable into IRT models is a generic method for representing LID 

(Jiao et al., 2012; Wainer et al., 2007; Wang et al., 2015; Wang & Wilson, 2005). Adopting 

this strategy, LPD is modeled by adding a random variable for persons within a cluster on 

each item. For example, the MRM (i.e., Equation 9) can be generalized as: 
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in which ig represents the LPD among persons within cluster g on item i, and the other 

variables have been defined as above. Because the fixed-effect approach is inapplicable when 

the number of clusters increases, it is practical to assume ) ,0(~ 2

i
Nig  . In addition, when 

considering a two-level structure, ng, the latent trait of person n within group g, can be 

regressed by cluster-level and person-level predictors:  

ng

U

u
ungug
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v
vgvng WX  

 11

,             (16) 

in which X and W refer to the vectors for cluster-level and person-level predictors;  and  

are the corresponding regression coefficients;  and  are the vectors for regressed residuals; 

and is the grand mean for ng and is constrained at zero for identification. Equations 15 and 

16 are named the multilevel Rasch model for clustered samples (MRM-CS), which takes the 

GPD (i.e., the multilevel structure on ) and LPD (i.e., ig) jointly into account. For each item, 

the target latent trait  and one person dependence factor  are measured, indicating that a 

total of I + 1 random variables are included in the measurement model. In addition, these 

random variables are assumed to be mutually independent. Because each  parameter is 

measured by a single item, precise estimates for individual clusters are not possible, but a 

precise estimate of 2

i
  is achievable with a sufficiently large sample. The parameter 2

i
  



17 
 

characterizes the magnitude of LPD in item i: The larger the value of 2

i
 , the larger the LPD 

for that item will be. When 2

i
  is zero for every item of a scale, the MRM-CS simplifies to 

the MRM. Statistically, the MRM-CS can be viewed as a composition of three elements: the 

Rasch model, the multilevel structure on the latent trait, and the random DIF model.  

If LPD exists ( 02 i
), but is ignored by fitting a standard model, a shrunken scale 

would be obtained due to the nonlinear relationship between the probability and logit 

function. One can understand the causality through the following illustration. Let’s say 

there’s a dichotomous item following the MRM-CS with a difficulty of 0. Conditional on the 

five ability levels of -2, -1, 0, 1, and 2, the expected probabilities at the five ability levels 

are .12, .27, .50, .73, and .88, respectively. Suppose there is a large LPD 12 i
 on that item:  

The marginal probabilities at the five ability levels become .16, .30, .50, .70, and .84, 

respectively. When projecting these marginal probabilities onto the item characteristic curve 

in the Rasch model, the abilities of -1.66, -0.85, 0, 0.85, and 1.66, respectively, can be 

derived, suggesting that ignoring LPD would lead to a shrunken scale. Consequently, the 

estimates of 2
  and 2

  would be smaller than their true values. 

It is straightforward to apply the strategy of modeling GPD and LPD to polytomous 

responses. For example, the PCM (i.e., Equation 3) can be extended as:  
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Thus, Equation 17 is referred to as the multilevel partial credit model for clustered samples 

(denoted as MPCM-CS). When necessary, it is feasible to consider LPD together with 

different kinds of LID in the same model, as well as the dual dependence model proposed by 

Jiao et al. (2012): 
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The paired sample design, a special case of person clustering, is widely applied in 

psychological, biological, and medical experiments. In paired samples, there are two 

members -- e.g., a husband and wife -- in each cluster. Two people, as a pair, can be 

categorized into a focal unit and a reference unit regarding a demographic variable. Equation 

16 then can be rewritten for paired samples: 
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in which g is the mean ability of pair g, and gF and gR are the person-specific deviations 

from g for focal and reference units, respectively. Thus, it is assumed that ) ,(~ 2
ggg N  , 

) ,0(~ 2
FF  Ng , and ) ,0(~ 2

RR  Ng . A constraint of 2
R

2
F   is viable, depending on the 

context. Instead of the multilevel modeling approach, Jin and Wang (2016) recently proposed 

a bivariate normal distribution to describe the two latent traits of paired samples. The 

multilevel parameterization, such as Equations 19 and 20, outperforms the bivariate normal 

distribution approach, especially when cluster-level covariates are included to explain the 

impacts on . 

The concept of clustered samples can go beyond the virtual person clustering structure. 

In repeated measures design, for example, an individual becomes a cluster, and observations 

at different time points are subjects within individuals (Hox, 2010; Hox & Roberts, 2011). 

Particularly, when a set of common items elicits responses from the same people more than 

once, it may result in memory effects, a type of LPD among residuals across time points 

within a person (Olsbjerg & Christensen, 2014). Accordingly, the MRM-CS and MPCM-CS 
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can be directly applied to this situation. 

As stated in Chapter 2.4, LPD can be viewed as random DIF. As summarized by Cho, 

Suh, and Lee (2016), there are mainly four methods for dealing with the presence of DIF 

items in the literature: (a) removing DIF items, (b) ignoring DIF items, (c) calibrating item 

parameters for different groups separately, and (d) modeling DIF. Particularly, approach (a) is 

actually identical to no treatment by fitting a standard model, and approach (d) is close to the 

proposed models for dealing with LPD. Approach (c) seems inapplicable because the number 

of clusters could be very huge. There is an interpretive difference between the viewpoints of 

DIF and LPD. The purpose of DIF detection is to shed light on the extent to which unfair 

items are included in a test. By definition, a DIF-free item can be presumed only if its item 

characteristic curve is uniform across groups; otherwise, that item would be labeled a DIF 

item. Consequently, the interpretation of DIF becomes a dichotomy, in that an item is 

eventually classified as either DIF or non-DIF. Researchers are skeptical when they see too 

many DIF items in a test because the occurrence of DIF items implies test unfairness. In 

contrast, the idea of dichotomy is not embraced in the interpretation of LPD. Sometimes, 

LPD is anticipated. For instance, when couples or family members are recruited in a survey, 

both their similarity and dissimilarity on thoughts and attitudes are equally of interest. On the 

other hand, technically, DIF could result from a more complex person-item interaction, 

whereas a simpler person-item interaction is deliberated in the proposed approach. The 

definition becomes more complex for polytomous items. Consider a five-point Likert-type 

item in which four threshold parameters are modeled under the PCM. If one or more of the 

four threshold parameters interact with the grouping variable, a nonuniform item 

characteristic curve is achieved. The complexity in the combinations of thresholds increases 

the difficulty of explanation. Comparatively, a simpler mechanism was implemented when 

modeling LPD. As illustrated in Equations 15 and 17, a single parameter (i.e., ig) is referred 
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to as the unit of translation of the whole item characteristic curve for cluster g (related to i), 

and the value of 2

i
  reflects the magnitude of LPD directly. 

The number of clusters and intra-cluster sample sizes would influence the precision of 

parameter estimation. Literally, a cluster should include more than one subject. Jin and Wang 

(2015) demonstrated that LPD parameters can be accurately estimated in paired-sample data, 

i.e., the intra-cluster sample size may be not a critical influence on the estimation of 2

i
 , as 

long as the number of clusters is large enough. The influences of cluster numbers and 

intra-cluster sample sizes on the precision of LPD parameters will be examined in Chapter 

4.2.  

3.2 Extensions to multiple scales 

The extension of the LPD model includes many axes. In the aforementioned models, 

only a target latent trait  is measured. In practice, however, a test may consist of multiple 

scales, in which a different latent trait is measured on each subscale. For example, the 

International English Language Testing System (IELTS) measures four kinds of proficiency: 

listening, speaking, reading, and writing. It has been noted that utilizing the multidimensional 

approach is more efficient in reporting the correlation between latent traits and test 

reliabilities than the consecutive uni-dimensional approach, in which multiple scales are 

analyzed separately, one at a time (Adams, Wilson, & Wang, 1997; Briggs & Wilson, 2003). 

To analyze multiple scales jointly, Equations 15 and 17 can be extended as 
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in which subscript d (d = 1,…, D) is the index of scale. Finally, vector = [1, ..., d]' 

contains D elements, and they can be estimated simultaneously in the joint model. Equation 
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21 is referred to as the multidimensional multilevel Rasch model for clustered samples 

(MDMRM-CS), and Equation 22 is referred to as the multidimensional multilevel partial 

credit model for clustered samples (MDMPCM-CS). Note that these multidimensional 

models are not limited to between-item multidimensional tests but can be applied to tests with 

a within-item multidimensional structure (i.e., an item measures more than one latent trait). 

Furthermore, considering the homogeneity of a test and the heterogeneity among 

subtests, it is feasible and manageable to build a hierarchical structure that treats the scores 

derived from subtests as subordinate elements under a higher-order score, built on the idea of 

higher-order factor analysis (Matin & Adkins, 1954). Recently, several hierarchical IRT 

models for hierarchical latent traits have been developed (de la Torre & Hong, 2010; de la 

Torre & Song, 2009; Sheng & Wikle, 2008; Huang & Wang, 2013; Huang, Wang, Chen, & 

Su, 2013). In their models, the first-order latent trait is assumed to be a weighted function of 

the second-order latent trait: 

)1()2()2()1(
ndndnd  ,                            (23) 

in which )1(
nd  is a first-order latent trait measured in the dth subtest for respondent n ; )2(

n  

is the second-order latent trait; )2(
d  is a regression weight of the second-order latent trait on 

the dth first-order latent trait; and )1(
d  is the residual and is assumed to be normally 

distributed. Because hierarchical latent traits and the person-clustering structure can occur 

simultaneously, a general IRT model – which considers GPD, LPD, and hierarchical latent 

traits altogether – is applicable. For example, the higher-order, partial-credit model for 

clustered samples (HOPCM-CS) can be reformulated as: 
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Following this strategy, a more complex model with more orders can be formed when 

necessary. Statistically, higher-order models can be linked to bi-factor models (Brown, 2015). 
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Thus, Equation 24 can be reparameterized to a bi-factor model: 
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in which 'ng is the measured latent trait across subtests, and 'ndg is the domain-specific 

nuisance of subtest d. The parameters in Equations 24 and 25 are comparable after the 

standardization of  parameters. 

3.3 Extensions to multifaceted data 

The realization of LPD is not necessarily limited to item-cluster interaction, but could be 

generalized to other situations. For example, multifaceted data (e.g., test-takers’ responses to 

items marked by raters) are very common in the human sciences, and the many-faceted Rasch 

model (MFRM; Linacre, 1989) is widely used in practice, partly due to its simplicity (Basturk, 

2008; Congdon & MeQueen, 2000; Eckes, 2005, 2008; Engelhard, 1994, 1996; Myford & 

Wolfe, 2003, 2004; Schaefer, 2008). In the MFRM, an individual element within a facet is 

assigned a parameter to indicate its influence on item responses. In the three-faceted data of 

rater, criterion, and ratee, for example, there are three kinds of parameters: an item’s difficulty, 

a ratee’s proficiency, and a rater’s severity. The three-faceted Rasch model is expressed as: 
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in which ng is the proficiency of ratee n within group g; ij is the jth threshold difficulty of 

criterion i; and k is the severity of rater k. When LPD is formulated as the rater-ratee 

interaction, it is often referred to as differential rater functioning (DRF) (Du, Wright, & 

Brown, 1996; Engelhard, 2008), which means a rater may exhibit different severities for rates 

within different clusters. Thus, the many-faceted model for clustered samples (MFRM-CS) 

can be expressed as: 
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in which kg represents the LPD toward rater k (k = 1,…, K), and others are defined as stated 

above. The proposed methodology definitely can be applied to data with more than three 

facets. 

Although the concept of LPD can be generalized as ratee-rater interaction when ratees 

are grouped, this is not the only case. Because raters are human beings, it is very likely that 

the ratings among raters are not necessarily independent, especially when raters are allowed 

to communicate with each other before providing ratings on a criterion (Wang, Su, & Qiu, 

2014). To model LPD among raters, the many-faceted model can be extended to: 
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in which km is the severity of rater k within rater group m (m = 1,…, M), and im represents 

LPD among raters toward item i.  

3.4 More model extensions 

More extensions of IRT models for LPD are possible. For example, within the 

two-parameter IRT framework, a slope parameter is incorporated. Hence, the MRM-CS and 

MPCM-CS can be generalized to: 
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in which i is the slope parameter and stands for the discrimination power of item i with 

respect to measured latent trait . Equations 29 and 30 can be referred to as the multilevel 

two-parameter logistic model for clustered samples (M2PLM-CS) and the multilevel 
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generalized partial credit model for clustered samples (MGPCM-CS), respectively. Note that 

the relationships among the parameters in both models become nonlinear due to the products 

of the parameters between i and n. When i = 1 for all items, the M2PLM-CS simplifies to 

the MRM-CS, and the MGPCM-CS simplifies to the MPCM-CS. 

 The proposed models can be generalized to mixture models. Although one can include 

any observed group membership in a multilevel model, sometimes momentous group 

memberships are unknown or latent, i.e., except for manifest grouping variables, respondents 

can be grouped into clusters based on unobserved variables as well. For example, it is 

believed that unmotivated respondents usually answer items casually, without full 

consideration of the item content (Johnson, 2005; Meade & Craig, 2012; Nichols, Greene, & 

Schmolck, 1989), but respondents’ exertion is latent and unidentified in the dataset. Thus, it is 

important to include respondents’ latent group membership in multilevel models. When the 

latent group membership is considered in the MRM-CS, for example, the generalized model 

is formulated as: 

 iglilngl
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in which l (l = 1, …, L) is an index for person-level latent classes; ngl is the latent trait of 

person n in manifest cluster g and latent class l; il is the difficulty of item i for latent class l; 

and igl is the LPD among persons within cluster g in latent class l on item i. Moreover, based 

on the multilevel mixture IRT model proposed by Cho and Cohen (2010), latent classes are 

not limited to the person level and can exist at the cluster level. 

3.5 Model parameter estimation 

Marginal maximum likelihood estimation is widely used in parameter calibration for 

IRT models (Johnson, 2007; Tuerlinckx et al., 2004). The technique simply assumes that 

individuals are sampled from a large distribution so that the marginal probability of observed 
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responses can be obtained by integrating the random variables from the likelihood function. 

However, high-dimensional integration in the proposed models for LPD became a problem, 

making marginal maximum likelihood estimation unfeasible.  

Alternatively, I have adopted the Bayesian approach with MCMC estimation, which is 

very efficient for achieving a high dimensional integral. In Bayesian estimation, a statistical 

model and prior distributions of model parameters are specified to yield a joint posterior 

distribution. MCMC methods provide alternative and simple ways to simulate the joint 

posterior distribution of the unknown quantities and obtain simulation-based estimates of the 

posterior parameters of interest. For example, the likelihood function for the MPCM-CS is 

expressed as: 
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Notably, ng, g, and ig are random variables following different normal distributions 

independently:  

),0(~ 2
 Nng ,                                
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Through the above specifications, 2
 , 2

 , and 2

i
  are estimated instead, and the prior of 

(0.1, 0.1) is implemented for 2/1  , 2/1  , and 2/1
i

 in WinBUGS. Moreover, the prior of 

N(0, 10) is implemented for each of the , , and  parameters. Less-informative priors could 

be applied unless the sample size is limited. Finally, the joint posterior distribution of the 

estimated parameters can be derived: 
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After sequential sampling, the posterior distribution of each parameter is formed. Its mean 

and standard deviation could be reported as the point estimate and the corresponding standard 

error of the parameters. The freeware application WinBUGS was used in this study. After a 

5,000-iteration burn-in period, the subsequent 5,000 iterations with a thinning rate of 10 were 

used to compute the parameter estimates. 

Bayesian model-data fit can be conducted by posterior predictive model checking 

(PPMC), which assesses the plausibility of posterior predictive replicated data against 

observed data and has the advantage of a strong theoretical basis and an intuitively appealing 

simplicity that can be applied to numerical evidence (Gelman, Meng, & Stern, 1996): 

]Y|)()(Pr[ rep YY SSp  ,                     (34) 

in which S(∙) denotes the used statistical index. In this study, the Bayesian chi-square test 

(Sinharay, 2005; Sinharay, Johnson, & Stern, 2006), which assesses the overall model-data fit, 

is chosen for detecting the systematic discrepancy between the observed and replicated data 

given the model parameters. An extreme p-value (close to zero or one) indicates model-data 

misfit. 

 Moreover, the Q3 statistic (Yen, 1984) is adopted for assessing the extent of local 

dependence among item responses. When investigating the dependence between the residuals 

for two items, Q3 is defined as:  

 '3 , iicorQ rr ,                         (35) 

in which ri and ri’ are the vectors of the residuals of items i and i’, and Q3 is the correlation 

between the two residual scores. When the assumption of local item independence is held, 

Yen (1993) demonstrated that the expected value of Q3 is approximately -1/(I - 1) (I is the 

number of items). Chen and Wang (2007) further determined that the expected standard 

deviation is approximately 21 N  (N is the number of persons). When applying the Q3 

statistic to investigate the dependence between the residuals of two persons, the residual 
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matrix is transposed, and the computation of Q3 becomes: 

 '3 , nncorQ hh ,                          (36) 

in which hn and hn’ are the vectors of the residuals of person n and n’, and Q3 is the 

correlation between the two vectors of residual scores. Accordingly, under the null hypothesis 

of the local independence of person residuals, Q3 will be approximately normally distributed 

with mean -1/(N – 1) and standard deviation 21 T  when the sample size is large.  

 The Akaike information criterion (AIC), Bayesian information criterion (BIC), and 

deviance information criterion (DIC) are commonly used to compare the models (e.g., Hung, 

2011; Li, Jiao, & Macready, 2016). Thus, these indices were selected for model comparison. 

However, Jin and Wang (2016) indicated that these indices are not sensitive and always favor 

the complicated model with a large number of random-effects parameters incorporated. To 

check the model-data fit for the standard and new models, the PPMC p-value and the Q3 were 

mainly implemented in this study.  

3.6 Detection of LPD by cluster analysis 

 Except for the LPD modeling approach, existing non-IRT approaches may be useful for 

detecting LPD. The occurrence of LPD suggested that, after fitting a standard model, the 

residuals of respondents who are nested within the same cluster are correlated. Consequently, 

the residuals of respondents within a cluster would distribute closely in a multidimensional 

space. A preliminary tool for assessing the homogeneity of residuals is required. Cluster 

analysis, which is a set of multivariate techniques for grouping objects with similar 

characteristics into clusters, may be helpful for dealing with such a task. Cluster analysis can 

be divided roughly into two branches: hierarchical and nonhierarchical. Hierarchical cluster 

analysis (HCA) provides a dendrogram displaying that an observation or cluster of 

observations is nested under another cluster, whereas nonhierarchical cluster analysis (i.e., 

k-means) simply divides observations into several clusters. A combination of using the 
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hierarchical approach to determine the number of clusters, followed by the nonhierarchical 

approach to achieve more accurate cluster memberships, is often advisable in practice.  

Two issues deserve notice when assessing the magnitude of LPD by means of cluster 

analysis. First, the number of clusters and the whole sample size should be jointly considered 

in cluster analysis. It is inefficient to include whole observations in the analysis. The number 

of explored clusters increases, along with the number of observations, but is not necessarily 

identical to the number of true clusters. Subsequently, the correspondence between the 

explored clusters and true clusters would be all in a mass. It seems applicable to include a set 

of observations within two or three true clusters in an analysis. Another concern is related to 

screening the analyzed sample. To highlight the homogeneity of residuals for respondents 

within a cluster and the heterogeneity between clusters, matching clusters according to 

cluster-level scores (i.e., GPD) is strongly recommended. Suppose two clusters are selected: 

One has extremely high scores and the other one has extremely low scores. The results from 

cluster analysis would show that explored clusters are akin to true clusters, even though 

person residuals are mutually independent of each other, because the influence of GPD is not 

excluded when investigating the existence of LPD.  

HCA, which provides a visual and intuitive output, was selected in this study for 

detecting LPD. The step-by-step procedure of HCA for detecting LPD was illustrated as 

follows: 

1. Compute the mean raw score for each cluster; 

2. Match clusters with similar mean scores; 

3. Choose moderate size of samples from the matched clusters; 

4. Fit a standard model to data; 

5. Compute the residuals of selected samples as the analyzed variables in HCA; 

6. Observe the coincidence between the explored clusters and true clusters. 
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When the selected samples can be distinctively grouped in the two explored clusters, the 

existence of LPD can be confirmed.  

 

  



30 
 

Chapter 4: Simulation Studies 

Several simulation studies are presented in this chapter. The following simulations 

focused on polytomous models because dichotomous models are included as special cases. 

The findings under polytomous models can be generalized to those under dichotomous 

models. To understand the applicability of the new models to unidimensional test items, the 

parameter recovery for the MPCM-CS is evaluated, and the consequences of ignoring LPD 

are of interest. Subsequently, the influences of cluster numbers and within-cluster sample 

sizes on parameter estimation are investigated. The parameter recovery for the two 

generalized models (i.e., the MDMPCM-CS and HOPCM-CS) for tests composed of multiple 

scales is also examined. Because multi-faceted data (e.g., ratee, rater, and item) is not rare, it 

is necessary to test whether the parameters in the MFRM-CS could be recovered accurately. 

In addition to modeling LPD directly, simulated responses are used to investigate the level of 

efficiency for HCA. These issues are addressed in sequence.  

4.1 Simulation study 1: Parameter recovery of MPCM-CS 

Study 1 focused on the parameter recovery for the MPCM-CS and on the consequences 

of ignoring LPD in parameter estimation. The settings were designed according to the 

scenario in a large-scale assessment. There were 10 polytomous items. The mean-item 

difficulties were randomly generated from U ( -1.5, 1.5), and the step parameters were set at 

-0.5, 0, and 0.5 for each item, i.e., the item thresholds were between -2 and 2. In the LPD 

condition, item responses were generated from the MPCM-CS, and the 10 values of 2

i
  

were set at 0.4, 0.8, and 1.2 for four, three, and three items, respectively. Conversely, in the 

nil condition, item responses were generated from the MPCM (a simpler model without  

parameters) so that the 30 values of 2

i
 , by definition, were all zero. Two sample sizes were 

considered. In the small-sample condition, 1,000 persons were sampled from 100 clusters 

(e.g., schools) with 10 persons in each cluster, whereas in the large-sample condition, 2,000 
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persons were sampled from 200 clusters (e.g., schools) with 10 persons in each cluster. Latent 

variable  was generated via a random-intercept model with one binary predictor (e.g., male 

vs. female) at Level 1 and one binary predictor (e.g., public school vs. private school) at 

Level 2. The mean level of the measured latent trait was -0.3 and 0.3 for males and females, 

respectively, and -0.2 and 0.2 for public and private schools, respectively. The explained 

variance by clusters was set at 0.25, and the residual variance was set at 0.64, i.e., the ICC 

was set at .281. Both the MPCM-CS and MPCM were fit to the generated data.  

Each condition included a total of 100 replications. The following priors were adopted in 

WinBUGS: N(0, 10) for the item difficulties, the regression coefficients of Level 1 and Level 

2 predictors, and (0.1, 0.1) for the inverse of variances, including 2
 , 2

 , and 2

i
 . The 

WinBUGS codes for the MPCM-CS can be found in Appendix A. The bias and root mean 

square error (RMSE) were computed for each parameter: 

    R
R

r




1

ˆˆBias ,                           (37) 

    R
R

r




1

2ˆˆRMSE ,                        (38) 

in which   and ̂  are the true value and parameter estimate, respectively, and R denotes 

the number of replications (i.e., 100). Three research hypotheses were examined.  

1. In the LPD conditions, the parameters in the MPCM-CS can be recovered very well, 

while ignoring LPD by fitting the MPCM results in biased parameters; in the nil 

conditions, fitting the new model to data without LPD would still yield good parameter 

recovery.  

2. In comparing the first two conditions, it is clear that a larger sample size can improve the 

performance of the MPCM-CS, especially for  parameters.  

3. Given the identical total sample size (i.e., conditions 3 and 4), more clusters lead to better 
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recovery for parameters regarding the multilevel structure. 

Table 1 summarizes the bias and RMSE values when the MPCM and MPCM-CS were 

applied to the data simulated from the MPCM-CS. As expected, the MPCM yielded poor 

estimation, whereas the MPCM-CS recovered the parameters very well. When the MPCM 

was fit, the bias for the threshold parameters was between -0.775 and 0.612, and the RMSE 

was between 0.105 and 0.787 when the sample size was 1,000. Meanwhile, the bias was 

between -0.902 and 0.762, and the RMSE was between 0.087 and 0.907 when the sample size 

was 2,000. The results showed that using a large sample size does not improve parameter 

recovery because LPD was not considered. Figures 1a and 1b illustrate the patterns of biased 

estimation under the MPCM. When item responses were contaminated by LPD, item 

thresholds with positive values were generally underestimated, whereas those with negative 

values were generally overestimated, suggesting that LPD resulted in a shrunken scale in the 

MPCM.  

The shrunken scale in the MPCM would, in turn, influence the parameter estimates of 

Level 1 and Level 2 variances: The bias for 2
  and 2

u was -0.387 and -0.097, respectively, 

when the sample size was 1,000, and it was -0.385 and -0.101 when the sample size was 

2,000. The aforementioned shrinkage of the scale was due to the fact that LPD was not 

considered in the MPCM. Due to the underestimation of 2
  and 2

u , the group differences 

in Level 1 and Level 2 shrank toward the prior mean of zero. Furthermore, the shrunken scale 

caused by LPD would influence the estimation of the ICC. For example, the MPCM yielded 

ICCs of .377 and .369 when the sample size was 1,000 and 2,000, respectively; therefore, 

ignoring LPD inflates GPD. 
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Table 1. Summary of parameter recovery for the MPCM and MPCM-CS under the LPD condition in simulation study 1. 

 MPCM  MPCM-CS 

 N = 1000 N = 2000  N = 1000 N = 2000 

 Bias RMSE Bias RMSE  Bias RMSE Bias RMSE 

Threshold ()         

Max 0.612  0.787  0.762  0.907   0.027  0.202  0.018  0.152  
Min -0.775  0.105  -0.902  0.087   -0.024  0.111  -0.013  0.086  
Mean -0.102  0.396  -0.010  0.403   -0.003  0.147  0.003  0.107  

LPD ( 2
 )          

Max – – – –  0.060  0.246  0.035  0.184  
Min – – – –  0.010  0.099  -0.012  0.072  
Mean – – – –  0.034  0.167  0.015  0.118  
Level 1          

 -0.100  0.102  -0.099  0.100   0.001  0.031  0.001 0.021 
2
  -0.387  0.387  -0.385  0.385   0.010  0.045  0.009 0.034 

Level 2          

 -0.057  0.074  -0.066  0.074   0.014  0.068  0.002 0.051 
2
u  -0.097  0.101  -0.101  0.103   0.010  0.058  0.002 0.042 

Note. N denotes the sample size; – = not applicable. 
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Table 2. Summary of parameter recovery for the MPCM and MPCM-CS under the nil condition in simulation study 1.  

 MPCM  MPCM-CS 

 N = 1000 N = 2000  N = 1000 N = 2000 

 Bias RMSE Bias RMSE  Bias RMSE Bias RMSE 

Threshold ()         

Max 0.020  0.181  0.016  0.128   0.109  0.208  0.077  0.147  
Min -0.029  0.094  -0.018  0.066   -0.071  0.094  -0.070  0.066  
Mean -0.001  0.124  -0.003  0.088   0.019  0.135  -0.002  0.095  

LPD ( 2
 )          

Max – – – –  0.061  0.062  0.046  0.047  
Min – – – –  0.048  0.049  0.035  0.035  
Mean – – – –  0.054  0.055  0.040  0.041  
Level 1          

 -0.001  0.030  0.002  0.020   0.009  0.032  0.010 0.022 
2
  0.008  0.046  -0.003  0.030   0.058  0.076  0.035  0.047  

Level 2          

 -0.007  0.059  -0.005  0.042   0.000  0.060  0.000 0.042 
2
u  0.007  0.051  0.002  0.031   0.056  0.057  0.011  0.034  

Note. N denotes the sample size; – = not applicable. 
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Figure 1. Bias for the threshold parameters under the MPCM and MPCM-CS 

Note. Circles denote the biases under the MPCM, and crosses are the biases under the 

MPCM-CS. 

On the other hand, all the estimated parameters were recovered accurately in the 

MPCM-CS: The bias was between -0.024 and 0.027, and the RMSE was between 0.111 and 

0.202 when the sample size was 1,000. In addition, the bias was between -0.013 and 0.018, 

and the RMSE was between 0.086 and 0.152 when the sample size was 2,000. Regarding the 

estimate of 2
 , the bias was between 0.010 and 0.060, and the RMSE was between 0.099 
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and 0.246 when the sample size was 1,000. Furthermore, the bias was between -0.012 and 

0.035, and the RMSE was between 0.072 and 0.184 when the sample size was 2,000. This 

suggested that the estimate of 2
  would be very close to zero with a larger sample size. 

Hence, the MPCM-CS was able to detach the nuisance of LPD and recover the parameters 

very well. 

In terms of test reliability, the mean estimate in the MPCM was.785 and .784 when the 

sample size was 1,000 and 2,000, respectively. Meanwhile, the mean estimate in the 

MPCM-CS was .811 when the sample size was 1,000 and 2,000. It appeared that ignoring 

LPD tended to lead to the underestimating of test reliability slightly.  

Table 2 summarizes the bias and RMSE values when the MPCM and MPCM-CS were 

fit to the simulated data without LPD. Both models yielded unbiased estimates for the item 

difficulties. As shown in Figures 5c and 5d, the item difficulties were recovered fairly well by 

fitting the MPCM or MPCM-CS. Although 2
  and 2

u  were upwardly estimated when the 

MPCM-CS was fit, the magnitudes of the overestimation were trivial and acceptable.  

In sum, fitting the unnecessarily complicated MPCM-CS to data without LPD did little 

harm to the parameter estimation and yielded close-to-zero estimates for . Ignoring LPD by 

fitting the MPCM-CS yielded a shrunken scale, biased estimates for the item parameters, and 

deflated test reliability. 

4.2 Simulation study 2: Influence of different combinations of numbers of clusters and 

within-cluster sample sizes 

Following the designs in simulation study 1, the influence of different combinations of 

clusters and intra-cluster sample sizes -- conditional on a fixed total sample size -- on 

parameter recovery was examined in simulation study 2. Two sample structures were 

generated. In the few-cluster condition, 1,000 persons were sampled from 20 clusters 

featuring 50 persons each, whereas in the multi-cluster condition, 1,000 persons were 
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sampled from 50 clusters featuring 20 persons each. Both scenarios are realistic. Item 

responses were generated from the MPCM-CS, and the parameter settings were the same as 

those in simulation study 1. The true model (i.e., MPCM-CS) was fit to the generated data. In 

multilevel modeling, the effective sample size (ESS; Kish, 1965), which influences the 

precision of estimation, is particularly of concern:    

 1ICC1
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

cluster

total

N

N
,                      (39) 

in which Ntotal is the actual sample size, and Ncluster is the number of clusters. According to 

Kish’s formula, given a fixed total sample size and a positive ICC, a larger ESS would be 

achieved for a dataset composed of more clusters. Three research hypotheses were examined. 

1. Using more clusters is helpful for recovering the LPD parameters, as well as Level 2 

parameters, because a larger number of clusters contribute more information for 

estimating these parameters.  

2. The precision of the recovery for item parameters might be lessened by the poorer 

estimation of the LPD parameters when there are fewer clusters.  

3. The recovery for Level 1 parameters under the two conditions would be very similar due 

to the constant sample size.  

 Table 3 summarizes the bias and RMSE values for 20 clusters and 50 clusters. As 

expected, the recovery for the LPD parameters was better under the condition of 50 clusters. 

For the LPD parameters, the bias was between 0.067 and 0.176, and the RMSE was between 

0.196 and 0.571 when there were 20 clusters. Meanwhile, the bias was between -0.008 and 

0.087, and the RMSE was between 0.116 and 0.338 when there were 50 clusters. Poorer 

recovery was found for Level 2 parameters when there were 20 clusters. For example, the 

RMSE for 01 (e.g., the difference between public and private schools) was 0.120 when there 

were 20 clusters, and it was 0.070 when there were 50 clusters. In line with expectations, the 
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magnitudes of the biased estimates for item parameters were salient under the condition of 20 

clusters, compared with the results from the condition of 50 clusters. The results also 

indicated that the number of clusters did not influence the estimation of Level 1 parameters. 

Overall, the results matched the expectation that the larger the number of clusters, the better 

the parameter estimation would be, given a fixed total sample size.  

Table 3. Summary of parameter recovery under different sampling structure conditions in 

simulation study 2. 

 20 clusters  50 clusters 

 Bias RMSE  Bias RMSE 

Threshold ()      
Max 0.051  0.326   0.038 0.247 
Min -0.072  0.180   -0.049 0.124 
Mean -0.012  0.255   -0.002 0.185 

LPD ( 2
 )      

Max 0.176  0.571   0.087  0.338  
Min 0.067  0.196   -0.008  0.116  
Mean 0.122  0.365   0.050  0.217  
Level 1      

 0.007  0.030   0.001  0.027  
2
  0.005  0.048   0.005  0.048  

Level 2      

 -0.025  0.132   -0.001  0.075  
2
u  0.048  0.120   0.011  0.070  

 

4.3 Simulation study 3: Parameter recovery of the MDMPCM-CS 

Study 3 was aimed at examining the parameter recovery for the MDMPCM-CS and the 

consequences of fitting the MDMPCM (a simpler model without  parameters). There were 

three tests measuring different, but correlated, latent traits in each. Five four-point items were 

included in each test. Like the settings in simulation study 1, the item thresholds were 

between -2 and 2. In each test, the five values of 2

i
  were set at 0.2, 0.4, 0.6, 0.8, and 1, 
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respectively. A sample of 2,000 persons was generated, and all examinees were divided into 

200 clusters, with each cluster containing 10 persons. Due to the lengthy computation time 

(approximately 10 hours per replication), a larger sample was not considered in this 

simulation. The covariance matrix for the individual-level effects was set as


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

15.05.0

5.015.0

5.05.01

, 

and for the cluster-level effects, it was set as

















12.02.0

2.012.0

2.02.01

. In addition, there was one 

binary predictor (e.g., male vs. female) at Level 1, and the group differences on these three 

dimensions were set at 0.2, 0.4, and 0.6. Both the MDMPCM-CS and MDMPCM were fit to 

the generated data. The WinBUGS codes for the MDMPCM-CS can be found in Appendix B. 

The simulation carried out a total of 100 replications. After fitting the data-generating model, 

the bias and RMSE in the parameter estimates were computed to evaluate parameter recovery. 

It was expected that the parameters in the MDMPCM-CS can be recovered very well, but 

fitting the MDMPCM leads to biased estimation. 

Table 4 summarizes the bias and RMSE values when the MDMPCM and 

MDMPCM-CS were applied to the simulated MDMPCM data. Similar to the findings in 

study 1, the MDMPCM-CS could recover all the estimated parameters very well. For the item 

thresholds, the bias was between -0.037 and 0.039, and the RMSE was between 0.100 and 

0.157. For the LPD parameters, the bias was between -0.019 and 0.043, and the RMSE was 

between 0.057 and 0.183. For the Level 1 group difference, the bias was between -0.005 and 

0.000, and the RMSE was roughly 0.028. For the covariance matrices in Level 1 and Level 2, 

the bias was between -0.010 and 0.019, and the RMSE was between 0.038 and 0.139. In 

general, the parameter recovery was satisfactory.  

When the MDMPCM was fit to the data generated from the MDMPCM-CS, the 
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estimates of the item thresholds were far away from their true values and shrank toward the 

mean. The bias was between -0.914 and 0.790, and the RMSE was between 0.089 and 0.922. 

The parameters of the two covariance matrices were consistently underestimated: The bias 

was between -0.539 and -0.092, and the RMSE was between 0.104 and 0.540. Furthermore, 

after standardizing the covariance matrices, it was found that the correlation between pairs of 

random variables in Level 1 had a mean inflation of 0.08, whereas the correlation between 

pairs of random variables in Level 2 had a mean deflation of 0.03. The group differences in 

the random variables in Level 1 were downwardly estimated. 
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Table 4. Summary of parameter recovery for the MDMPCM and the MDMPCM-CS in 

simulation study 2. 

 MDMPCM  MDMPCM-CS 

 Bias RMSE  Bias RMSE 

Threshold ()      
Max 0.790 0.922  0.020 0.157 
Min -0.914 0.089  -0.036 0.100 
Mean -0.003 0.363  -0.004 0.126 

LPD ( 2
 )      

Max – –  0.043 0.183 
Min – –  -0.019 0.057 
Mean – –  0.015 0.114 
Level 1      
η       
Max -0.031  0.086   0.000  0.028  
Min -0.084  0.036   -0.005  0.028  
Mean -0.056  0.060   -0.003  0.028  

εΣ       
Max -0.226 0.540  0.018 0.071 
Min -0.539 0.227  0.003 0.038 
Mean -0.382 0.383  0.010 0.054 
Level 2      

uΣ       

Max -0.092 0.401  0.019 0.139 
Min -0.394 0.104  -0.010 0.092 
Mean -0.243 0.253  0.002 0.115 

 

4.4 Simulation study 4: Parameter recovery of the HOPCM-CS 

Study 4 was aimed at examining the parameter recovery for the HOPCM-CS and the 

consequence of fitting the HOPCM (a simpler model without  parameters). There were four 

first-order latent traits and one second-order latent trait. Each test had five four-point items. 

As with the settings in simulation study 1, the item thresholds were between -2 and 2. In each 

test, the five values of 2

i
  were set at 0.2, 0.4, 0.6, 0.8, and 1. The factor loadings, which 
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represent the relationships between the second-order latent trait and the four first-order latent 

traits, were set at 1, 0.9, 0.8, and 0.7, and all the variances of the regressed residuals were set 

at 0.16 for the four first-order latent traits, i.e., the variances explained by the second-latent 

trait on the four first-order latent traits were 0.86, 0.84, 0.80, and 0.75. A sample of 2,000 

persons was generated, and all examinees were divided into 200 clusters, with each school 

having 10 persons. Likewise, there was one binary predictor (e.g., male vs. female) at Level 1 

and one binary predictor (e.g., public school vs. private school) at Level 2. The mean level of 

the second-order latent trait was -0.3 and 0.3 for males and females, respectively, and the 

public and private schools had different mean levels for the latent trait, at -0.2 and 0.2, 

respectively. The explained variance by clusters on the second-order latent trait was set at 

0.25, and the residual variance was set at 0.64. The WinBUGS codes for the HOPCM-CS can 

be found in Appendix C. The simulation included a total of 100 replications. After fitting the 

data-generating model, the bias and RMSE in the parameter estimates were computed to 

evaluate parameter recovery. It was expected that the parameters in the HOPCM-CS can be 

recovered very well, but fitting the HOPCM leads to biased estimations. 

Table 5 summarizes the bias and RMSE values when the HOPCM and HOPCM-CS 

were applied to the simulated HOPCM data. Similar to the findings in study 1, the 

HOPCM-CS could recover all the estimated parameters very well. For the item thresholds, 

the bias was between -0.036 and 0.020, and the RMSE was between 0.073 and 0.153. For the 

factor loadings, the bias was -0.005, and the RMSE was between 0.033 and 0.037. For the 

LPD parameters, the bias was between -0.003 and 0.034, and the RMSE was between 0.039 

and 0.168. For the other parameters, the bias was between 0.000 and 0.013, and the RMSE 

was between 0.021 and 0.050. In general, the parameter recovery was satisfactory. When the 

HOPCM was fit to the data generated with LPD, the estimates of the item thresholds were far 

from their true values and shrank toward the prior mean. The bias was between -0.891 and 
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1.020, and the RMSE was between 0.071 and 1.029. In addition, the relationship between the 

first- and second-order latent traits was distorted. Although the loadings were precisely 

recovered, all the residuals were downwardly biased. After standardizing the loadings, the 

empirical relationships were overestimated. Finally, the HOPCM yielded a shrunken scale of 

the second-order latent trait. The variances in Level 1 and Level 2 were substantially 

underestimated, and the group differences in Level 1 and Level 2 were attenuated. 
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Table 5. Summary of parameter recovery for the HOPCM and the HOPCM-CS in simulation 

study 4. 

 HOPCM  HOPCM-CS 

 Bias RMSE  Bias RMSE 

Threshold ()      
Max 1.020  1.029   0.020 0.153 
Min -0.891  0.071   -0.036 0.073 
Mean 0.043  0.367   -0.004 0.104 

Loadings ()      
Max 0.012  0.052   -0.005 0.037 
Min -0.013  0.041   -0.005 0.033 
Mean -0.003  0.045   -0.005 0.035 

Residuals ()      
Max -0.071  0.079   0.006 0.029 
Min -0.077  0.073   0.000 0.021 
Mean -0.074  0.076   0.003 0.026 

LPD ( 2
 )      

Max – –  0.034 0.168 
Min – –  -0.003 0.039 
Mean – –  0.011 0.098 
Level 1      

 -0.083  0.084   0.002 0.022 
2
  -0.325  0.326   0.013 0.050 

Level 2      

 -0.054  0.063   0.003 0.046 
2
u  -0.091  0.094   0.012 0.045 

 
4.5 Simulation study 5: Parameter recovery of the MFRM-CS  

Study 5 tested the parameter recovery for the MFRM-CS. Because three-faceted data 

(including the ratee, item, and rater) are very common, in this study, the LPD, as the 

ratee-rater interaction, was of concern. Item responses were generated from the MFRM-CS. 

There were five criteria (items) rated in five response categories. Two levels of saturation of 

the data matrix were manipulated. There were 10 raters, and each ratee was marked by either 
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two or four of the 10 raters, suggesting 80% and 60% missingness, respectively. The overall 

difficulties were set at -1, -0.5, 0, 0.5, and 1 for the five criteria, and the four threshold 

difficulties were set at -0.75, -0.25, 0.25, and 0.75 for all criteria. The rater severities were 

sampled from the normal distribution, with a mean of zero and a variance of 0.36, and the 

first rater was constrained at zero for identification. The 10 values of 2

k
 were set at 0.4, 0.8, 

and 1.2 for four, three, and three raters, respectively. The simulation included 200 clusters, 

and each cluster included 10 persons. The settings of the latent variable  were identical to 

those in simulation study 1. The WinBUGS codes for the MFRM-CS can be found in 

Appendix D. Likewise, there were 100 replications, and the bias and RMSE in the parameter 

estimates were computed for evaluating parameter recovery. Although the generated data 

were fit via the data-generating model, the parameter estimates may not be satisfactory 

because the data matrix may be too sparse to provide sufficient information for estimation. It 

was expected that, with less-sparse data (i.e., a ratee was rated by more raters), the estimates 

would be closer to their true values. 

Table 6 summarizes the bias and RMSE values when the MFRM-CS was applied to the 

multifaceted MFRM-CS data. When each ratee was rated by two raters, for the item 

thresholds, the bias was between -0.001 and 0.024, and the RMSE was between 0.132 and 

0.167. For rater severities, the bias was between -0.024 and 0.020, and the RMSE was 

between 0.180 and 0.278. For the LPD parameters, the bias was between -0.030 and 0.086, 

and the RMSE was between 0.137 and 0.399. Finally, for the other parameters, the bias was 

between -0.006 and 0.053, and the RMSE was between 0.002 and 0.107. When each ratee 

was rated by four raters, for the item thresholds, the bias was between 0.002 and 0.017, and 

the RMSE was between 0.094 and 0.120. For the rater severities, the bias was between -0.015 

and 0.015, and the RMSE was between 0.112 and 0.155. For the LPD parameters, the bias 

was between 0.013 and 0.064, and the RMSE was between 0.085 and 0.250. For the other 
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parameters, the bias was between -0.002 and 0.011, and the RMSE was between 0.020 and 

0.058. These results support the expectation that the parameters in the MFRM-CS could be 

accurately recovered, and the recovery was even better with more saturated data. 

Table 6. Summary of parameter recovery for the MFRM-CS in simulation study 5. 

 Two raters  Four raters 

 Bias RMSE  Bias RMSE 

Threshold ()      
Max 0.024  0.167   0.017  0.120  
Min -0.001  0.132   0.002  0.094  
Mean 0.012  0.145   0.010  0.105  

Severity ()      
Max 0.020  0.278   0.015  0.155  
Min -0.024  0.180   -0.015  0.112  
Mean -0.004  0.237   0.003  0.136  

LPD ( 2
 )      

Max 0.086  0.399   0.064  0.250  
Min -0.030  0.137   0.013  0.085  
Mean 0.029  0.246   0.030  0.161  
Level 1      

 -0.001 0.002  0.003  0.020  
2
  0.007 0.032  -0.002  0.030  

Level 2      

 -0.006 0.107  0.005  0.058  
2
u  0.053 0.099  0.011  0.055  

 

4.6 Performance of HCA 

A total of 1,000 persons (sampled from 100 clusters featuring 10 persons each), who 

responded to 10 four-point items, were generated from the MPCM-CS. Both the MPCM and 

MPCM-CS were fit to the generated data. The reader is referred to Chapter 3.5 for parameter 

estimation and Chapter 3.6 for more details on data generation. The total score of the 

generated clusters was between 47 and 225. HCA was conducted by using R 3.2.5 (R Core 

Team, 2016). The dissimilarities between clusters were the squared Euclidean distances 
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between cluster means, and Ward’s (1963) clustering criteria were implemented to choose the 

pair of clusters to merge at each step. It was expected that, when the residuals from the 

MPCM were analyzed, a high correspondence between the explored and true clusters would 

be found. In contrast, when the residuals from the MPCM-CS were analyzed, observations 

would be randomly distributed in the explored clusters. 

Four combinations were presented: (a) Clusters 4 and 8 had a mean score of 8.3; (b) 

clusters 38 and 57 had a mean score of 10.9; (c) clusters 1 and 86 had a mean score of 12.9; 

and (d) clusters 51, 53, and 78 had a mean score of 10.3. The first three combinations 

included two clusters, and the last combination included three clusters.  

Figures 2a and 3a show good recovery of the true clusters when the residuals from the 

MPCM were analyzed. This suggested that the standard model did not fully account for LPD, 

so the respondents within a cluster were accurately grouped based on the similarity of the 

residuals. On the other hand, when the residuals from the MPCM-CS were analyzed, 

systematic patterns of grouping were not found (Figures 2b and 3b). Figure 4 shows the 

results when HCA was applied to three clusters. It seems that the generated simulees within 

the same clusters could be grouped roughly according to the residuals from the MPCM. 

Figure 5, however, displays a flaw, in which HCA could not distinguish the observations 

clearly. The extent of heterogeneity of residuals between clusters might be an explanation for 

why HCA sometimes performed well, but other times did not. When selected clusters exhibit 

similar LPD patterns, limited information can be provided by the person residuals from the 

standard model to identify true clusters, leading to poor HCA performance. Computing the 

Euclidean distance between two vectors of LPD estimates for two clusters is helpful for 

comprehension. The distance for the two good-classification pairs (Figures 2 and 3) was 4.05 

and 4.22, and for the poor-classification pair (Figure 5), the distance was 2.51. In other words, 

although the magnitudes of LPD were substantial in general, they might not have been 
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detected if only a subset of clusters were selected. In sum, HCA did not perform consistently 

in detecting LPD. To achieve better detection of LPD, the proposed models are strongly 

recommended. 
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Figure 2. Dendrograms for the first example of good classification. 

Note. Cluster 4 includes simulees 31-40; and cluster 8 includes simulees 71-80. 
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Figure 3. Dendrograms for the second example of good classification. 

Note. Cluster 38 includes simulees 371-380; and cluster 57 includes simulees 561-570. 
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Figure 4. Dendrograms for the example of good classification for three clusters. 

Note. Cluster 51 includes simulees 501-510; cluster 53 includes simulees 521-530; and cluster 78 includes simulees 771-780. 
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Figure 5. Dendrograms for the example of poor classification. 

Note. Cluster 1 includes simulees 1-10; and cluster 86 includes simulees 851-860. 
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Chapter 5: Empirical Example Studies 

5.1 Example 1: General knowledge in daily life   

The first example is the National Longitudinal Study of Adolescent Health (Add Health) 

(Harris & Udry, 2016) project, which aims to investigate how social environments and 

behaviors in adolescence influence health and achievement outcomes in young adulthood. A 

subscale in the project, surveying whether adolescents have learned the listed items with 

respect to general knowledge in daily life at school, was adopted. Recruited adolescents 

were in the seventh to 11th grades and were stratified and randomly sampled from all high 

schools in the U.S. The analysis included 6,493 cases from 143 schools. Each school 

included 12 to 122 adolescents. Both the MRM and MRM-CS were fit to the complete 

reading data. Because schools in the U.S. can choose different versions of textbooks, and 

because the regional differences in the influence of urbanization and education investment 

are considerable, the taught contexts across schools might be very divergent. Accordingly, it 

is intuitive to expect that adolescents within the same school are more homogeneous than 

students from different schools, both in overall levels of learning general knowledge (i.e., 

GPD) and specific subject matter (i.e., LPD) emphasized by their schools. Fitting the 

MRM-CS is effective for quantifying different kinds of dependences. Furthermore, HCA 

was conducted to investigate the homogeneity of the person residuals obtained from the 

MRM and MRM-CS. Schools were paired based on mean scores of adolescents on 17 items, 

and two schools at similar levels were selected. Fifteen adolescents were randomly sampled 

from each school for the subsequent HCA. One could anticipate that adolescents within a 

school would be grouped together if the magnitudes of LPD were substantial. 

Table 7 summarizes the mean and standard deviation of the raw scores and the mean 

thresholds under the MRM and MRM-CS for each item. It shows that most content with 

respect to general knowledge had been broadly taught at schools. The item chosen least 
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often was “The problems of being underweight,” whereas the item chosen the most was 

“Drug abuse.” This also shows that the MRM yielded a narrower range than did the 

MRM-CS. Considering the findings in simulation study 1, the current results indicated 

substantial LPD.  

The AIC, BIC, and DIC for the MRM were 75,810, 75,939, and 80,601, respectively, 

and for the MRM-CS, they were 72,327, 72,571, and 78,262, respectively, indicating that 

the MRM-CS yielded a better model-data fit than did the MRM. The posterior predictive 

p-value for the MRM and the MRM-CS was 0.990 and 0.972, respectively. Because there 

were 4,393 adolescents and 17 items, if all person residuals were independent, the expected 

value and the standard deviation of Q3 would be -0.0001 and 0.258, respectively. The 

empirical mean Q3 was 0.032 for the MRM and 0.026 for the MRM-CS; the empirical 

standard deviation was 0.366 for the MRM and 0.344 for the MRM-CS, suggesting that the 

MRM-CS had a better fit, according to the Q3 statistic.  



55 
 

Table 7. Raw scores and difficulty estimates under the MRM and MRM-CS in the general knowledge scale. 

  Raw score  MRM  MRM-CS 

No. Item Mean SD  Estimate SE  Estimate SE 

1 The foods you should and shouldn’t eat 0.870  0.337   -2.587  0.075   -2.754  0.094  

2 The importance of exercise 0.922  0.269   -3.302  0.084   -3.481  0.108  

3 Smoking 0.919  0.273   -3.265  0.081   -3.461  0.104  

4 The problems of being overweight 0.596  0.491   -0.522  0.069   -0.536  0.087  

5 Drinking 0.938  0.240   -3.625  0.082   -3.870  0.118  

6 Drug abuse 0.956  0.205   -4.045  0.090   -4.296  0.121  

7 Pregnancy 0.860  0.347   -2.480  0.075   -2.571  0.106  

8 AIDS 0.919  0.273   -3.260  0.083   -3.510  0.126  

9 What to do if a stranger approaches you 0.765  0.424   -1.628  0.073   -1.791  0.101  

10 Taking care of your teeth 0.765  0.424   -1.626  0.072   -1.832  0.097  

11 What to do if someone chokes on food 0.762  0.426   -1.604  0.071   -1.699  0.096  

12 Safety at home, school, or play 0.828  0.378   -2.157  0.073   -2.299  0.095  

13 Stress 0.641  0.480   -0.789  0.067   -0.858  0.091  

14 How to handle conflict 0.779  0.415   -1.733  0.072   -1.827  0.099  

15 Where to go for help with a health problem 0.826  0.380   -2.137  0.073   -2.217  0.092  

16 The problems of being underweight 0.554  0.497   -0.268  0.066   -0.291  0.084  

17 Suicide 0.681  0.466   -1.044  0.069   -1.055  0.100  
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The estimates for 2
  of the 17 items in the MRM-CS are listed in the left panel of 

Table 8. It appeared that LPD was significant for most items, suggesting that the acquiring 

of general knowledge in daily life was related to the sampled communities. The two items 

with the largest LPD were “AIDS” ( 2
 ) and “What to do if a stranger approaches 

you” ( 2
 ). It seems that these two topics were stressed, to different extents, in 

different regions. The two items with the smallest LPD were “The problems of being 

overweight” ( 2
 ) and “The problems of being underweight” ( 2

 ), 

suggesting that all sampled communities had similar degrees of highlighting the importance 

of weight control. To illustrate the presence of LPD, the MRM-CS was fit to a replicated 

dataset in which students were randomly grouped into schools. The estimates of 2
 for the 

random dataset (listed in the right panel of Table 8) ranged from 0.031 to 0.086, which were 

much smaller than those for the real dataset. Thus, the residual dependence among students 

in real schools was not due to random errors. 

The 2
  and 2

u  estimates under the MRM were 0.413 and 2.198, respectively, 

whereas the estimates under the MRM-CS were 0.452 and 2.431, respectively, suggesting 

that the MRM-CS yielded a wider distribution of the latent trait. On the other hand, a 

narrower range of the item parameters was found under the MRM, suggesting that ignoring 

LPD resulted in a shrunken scale. The ICC under the MRM and the MRM-CS was 0.158 

and 0.157, respectively. Consistent with the findings in the simulation studies, the ICC 

under the MRM was slightly larger than the ICC under the MRM-CS because moderate 

influences of LPD were found. In addition, these two models yielded a similar measurement 

precision: The test reliability of the survey was .780 in the MRM and .781 in the MRM-CS. 
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Table 8. LPD estimates for real schools and randomly grouped schools under the MRM-CS 

in the general knowledge scale. 

  Real schools  Random schools 

No. Item Estimate SE  Estimate SE 

1 The foods you should and 

shouldn’t eat 

0.248 0.074  0.053 0.023 

2 The importance of exercise 0.277 0.095  0.052 0.024 

3 Smoking 0.273 0.089  0.084 0.039 

4 The problems of being 

overweight 

0.171 0.045  0.031 0.011 

5 Drinking 0.370 0.116  0.086 0.042 

6 Drug abuse 0.334 0.124  0.072 0.038 

7 Pregnancy 0.553 0.116  0.059 0.025 

8 AIDS 0.743 0.161  0.080 0.036 

9 What to do if a stranger 

approaches you 

0.594 0.110  0.057 0.023 

10 Taking care of your teeth 0.558 0.100  0.043 0.017 

11 What to do if someone 

chokes on food 

0.390 0.080  0.045 0.017 

12 Safety at home, school, or 

play 

0.287 0.073  0.079 0.030 

13 Stress 0.301 0.061  0.037 0.013 

14 How to handle conflict 0.357 0.085  0.051 0.019 

15 Where to go for help with a 

health problem 

0.232 0.064  0.050 0.022 

16 The problems of being 

underweight 

0.108 0.037  0.032 0.013 

17 Suicide 0.458 0.090  0.051 0.019 

 

Two pairs of schools with mean scores of 11.2 and 12.27 were selected to illustrate the 

performance of HCA. Figures 6 and 7 show the dendrograms of the hierarchical clustering 

of person residuals for the two school pairs under the two models. As shown in Figure 6a, 

when the residuals under the MRM were analyzed, the two explored clusters approximated 

the two real schools, implying that the residuals of adolescents from the same school were 
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homogeneous. Conversely, when the residuals under the MRM-CS were analyzed, as shown 

in Figure 6b, the correspondence between the explored clusters and the real schools was not 

clear. As shown in Figure 7a, the classification was not as distinct as the pattern in Figure 6a. 

Comparing Figures 7a and b, one finds that the two-class solutions under the two models 

were very different. The Euclidean distance for the good-classification pair (Figure 6) was 

8.20, but was 5.66 for the poor-classification pair (Figure 7), which supports the inference 

that higher heterogeneous person residuals between clusters (i.e., a larger Euclidean 

distance) can improve the performance of HCA in detecting LPD. In sum, the findings of 

HCA indicated that the magnitudes of LPD were substantial and should not be ignored.  

Furthermore, both the MRM and MRM-CS were fit as a survey of general knowledge 

to examine the influence of LPD. Noticeable contextual effects were found in some items 

with moderate magnitude. The consequence of ignoring LPD by fitting the MRM led to a 

shrunken scale, a higher ICC, and a lower test reliability.  
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Figure 6. Dendrograms for subjects nested within two schools (M = 12.5) in the general knowledge scale. 
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Figure 7. Dendrograms for subjects nested within two schools (M = 13.0) in the general knowledge scale. 
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5.2 Example 2: Problem-solving capability of police officers  

The data used for the second example are from the Impact of Community Policing 

Training and Program Implementation on Police Personnel in Arizona project (Haarr, 2003), 

a longitudinal study examining the impact of the Phoenix Regional Training Academy's 

curriculum on police trainees. This instrument, which was designed to measure police 

officers’ attitudes and beliefs in several aspects of the job, was administered on four 

occasions. The study used a dataset of 444 police officers responding to five four-point 

Likert-scale items (see Table 9) regarding problem-solving capabilities. Both the MPCM 

and MPCM-CS were fit to the data. Because of the repeated measures design and the usage 

of common items across time, substantial GPD and LPD were expected. Thus, fitting the 

MPCM-CS is effective for quantifying both kinds of dependences. Furthermore, HCA was 

conducted to investigate the homogeneity of cross-time person residuals from the MPCM- 

and MPCM-CS. Police officers were grouped based on the mean scores across four 

administrations.  

Table 9. LPD estimates for real and randomized repeated measures under the MPCM-CS in 

the problem-solving scale. 

 Real Repeated 

Measures 

 Randomized Repeated 

Measures 

Item 2ˆ   
SE  2ˆ   

SE 

1. Identify community problems 1.411 0.388  0.264  0.163  

2. Use problem-solving techniques to 

analyze problems 

2.126 0.461  0.496  0.277  

3. Develop solutions to community 

problems 

0.259 0.157  0.069  0.036  

4. Evaluate solutions to see how well 

they work 

0.872 0.300  0.110  0.062  

5. Work with beat residents to solve 

problems in the neighborhood 

1.610 0.416  0.122  0.084  
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Figure 8 displays the threshold estimates under the MPCM and the MPCM-CS, 

showing noticeable discrepancies between two sets of estimates. The difference between 

two corresponding parameter estimates (in absolute value) was between 0.270 and 1.540, 

suggesting that police officers exhibited substantial LPD across four administrations on 

these five items. 

 

Figure 8. Threshold estimates under the MPCM and the MPCM-CS in the problem-solving 

scale. 

The AIC, BIC, and DIC for the MPCM were 6.684, 6,774, and 7,720, respectively, and 
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for the MPCM-CS, they were 5,724, 5,840, and 7,225, respectively, suggesting that the 

MPCM-CS had a better fit. The posterior predictive p-value for the MPCM and the 

MPCM-CS were 0.888 and 0.800, respectively. The expected mean and standard deviation 

of Q3 would be -0.0007 and 0.577, respectively. The empirical mean Q3 was 0.174 for the 

MPCM and 0.094 for the MPCM-CS, and the empirical standard deviation was 0.619 for 

the MPCM and 0.542 for the MPCM-CS, which suggests that the MPCM-CS had a slightly 

better fit than did the MPCM. 

The estimates for 2
  of the five items in the MPCM-CS are listed in the left panel of 

Table 9. The item “Use problem-solving techniques to analyze problems” had the largest 

variance ( 2
 ). In addition, the MPCM-CS was fit to a replicated dataset in which 

the repeated measures were randomized to illustrate the presence of LPD. The estimates of 

2
 for the randomized repeated measures (listed in the right panel of Table 9)ranged from 

0.069 to 0.496, which were much smaller than those for the real dataset. The residual 

dependence among repeated measures in the real dataset was confirmed accordingly. 

The inter- and intra-person variances under the MPCM were 3.527 and 3.987, 

respectively, and 4.735 and 5.629, respectively, under the MPCM-CS. The ICC was .469 in 

the MPCM and 0.457 in the MPCM-CS, suggesting the consistency of proficiency across 

time. Comparing the inter- and intra-person variance estimates with the LPD estimates, 

trivial influences of LPD on the test reliabilities were expected. The test reliability was .793 

in the MPCM and .788 in the MPCM-CS.   
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HCA was applied to analyze the problem-solving scale. Unfortunately, the produced 

dendrograms based on the residuals under the MPCM and MPCM-CS were almost identical 

because of the short test length. The results implied that HCA may be unfeasible for 

detecting LPD in short tests. 

5.3 Example 3: Student surveys in the ICCS 2009 

The International Civic and Citizenship Study (ICCS) in 2009 (Schultz, Ainley, & 

Frailon, 2011), which surveyed 14-year-old students in 28 countries, was used in the third 

example. Specifically, a set of subscales that included 17 four-point Likert scale items (i.e., 

0 = not at all, 1 = to a small extent, 2 = to a moderate extent, and 3 = to a large extent) was 

designed to assess students’ perceptions of school contexts, including open classrooms (six 

items), student influence (six items), and student-teacher relations (five items). Appendix E 

lists the items on these three subscales. A Taiwan sample of 5,006 students from 150 schools 

(150 classes, to be precise) was selected. Each school included 20 to 51 students. Both the 

MDMPCM and MDMPCM-CS were fit to the data, and the genders of students were 

dummy-coded (boys = 1 and girls = -1) to predict the three latent traits. It was noticed that 

some items were about the learning environments (e.g., schools, classes, and teachers) and 

thus might be distinctive across classes. Therefore, we examined the hypothesis that 

students sampled from the same class would be more homogeneous than others from 

different classes in their perceptions. Because a teacher’s leadership might influence the 

general mood of a class and the student-teacher relationship (Brophy, 2006), a teacher’s 

influence would be revealed from students’ homogeneity in their overall perceptions (i.e., 

GPD) measured by the three subscales and some specific item descriptions (i.e., LPD). It 

was anticipated that the relationships among the three perceptions could be captured by 

means of multi-dimensional modeling. Fitting the MDMPCM-CS would be efficient for 

uncovering the similarities among the three perceptions and the extent of the homogeneity 
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on person residuals by items simultaneously. Ignoring LPD by fitting the simpler 

MDMPCM, according to the findings from the simulation study, would yield shrunken 

scales and attenuated factor loadings when the magnitudes of LPD were substantial. 

Likewise, person residuals under the two models were used to conduct HCA. Schools were 

paired according to the mean scores by each scale. 

Figure 9 displays the threshold estimates under the MDMPCM and the MDMPCM-CS, 

indicating that these estimates roughly overlapped, with minor discrepancies. Among the 

three subscales, the difference between two corresponding parameter estimates (in absolute 

value) was between 0.001 and 0.136, implying that students exhibited LPD on only some 

items and that the influence was trivial. 
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Figure 9. Threshold estimates under the MDMPCM and the MDMPCM-CS in the ICCS 

survey. 

The AIC, BIC, and DIC for the MDMPCM were 146,512, 146,942, and 158,219, 

respectively, and for the MDMPCM-CS, they were 144,130, 144,671, and 156,800, 

respectively, suggesting that the MDMPCM-CS had a better fit. The posterior predictive 

p-values for the MDMPCM and the MDMPCM-CS were 0.005 and 0.990, respectively, 

indicating that the MDMPCM yielded an underfit, whereas the MDMPCM-CS yielded an 

overfit. Table 10 lists the empirical Q3 values for the individual subscales and the whole 



67 
 

scale. Overall, the empirical mean Q3 was 0.001 for the MDMPCM and 0.001 for the 

MDMPCM-CS, and the empirical standard deviation was 0.285 for the MDMPCM and 

0.283 for the MDMPCM-CS.  

Table 10. Expected and empirical Q3 under the MDMPCM and MDMPCM-CS in the ICCS 

survey.  

Subscale 

No. of 

Items 

No. of 

Students 

Expected Q3  MDMPCM  MDMPCM-CS 

Mean SD  Mean SD  Mean SD 

OC 6 5,006 -0.0002 0.500  0.002 0.468  0.002 0.466 

SI 6 5,006 -0.0002 0.500  0.042 0.524  0.032 0.510 

STR 5 5,006 -0.0002 0.577  0.052 0.546  0.044 0.533 

Total 17 5,006 -0.0002 0.258  0.001 0.285  0.001 0.283 

Note. OC = open classrooms, SI = student influence, and STR = student-teacher relations. 

The estimates for 2
  for the 17 items in the MDMPCM-CS are listed in the left panel 

of Table 11. It appears that LPD was significant for a few items. In the open-classrooms 

scale, the item “Students bring up current political events for discussion in class” had the 

largest variance ( 2
 ). On the student-influence subscale, the item “Classroom rules” 

had the largest variance ( 2
 ). On the student-teacher relation scale, the item 

“Students get along well with most teachers” had the largest variance ( 2


)Noticeablythe large dependence in these items was reasonable because they 

related to teachers’ class management. To illustrate the presence of LPD, the 

MDMPCM-CS was fit to a replicated dataset in which students were randomly grouped into 

schools. The estimates of 2
 for the random dataset (listed in the right panel of Table 

11)ranged from 0.018 to 0.095, a smaller range than those for the real dataset. Thus, the 

residual dependence among students in the real dataset was not due to random errors. 
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Table 11. LPD estimates for real schools and randomly grouped schools under the 

MDMPCM-CS in the ICCS survey. 

  Real Schools  Random Schools 

Subscale Item 2ˆ   
SE  2ˆ   

SE 

Open 

Classrooms 

IS2G16B 0.042  0.012   0.023  0.007  

IS2G16C 0.047  0.015   0.021  0.006  

IS2G16D 0.290  0.047   0.053  0.014  

IS2G16E 0.112  0.021   0.030  0.010  

IS2G16F 0.022  0.007   0.018  0.005  

IS2G16G 0.036  0.011   0.020  0.006  

Student 

Influence 

IS2G17A 0.050  0.018   0.024  0.007  

IS2G17B 0.023  0.008   0.021  0.007  

IS2G17C 0.025  0.008   0.018  0.006  

IS2G17D 0.065  0.017   0.020  0.007  

IS2G17E 0.252  0.042   0.095  0.022  

IS2G17F 0.091  0.020   0.025  0.007  

Student 

-Teacher 

Relations 

IS2G18A 0.067  0.023   0.045  0.016  

IS2G18B 0.150  0.033   0.035  0.013  

IS2G18C 0.042  0.015   0.029  0.010  

IS2G18E 0.043  0.015   0.029  0.010  

IS2G18F 0.065  0.022   0.044  0.016  

Note. Full item contents can be found in Appendix E. 

 The parameter estimates under the MDMPCM and MDMPCM-CS are shown in Table 

12. The variances for these three latent traits were 1.357, 2.553, and 4.094, respectively, 

under the MDMPCM, and 1.522, 2.746, and 4.240, respectively, under the MDMPCM-CS. 

Comparing the two sets of estimates, the scale shrinkage in the MDMPCM was not very 

serious because the magnitudes of LPD were minor compared with the variances of the 

latent traits. In the MDMPCM-CS, the correlation matrix for the individual-level effects 

was 






















000.1327.0398.0

327.0000.1239.0

398.0239.0000.1

, and 






















000.1536.0667.0

536.0000.1336.0

667.0336.0000.1

 for the school-level 

effects, suggesting that, at both the student and school levels, the influence score and 
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student-teacher relations score were positively correlated, but the open-classroom score was 

negatively correlated with the influence score and the student-teacher relation score. The 

results also indicate that boys had a higher mean score in evaluating the two subscales of 

open schools and student influence, whereas girls had a higher mean score in evaluating 

student-teacher relationships. The influences of LPD on test reliabilities were trivial. The 

test reliabilities of the three subscales in the MDMPCM were .798, .847, and .845, 

respectively, and .803, .848, and .844, respectively, for the MDMPCM-CS.  
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Table 12. Multilevel modeling results under the MDMPCM and MDMPCM-CS. 

 MDMPCM  MDMPCM-CS 

Parameters Estimate SE  Estimate SE 

Gender (OC) 0.195 0.018  0.186 0.018 

Gender (SI) 0.101 0.024  0.100 0.024 

Gender (STI) -0.184 0.029  -0.179 0.029 

 1.305 0.045  1.183 0.040 

 -0.441 0.034  -0.410 0.031 

 -0.900 0.044  -0.845 0.042 

 2.614 0.078  2.428 0.078 

 1.048 0.059  0.997 0.057 

 3.924 0.125  3.763 0.136 

u 0.191 0.030  0.149 0.023 

u -0.055 0.020  -0.045 0.018 

u -0.160 0.033  -0.129 0.027 

u 0.142 0.026  0.131 0.025 

u 0.111 0.029  0.109 0.030 

u 0.302 0.052  0.309 0.053 

Note. OC = open classrooms, SI = student influence, and STR = student-teacher relations. 

The raw scores of the open class scale were used herein to conduct HCA because large 

LPD was observed on the open classroom scale. For simplicity, the results for two pairs of 

schools with mean scores of 11.2 and 12.27 are presented. Figures 10 and 11 show the 

dendrograms of the hierarchical clustering of person residuals for the two school pairs under 

the MDMPCM and MDMPCM-CS, respectively. As shown in Figure 10a, when the 

residuals under the MDMPCM were analyzed, the two explored clusters approximated the 

two real schools, implying that the residuals of adolescents from the same school were 

homogeneous. Conversely, when the residuals under the MDMPCM-CS were analyzed, as 

shown in Figure 10b, the correspondence between the explored clusters and the real schools 

was not clear. In another school pair (see Figure 11), the correspondence between the 

explored clusters and the real schools was almost invisible. The results of HCA generally 

indicated minor LPD in the ICCS dataset. 
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Overall, the LPD in the ICCS dataset can be identified by the MDMPCM-CS. Students 

tended to respond homogeneously on a few items about teachers’ class management. 

Nevertheless, the LPD in this example was not very serious because the heterogeneity of the 

latent traits across students was much larger than that in the students’ residuals. 
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Figure 10. Dendrograms for subjects nested within two schools (M = 11.2) on the open classroom scale. 
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Figure 11. Dendrograms for subjects nested within two schools (M = 12.27) on the open classroom scale. 
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5.4 Example 4: Love Relationship Scale     

The aforementioned paired-sample design is a special application of cluster sampling, 

so a survey with paired samples was selected as the fourth example. The love relationship 

scale (C. F. Wang, 2000), which was developed based on the triangular theory of love 

(Sternberg, 1986, 1987), consists of three subscales (eight items in each) measuring passion, 

intimacy, and commitment. A common six-point rating scale was designed for these three 

subscales: 0 = very inconsistent, 1 = quite inconsistent, 2 = inconsistent, 3 = consistent, 4 = 

quite consistent, and 5 = very consistent. Therefore, a respondent who had high scores on 

these three subscales exhibited higher passion, intimacy, and commitment in his (or her) 

relationship. The reader can refer to Appendix F for the item descriptions of all items (in 

Chinese). The survey included 202 couples in Taiwan. According to Sternberg (1986), the 

relationship between the general love perception and the three specific love components 

follows a higher-order structure so that the HOPCM and HOPCM-CS are applicable. In 

particular, because few respondents chose the extreme-response categories on some items, a 

set of common threshold parameters was used for items within the same subscale, as 

constraints in the RSM, to ease the burden of estimation for the threshold parameters. HCA 

also was applied to examine whether the original pairing structure could be recovered by 

means of the information of person residuals from the HOPCM and HOPCM-CS.  

Table 13 summarizes the mean and standard deviation of the raw scores and the mean 

thresholds under the HOPCM and HOPCM-CS for each item. According to the distribution 

of the raw scores, respondents’ responses were generally positive, suggesting that they were 

satisfied with their relationships. The respondents showed higher agreement on the passion 

and intimacy subscales than on the commandment scale. In terms of the mean threshold 

estimates, it was evident that the HOPCM yielded a narrower range on each scale than did 

the HOPCM-CS, indicating substantial LPD. 
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The AIC, BIC, and DIC for the HOPCM were 19,769, 19,945, and 20,618, respectively, 

and for the HOPCM-CS, they were 18,172, 18,444, and 19,970, respectively. These indices 

indicated that the HOPCM-CS had a better fit than did the HOPCM. The posterior 

predictive p-values for the HOPCM and the HOPCM-CS were 0.080 and 0.378, 

respectively. Table 14 lists the empirical Q3 values for the individual subscales and the 

whole scale. Overall, the empirical mean Q3 was -0.002 for the HOPCM and -0.002 for the 

HOPCM-CS, and the empirical standard deviation was 0.231 for the HOPCM and 0.228 for 

the HOPCM-CS.  
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Table 13. Raw scores and mean threshold estimates under the HOPCM and HOPCM-CS on 

the Love Relationship Scale. 

  Raw score  HOPCM  HOPCM-CS 

Subscale Item Mean SD  Estimate SE  Estimate SE 

Passion 2 3.938  0.886   -2.507  0.149   -2.981  0.189  

4 3.940  0.795   -2.517  0.157   -2.974  0.188  

5 3.774  0.907   -2.108  0.148   -2.538  0.194  

9 4.196  0.834   -3.189  0.159   -3.850  0.224  

11 3.532  0.878   -1.555  0.147   -1.843  0.165  

19 4.161  0.782   -3.093  0.159   -3.649  0.199  

23 3.819  0.911   -2.207  0.147   -2.610  0.185  

24 3.489  1.042   -1.458  0.142   -1.726  0.164  

Intimacy 1 4.122  0.740   -2.240  0.125   -2.872  0.162  

3 4.035  0.929   -2.058  0.124   -2.689  0.167  

6 3.814  0.835   -1.624  0.113   -2.100  0.150  

8 3.715  0.847   -1.449  0.110   -1.879  0.143  

15 3.676  0.851   -1.381  0.113   -1.795  0.139  

16 4.490  0.884   -3.172  0.141   -4.690  0.258  

18 3.579  1.200   -1.222  0.106   -1.699  0.158  

22 3.923  1.041   -1.826  0.121   -2.472  0.168  

Commitment 7 3.822  1.022   -1.875  0.121   -2.170  0.142  

10 3.195  1.224   -0.907  0.104   -1.038  0.133  

12 3.970  1.047   -2.146  0.122   -2.485  0.151  

13 3.162  1.325   -0.860  0.110   -1.007  0.127  

14 3.935  1.094   -2.082  0.120   -2.438  0.159  

17 3.365  1.300   -1.153  0.113   -1.337  0.134  

20 2.915  1.488   -0.520  0.103   -0.620  0.133  

21 3.239  1.311   -0.969  0.108   -1.128  0.130  

Note. Raw scores of items 10, 12, 13, 14, 17, 20, and 21 have been reversely coded. 
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Table 14. Expected and empirical Q3 under the HOPCM and HOPCM-CS on the Love 

Relationship Scale. 

Subscale 

No. of 

Items 

No. of 

Students 

Expected Q3  HOPCM  HOPCM-CS 

Mean SD  Mean SD  Mean SD 

Passion 8 404 -0.002 0.408  0.003 0.402  0.004 0.397 

Intimacy 8 404 -0.002 0.408  0.000 0.396  0.002 0.391 

Commitment 8 404 -0.002 0.408  0.005 0.407  0.006 0.398 

Total 24 404 -0.002 0.213  -0.002 0.231  -0.001 0.228 

 

The estimates for 2
  of the 24 items in the HOPCM-CS are listed in the left panel of 

Table 15. It appears that LPD was substantial for some items. For example, on the passion 

scale, Item 9, “I hope he or she would think I’m attractive” has the largest variance ( 2


). On the intimacy subscale, Item 16, “We have intimate act of kissing” has the 

largest variance ( 2
 ), and on the commitment scale, Item 14, “Sometimes I feel like 

I am not sincere with him (or her) (negatively worded)” has the largest variance ( 2


)To illustrate the presence of LPD, the HOPCM-CS was fit to a replicated dataset 

in which couples were randomly paired. The estimates of 2
 for the artificial dataset (listed 

in the right panel of Table 15)were generally smaller than those of the real dataset, but 

some estimates were not close to zero. The large dependence in these items might be 

because these descriptions are relative to the general thoughts or behaviors in the 

physical-attraction stage of mate selection. In sum, the residual dependence between the real 

couples was not due to random errors. 
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Table 15. LPD estimates for real couples and randomly grouped couples under the 

HOPCM-CS on the Love Relationship Scale. 

  Real couples  Random couples 

Subscale Item 2ˆ   
SE  2ˆ   

SE 

Passion 2 0.503  0.217   0.289  0.178  

4 0.083  0.052   0.086  0.049  

5 1.112  0.323   0.591  0.241  

9 1.941  0.460   1.919  0.458  

11 0.231  0.128   0.231  0.141  

19 0.108  0.071   0.110  0.077  

23 0.142  0.100   0.149  0.086  

24 0.145  0.095   0.128  0.067  

Intimacy 1 0.087  0.048   0.083  0.048  

3 0.294  0.162   0.209  0.127  

6 0.114  0.082   0.125  0.075  

8 0.073  0.042   0.062  0.035  

15 0.084  0.054   0.064  0.034  

16 4.529  0.968   2.643  0.604  

18 1.198  0.272   1.302  0.317  

22 0.852  0.248   0.635  0.228  

Commitment 7 0.082  0.046   0.065  0.032  

10 0.086  0.046   0.083  0.045  

12 0.252  0.139   0.138  0.089  

13 0.272  0.133   0.114  0.064  

14 0.617  0.203   0.187  0.108  

17 0.143  0.086   0.107  0.062  

20 0.589  0.181   0.244  0.106  

21 0.259  0.126   0.163  0.088  

 

The parameter estimates in the hierarchical structure are listed in Table 16. The 

standardized estimates for the three loadings under the HOPCM were .842, .892, and .833, 

respectively, whereas the estimates under the HOPCM-CS were .864, .877, and .835, 

respectively. In treating the HOPCM-CS as the gold standard, it was suggested that ignoring 
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the substantial LPD would decrease the relationships between the general love perception 

and three specific love components. Because the LPD was substantial on most items, other 

statistics -- such as the test reliabilities, gender difference, and clustering effect in the 

general love perception -- varied between the two models. The test reliabilities for the three 

first-order and one second-order latent traits in the HOPCM were .892, .869, .917, and .847, 

respectively, and .900, .873, .917, and .848, respectively, in the HOPCM-CS. The gender 

difference in the general love perception was 0.109 in the HOPCM and 0.133 in the 

HOPCM-CS, indicating that females exhibited a higher involvement in love than did their 

companions. The conditional ICC on the second-order latent trait was .487 in the HOPCM 

and 0.459 in the HOPCM-CS, indicating that the couples exhibited a high degree of general 

love perception, and LPD would result in inflation when fitting the standard model. 

 

Table 16. Parameter estimates under the HOPCM and HOPCM-CS on the Love 

Relationship Scale. 

 HOPCM  HOPCM-CS 

Parameters Estimate SE  Estimate SE 

1 (Passion) 1.000* –  1.000* – 

2 (Intimacy) 0.790  0.067   0.784  0.063  

3 (Commitment) 0.974  0.073   0.914  0.082  

1 (Passion) 0.712  0.119   0.912  0.172  

2 (Intimacy) 0.273  0.072   0.486  0.107  

3 (Commitment) 0.721  0.112   0.956  0.158  

Gender -0.109  0.054   -0.133 0.067 
2
  0.894  0.159   1.431 0.252 
2
u  0.849  0.181   1.211 0.267 

Note. * = constrained for identification. 

HCA was applied to analyze the Love Relationship Scale. Because the most salient 

LPD was observed on items 16 and 18 on the intimacy scale, the couples were stratified 

according to the mean score on the intimacy scale for the subsequent HCA. Two strata with 
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mean scores of 29.5 and 31.5 are presented as examples, and the dendrograms are shown in 

Figures 12 and 13. When the residuals under the HOPCM were analyzed, as shown in 

Figures 12a and 13a, males and females were grouped in a disorderly fashion, and the 

original pairing structure was nearly unidentified. Thus, it was not surprising that the 

original pairing structure also was unobserved when the residuals under the HOPCM-CS 

were analyzed, as shown in Figures 12b and 13b. The results pointed out an evident 

limitation of HCA for paired samples. 

On the Love Relationship Scale, a clear conclusion can be stated that the paired males 

and females yielded not only similar attitudes on their relationships, but also common 

understandings toward some interactive behaviors, and the HOPCM-CS successfully 

detached such dependence from the paired couples. Because the influences of common 

views toward some aspects were not identified in the standard HOPCM, the similarities in 

attitudes toward relationships would be overestimated.  
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Figure 12. Dendrograms for couples that had a mean score of 29.5 on the intimacy scale. 
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Figure 13. Dendrograms for couples that had a mean score of 31.5 on the intimacy scale. 
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Chapter 6: Discussion and Conclusions 

6.1 Summary 

When two- or multiple-stage sampling is conducted, persons nested within a cluster 

may perform more similarly than those from different clusters (i.e., GPD), and there may be 

local dependence among persons in the same cluster after standard multilevel IRT models 

are fit (i.e., LPD). The traditional approach of multilevel modeling in IRT is aimed at 

quantifying the magnitude of GPD, but it ignores the possibility of LPD. In addition, 

although LID and LPD are two major violations of the local independence assumption, the 

investigation of LPD is scarce in the IRT literature.  

 To answer the first research question, relevant literature in relation to multilevel 

modeling and violation of local independence are reviewed. The MRM-CS and 

MPCM-CS—in which multilevel modeling is created on the intended-to-be-measured latent 

trait to account for GPD, and a set of random variables is implemented to quantify LPD in 

different items—are proposed for dichotomous and polytomous responses. To answer the 

second research question, two multidimensional generalizations of the MDMPCM-CS and 

HOPCM-CS are then proposed for tests consisting of multiple subtests. Compared with the 

MDMPCM-CS, the HOPCM-CS is especially suitable for the hierarchy structures of latent 

traits measured by different subtests. In addition, the MFRM-CS is presented to explain 

GPD and LPD in multifaceted data. To avoid highly dimensional integration in parameter 

estimation for these new models, MCMC methods are adopted, and the freeware program 

WinBUGS is used for parameter estimation.  

To evaluate the applicability of the new models and answer the third research question, 

several simulation studies were conducted to evaluate the parameter recovery of the new 

models and the consequences of failing to consider LPD. The WinBUGS codes in the 

simulations are attached in Appendices A to D. Simulation study 1 examined the parameter 
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recovery of the MPCM-CS. It was found that, when item responses were generated from the 

MPCM-CS, the parameters could be recovered fairly well, and fitting the standard MPCM 

resulted in biased parameter estimates, shrunken scales, inflated GPD, and deflated test 

reliabilities. In contrast, when item responses were generated from the MPCM, fitting the 

unnecessarily complicated MPCM-CS yielded results very similar to those obtained by 

fitting the true model, and estimates of the LPD parameters were approximately zero. 

Simulation study 2 investigated the influence of different combinations of clusters and 

intra-cluster sample sizes, given a fixed total sample size. It concluded that the larger the 

number of clusters, the more accurate the parameter estimation would be. Simulation 

studies 3 and 4 examined the parameter recovery of the MDMPCM-CS and the 

HOPCM-CS. The results were similar to the findings in simulation study 1. Simulation 

study 5 examined the MFRM-CS and confirmed its feasibility for multifaceted data.  

To answer the fourth research question, a conventional approach for HCA was adopted 

in this study to evaluate possible LPD. The concept is intuitive: When a standard model is 

fit to data with LPD, the resulting person residuals scatter in a multidimensional space, so 

HCA can help recover the cluster membership with person residuals. Simulations were 

conducted to evaluate the performance of HCA in detecting LPD, but the findings indicated 

its limited value compared with direct IRT modeling to LPD. 

To answer the last research question, four empirical examples – one subscale in the 

National Longitudinal Study of Adolescent Health (Add Health) project measuring the 

general knowledge in daily life, one subscale in the longitudinal Impact of Community 

Policing Training and Program Implementation on Police Personnel in Arizona study, a 

subset of a student questionnaire in the ICCS in 2009 measuring the perceptions of school 

contexts, and the Love Relationship Scale for couples – were analyzed with the newly 

developed models and HCA. Results showed that clustered samples exhibited various 
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degrees of LPD across items, and fitting standard models disregarding LPD led to shrinkage 

scales. HCA on person residuals was applicable to detecting LPD, but its performance, 

especially with the paired samples, was unsatisfactory. The new models again demonstrate 

efficiency in quantifying the magnitudes of LPD over HCA.  

6.2 Limitations and future research 

 This study adopted a simple method of adding a common parameter for persons within 

a cluster to account for the inter-person interaction on each item, i.e., in the proposed 

models, the inter-person interaction was treated as an all-channel network. Such  

imagination is reasonable in some cases (e.g., large-scale tests), but may not always be 

applicable to other scenarios. Other types of network patterns are possible (Ramos, 2012), 

and different levels of centralization can be found in different scenarios. For instance, in the 

studies of policy implementation within a community, a hierarchical structure is commonly 

found, in which a few grassroots officials possess an abundance of resources and authority 

to influence the behaviors of other residents (e.g., Li & O’Brien, 1999). Logically, it is more 

appropriate to consider the hierarchy within a cluster. In parenting studies, the effect of 

parenting is unidirectional so that the network of family members is more like a chain 

(Baumrind, 1971, 1991). With more variables describing person interactions, it is feasible to 

develop several delicate models that incorporate the most appropriate network patterns, 

according to each testing situation, for comparing the similarities and differences of 

parameter estimates under different models. In addition, the hierarchy in the GPD was not 

included in the proposed models. A multilevel structure also can be applied to LPD 

parameters to illustrate the effect of cluster-level covariates on LPD. How to deal with dual 

local dependence (i.e., coexistence of LID and LPD) in IRT is also a major problem for 

future studies. 
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As pointed out in Chapter 3, the proposed models include a large number of random 

variables to account for LPD (one random variable for each item), making marginal 

maximum likelihood estimation inapplicable. Bayesian methods with WinBUGS were, thus, 

applied in the study. Unfortunately, the maintenance of WinBUGS has been suspended since 

2007. Therefore, the alternative OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2014) is 

recommended for future studies, as it also is an open-source package application developed 

by the MRC Biostatistics Unit in Cambridge for Bayesian analysis and is as efficient and 

reliable as WinBUGS over a wide range of applications. On the other hand, JAGS (Just 

Another Gibbs Sampler; Plummers, 2015) and NIMBLE (NIMBLE Development Team, 

2016), which are both open-resource applications written in C++ for Bayesian analysis, also 

can be used. It is worthy to note that these packages were developed for general statistical 

models, i.e., they are not specialized for any statistical model, so the efficiency of 

calibration would be mediocre. Consequently, developing an optimized program to 

accelerate efficiency is essential for further studies.  

The utility of HCA in accessing LPD was exemplified in this study, but two major 

limitations were raised in both the simulations and empirical examples. First, HCA on 

person residuals does not guarantee a high likelihood of recovering inputted clusters. In 

reality, a dataset can include numerous clusters exhibiting different levels of LPD. The 

reason why there was a mismatch between the explored clusters and true clusters in the 

examples is that the selected observations happened to exhibit similar patterns of LPD, such 

that the homogeneity of person residuals could not provide sufficient information for 

recovering true clusters. Secondly, many empirical situations restrict the applicability of 

cluster analysis. An apparent weakness is to conduct clusters with few observations, such as 

paired samples, then the conventional analysis becomes ineffective. In addition, 

occasionally, too many combinations of pre-matching clusters are available, making the use 
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of cluster analysis cumbersome. In sum, using HCA to assess LPD among person residuals 

is less efficient and provides barely satisfactory power compared with modeling LPD 

directly. One may try other conventional tools or develop a new statistic for detecting LPD 

and compare performance. 

Similar to other simulation studies, the simulated conditions in this study were limited. 

One could include more comprehensive conditions (e.g., test lengths, non-normal 

distribution of the latent trait, and mixed format items) to investigate the performance of the 

new models in future studies. For example, varied combinations of clusters and the number 

of units are empirically possible. By following the research design in simulation study 2, a 

follow-up simulation using 250 couples answering 10 items was conducted to examine the 

applicability of the new models to minimum units (i.e., 2) within a cluster. The parameter 

recovery went fairly well, implying that LPD parameters can be estimated accurately, as 

long as the number of clusters is large. Herein, the minimum number of clusters is not 

recommended. As illustrated in the literature, the smaller the size, the more inaccurate the 

parameter estimates are. The guideline regarding the number of clusters when applying 

multilevel analyses could be a reference index. Conversely, researchers can fit the new 

models to their data and see whether the precision of parameter estimates is acceptable. 

Furthermore, applications of the new models with more empirical examples are needed to 

investigate the cause and influence of LPD in various situations. 

Further model extensions are possible. For example, similar to modern IRT models, 

one can consider variant-item discrimination in the presented models or latent group 

membership at class/individual levels. Finally, the LPD modeling approach can be applied 

beyond the scope of IRT models. For example, compared with the latent trait approach, 

cognitive diagnostic models (CDMs), which are specialized to assess respondents’ mastery 

of involved attributes, are gradually implemented in educational tests (de la Torre, 2011; 
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Haertel, 1989; Henson, Templin & Willse, 2009; Junker & Sijtsma, 2001; Templin & 

Henson, 2006; von Davier, 2008, 2013). Although distinct viewpoints toward measured 

proficiency are adopted in IRT and CDM, the analyzed dataset is the same. Therefore, the 

possibility of the existence of LPD should be carefully considered in CDMs. Researchers 

have incorporated multilevel modeling (e.g., Ayers, Rabe-Hesketh, & Nugent, 2013) or DIF 

(e.g., Li & Wang, 2015) into standard CDMs. Thus, one can incorporate these two 

components jointly into CDMs. For example, in the framework of the log-linear cognitive 

diagnosis model (LCDM; Henson, Templin, & Willse, 2009), the generalized model can be 

formulated as: 
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in which ng is the profile of person n within cluster g, including K latent attributes; i,0 is 

the probability of success for test-takers who do not have any attributes measured by item i; 

T
iλ  is a vector of weights for item i; qi is a vector specifying the required attributes on item 

i; h(ng, qi) is the combination of ng and q; and ig stands for the LPD among persons 

within cluster g on item i. The latent attribute kng can be assumed to follow a Bernoulli 

distribution, with a probability of kng, and kng is further modeled by logistic regression: 
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in which Xng is a vector, including individual and group-level covariates for person n within 

cluster g. Consequently, the GPD on attribute k can be quantified by including cluster-level 

covariates. 

6.3 Conclusions 

The proposed LPD modeling approach, as illustrated in Chapter 3, is technically the 

composition of multilevel modeling, a set of random variables for persons within a cluster 
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on all items, and a standard IRT model. Thus, it can be applied to numerous studies, 

including a person-clustering structure for examining how homogeneous the 

intended-to-be-measured latent trait(s) and response patterns among respondents within a 

cluster are. Compared with the standard multilevel models, the homogeneity of patterns 

from respondents within a cluster (i.e., LPD) is especially noticeable in the proposed models. 

The imagination and expectation of LPD depend on the contexts. On the one hand, LPD can 

be comprehended from the viewpoint of DIF. The magnitudes of LPD should be minimized 

in a fair measurement. If the magnitudes are too large to ignore, it is better to identify 

possible sources of DIF items for further revision or to remove them so that the test scores 

can be compared across clusters. On the other hand, LPD is anticipated in some situations. 

As demonstrated in Example 4, it is meaningful for couples that some of their thoughts and 

attitudes toward love were dependent on each other. Apparently, the active measure to 

explore LPD helps boost understanding of data.  

This study illustrates that ignoring LPD by fitting standard models would lead to 

biased estimation and inflated GPD. The LPD modeling approach can be easily extended 

and applied to data with clustered samples; however, fitting a more complicated model 

arbitrarily comes with a price. It would increase the difficulty in interpreting test scores and 

decrease the generalizability of the research findings. When the magnitudes of LPD are 

found to be trivial for all items, standard multilevel models should suffice. Undoubtedly, it 

is much easier to explore the magnitudes of LPD than to explain its causes. The proposed 

methods simply come up with some quantitative evidence for LPD. The views of content 

experts are still needed to provide meaningful explanations as to why LPD occurs. 
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Appendix A: WinBUGS Codes for the MPCM-CS of Simulation Studies 1 and 2 

# N is the number of examinees; 

# T is the number of items; 

# r is the data matrix with N rows and T columns; 

# idx is the cluster index; 

# lv1.p is the person-level predictor (i.e., -1 or 1), and lv1.pc is the predicted coefficient; 

# lv2.p is the cluster-level predictor (i.e., -1 or 1), and lv2.pc is the predicted coefficient; 

# theta is the person ability; 

# delta are the item thresholds; 

# and xi is the LPD parameter. 

 

model { 

 for (i in 1:N) { 

  lv1.e[i] ~ dnorm(0, tau.lv1) 

  theta[i] <- (lv2.pc[lv2.p[i]] + lv2.e[idx[i]])+ lv1.pc[lv1.p[i]] + lv1.e[i] 

  for (j in 1:T) { 

   Q[i,j,1] <- 1 

   Q[i,j,2] <- exp(theta[i] - delta[j,1] + xi[idx[i],j]) 

   Q[i,j,3] <- exp(2*theta[i] - delta[j,1] - delta[j,2] + 2*xi[idx[i],j]) 

   Q[i,j,4] <- exp(3*theta[i] - delta[j,1] - delta[j,2] - delta[j,3] + 3*xi[idx[i],j]) 

   denom[i,j] <- sum(Q[i,j,]) 

   PP[i,j,1] <- Q[i,j,1]/denom[i,j] 

PP[i,j,2] <- Q[i,j,2]/denom[i,j] 

PP[i,j,3] <- Q[i,j,3]/denom[i,j] 

PP[i,j,4] <- Q[i,j,4]/denom[i,j] 

   r[i,j] ~ dcat(PP[i,j,]) 

  } 

 } 

# Priors 

 tau.lv1 ~ dgamma(0.1, 0.1) 

 sigma.lv1 <- 1/tau.lv1 

 tau.lv2 ~ dgamma(0.1, 0.1) 

 sigma.lv2 <- 1/tau.lv2 

 lv1.pc[1] ~ dnorm(0, 0.1) 

 lv1.pc[2] <- -lv1.pc[1] 

 lv2.pc[1] ~ dnorm(0, 0.1) 

 lv2.pc[2] <- -lv2.pc[1] 

 for (i in 1:100) { # there are 100 clusters 
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  lv2.e[i] ~ dnorm(0, tau.lv2) 

  for (j in 1:T) { 

   xi[i,j] ~ dnorm(0, tau.xi[j]) 

  } 

 } 

 for (j in 1:T) { 

  delta[j,1] ~ dnorm(0, 0.1) 

  delta[j,2] ~ dnorm(0, 0.1) 

  delta[j,3] ~ dnorm(0, 0.1) 

  tau.xi[j] ~ dgamma(0.1, 0.1) 

  sigma.xi[j] <- 1/tau.xi[j] 

 } 

} 
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Appendix B: WinBUGS Codes for the MDMPCM-CS of Simulation Study 3 

# N is the number of examinees; 

# T is the number of items; 

# r is the data matrix with N rows and T columns; 

# idx is the cluster index; 

# lv1.p is the person-level predictor (i.e., -1 or 1), and lv1.pc is the predicted coefficient; 

# theta is the person ability; 

# delta are the item thresholds; 

# and xi is the LPD parameter. 

 

model { 

 for (i in 1:N) { 

  theta.i[i,1:3] ~ dmnorm(mu.i[1:3], I_cov.i[1:3, 1:3]) 

  for (d in 1:3) { 

   theta[i,d] <- theta.i[i,d] + lv1.pc[d,lv1.p[i]] + theta.s[idx[i],d] 

   for (j in (5*(d-1)+1): (5*d)) { 

    Q[i,j,1] <- 1 

    Q[i,j,2] <- exp(theta[i,d] - delta[j,1] + xi[idx[i],j]) 

    Q[i,j,3] <- exp(2*theta[i,d] - delta[j,1] - delta[j,2] + 2*xi[idx[i],j]) 

    Q[i,j,4] <- exp(3*theta[i,d] - delta[j,1] - delta[j,2] - delta[j,3] + 

3*xi[idx[i],j]) 

    denom[i,j] <- sum(Q[i,j,]) 

    PP[i,j,1] <- Q[i,j,1]/denom[i,j] 

PP[i,j,2] <- Q[i,j,2]/denom[i,j] 

PP[i,j,3] <- Q[i,j,3]/denom[i,j] 

PP[i,j,4] <- Q[i,j,4]/denom[i,j] 

    r[i,j] ~ dcat(PP[i,j,]) 

   } 

  } 

 } 

# Priors 

 mu.i[1] <- 0 

 mu.i[2] <- 0 

 mu.i[3] <- 0 

 I_cov.i[1:3, 1:3] ~ dwish(alpha[1:3, 1:3], 3) 

 covm.i[1:3, 1:3] <- inverse(I_cov.i[1:3, 1:3]) 

 rho.i[1,2] <- covm.i[1,2]/sqrt(covm.i[1,1]*covm.i[2,2]) 

 rho.i[1,3] <- covm.i[1,3]/sqrt(covm.i[1,1]*covm.i[3,3]) 
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 rho.i[2,3] <- covm.i[2,3]/sqrt(covm.i[2,2]*covm.i[3,3]) 

 mu.s[1] <- 0 

 mu.s[2] <- 0 

 mu.s[3] <- 0 

 I_cov.s[1:3, 1:3] ~ dwish(alpha[1:3, 1:3], 3) 

 covm.s[1:3, 1:3] <- inverse(I_cov.s[1:3, 1:3]) 

 rho.s[1,2] <- covm.s[1,2]/sqrt(covm.s[1,1]*covm.s[2,2]) 

 rho.s[1,3] <- covm.s[1,3]/sqrt(covm.s[1,1]*covm.s[3,3]) 

 rho.s[2,3] <- covm.s[2,3]/sqrt(covm.s[2,2]*covm.s[3,3]) 

 lv1.pc[1,1] ~ dnorm(0, 0.1) 

 lv1.pc[1,2] <- -lv1.pc[1,1] 

 lv1.pc[2,1] ~ dnorm(0, 0.1) 

 lv1.pc[2,2] <- -lv1.pc[2,1] 

 lv1.pc[3,1] ~ dnorm(0, 0.1) 

 lv1.pc[3,2] <- -lv1.pc[3,1] 

for (i in 1:200) { # there are 200 clusters 

  theta.s[i,1:3] ~ dmnorm(mu.s[1:3], I_cov.s[1:3, 1:3]) 

  for (j in 1:T) { 

   xi[i,j] ~ dnorm(0, tau.xi[j]) 

  } 

 } 

 for (j in 1:T) { 

  delta[j,1] ~ dnorm(0, 0.1) 

  delta[j,2] ~ dnorm(0, 0.1) 

  delta[j,3] ~ dnorm(0, 0.1) 

  tau.xi[j] ~ dgamma(0.1, 0.1) 

  sigma.xi[j] <- 1/tau.xi[j] 

 } 

} 
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Appendix C: WinBUGS Codes for the HOPCM-CS of Simulation Study 4 

# N is the number of examinees; 

# T is the number of items; 

# r is the data matrix with N rows and T columns; 

# idx is the cluster index; 

# lambda is the regression weight of the 2nd-order latent trait on the 1st-order latent trait; 

# nu is the regression error; 

# lv1.p is the person-level predictor (i.e., -1 or 1), and lv1.pc is the predicted coefficient; 

# lv2.p is the cluster-level predictor (i.e., -1 or 1), and lv2.pc is the predicted coefficient; 

# theta is the person ability; 

# delta are the item thresholds; 

# and xi is the LPD parameter. 

 

model { 

 for (i in 1:N) { 

  lv1.e[i] ~ dnorm(0, tau.lv1) 

  theta[i,5] <- (lv2.pc[lv2.p[i]] + lv2.e[idx[i]])+ lv1.pc[lv1.p[i]] + lv1.e[i] 

 

  for (d in 1:4) { 

   nu[i,d] ~ dnorm(0, inv.nu[d]) 

   theta[i,d] <- lambda[d]*theta[i,5] + nu[i,d] 

   for (j in (5*(d-1)+1): (5*d)) { 

    Q[i,j,1] <- 1 

    Q[i,j,2] <- exp(theta[i,d] - delta[j,1] + xi[idx[i],j]) 

    Q[i,j,3] <- exp(2*theta[i,d] - delta[j,1] - delta[j,2] + 2*xi[idx[i],j]) 

    Q[i,j,4] <- exp(3*theta[i,d] - delta[j,1] - delta[j,2] - delta[j,3] + 

3*xi[idx[i],j]) 

    denom[i,j] <- sum(Q[i,j,]) 

    PP[i,j,1] <- Q[i,j,1]/denom[i,j] 

PP[i,j,2] <- Q[i,j,2]/denom[i,j] 

PP[i,j,3] <- Q[i,j,3]/denom[i,j] 

PP[i,j,4] <- Q[i,j,4]/denom[i,j] 

    r[i,j] ~ dcat(PP[i,j,]) 

   } 

  } 

 } 

# Priors 

 lambda[1] <- 1 
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 lambda[2] ~ dlnorm(0, 0.1) 

 lambda[3] ~ dlnorm(0, 0.1) 

 lambda[4] ~ dlnorm(0, 0.1) 

 inv.nu[1] ~ dgamma(0.1, 0.1) 

 inv.nu[2] ~ dgamma(0.1, 0.1) 

 inv.nu[3] ~ dgamma(0.1, 0.1) 

 inv.nu[4] ~ dgamma(0.1, 0.1) 

 sigma.nu[1] <- 1/inv.nu[1] 

 sigma.nu[2] <- 1/inv.nu[2] 

 sigma.nu[3] <- 1/inv.nu[3] 

 sigma.nu[4] <- 1/inv.nu[4] 

 tau.lv1 ~ dgamma(0.1, 0.1) 

 sigma.lv1 <- 1/tau.lv1 

 tau.lv2 ~ dgamma(0.1, 0.1) 

 sigma.lv2 <- 1/tau.lv2 

 lv1.pc[1] ~ dnorm(0, 0.1) 

 lv1.pc[2] <- -lv1.pc[1] 

 lv2.pc[1] ~ dnorm(0, 0.1) 

 lv2.pc[2] <- -lv2.pc[1] 

 for (i in 1:200) { # there are 200 clusters 

  lv2.e[i] ~ dnorm(0, tau.lv2) 

  for (j in 1:T) { 

   xi[i,j] ~ dnorm(0, tau.xi[j]) 

  } 

 } 

 for (j in 1:T) { 

  delta[j,1] ~ dnorm(0, 0.1) 

  delta[j,2] ~ dnorm(0, 0.1) 

  delta[j,3] ~ dnorm(0, 0.1) 

  tau.xi[j] ~ dgamma(0.1, 0.1) 

  sigma.xi[j] <- 1/tau.xi[j] 

 } 

} 
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Appendix D: WinBUGS Codes for the MFRM-CS of Simulation Study 5 

# N is the number of examinees; 

# T is the number of items; 

# R is the number of raters; 

# r is the data matrix with N × R rows and T + 3 columns, and the first three columns denote 

person idex, cluster index, and rater index, respectively; 

# id is the data matrix with N rows and 4 clomuns including person id, person-level 

predictor (i.e., -1 or 1), group-level predictor (i.e., -1 or 1), and cluster index;  

# lv1.pc is the predicted coefficient; 

# lv2.pc is the predicted coefficient; 

# theta is the person ability; 

# delta are the item thresholds; 

# iota is the rater severity; 

# and xi is the LPD parameter. 

 

model { 

 for (i in 1:4000) { # there are totally 4000 responses 

  for (j in 1:T) { 

   Q[r[i,1],j,r[i,3],1] <- 1 # Q[id, item, rater, category] 

   Q[r[i,1],j,r[i,3],2] <- exp(theta[r[i,1]] - delta[j,1] - iota[r[i,3]] + 

xi[r[i,2],r[i,3]]) 

   Q[r[i,1],j,r[i,3],3] <- exp(2*theta[r[i,1]] - delta[j,1] - delta[j,2] – 2*iota[r[i,3]] 

+ 2*xi[r[i,2],r[i,3]]) 

   Q[r[i,1],j,r[i,3],4] <- exp(3*theta[r[i,1]] - delta[j,1] - delta[j,2] – delta[j,3] – 

3*iota[r[i,3]] + 3*xi[r[i,2],r[i,3]]) 

   denom[r[i,1],j,r[i,3]] <- sum(Q[r[i,1],j,r[i,3],]) 

PP[r[i,1],j,r[i,3],1] <- Q[r[i,1],j,r[i,3],1]/denom[r[i,1],j,r[i,3]] 

PP[r[i,1],j,r[i,3],2] <- Q[r[i,1],j,r[i,3],2]/denom[r[i,1],j,r[i,3]] 

PP[r[i,1],j,r[i,3],3] <- Q[r[i,1],j,r[i,3],3]/denom[r[i,1],j,r[i,3]] 

PP[r[i,1],j,r[i,3],4] <- Q[r[i,1],j,r[i,3],4]/denom[r[i,1],j,r[i,3]] 

   r[i,j+3] ~ dcat(PP[r[i,1],j,r[i,3],]) 

  } 

 } 

 # Priors 

 for (i in 1:N) { 

  lv1.e[i] ~ dnorm(0, tau.lv1) 

  theta[i] <- lv1.pc[id[i,2]] + (lv2.pc[id[i,3]] + lv2.e[id[i,4]]) + lv1.e[i] 

 } 
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 tau.lv1 ~ dgamma(0.1, 0.1) 

 sigma.lv1 <- 1/tau.lv1 

 tau.lv2 ~ dgamma(0.1, 0.1) 

 sigma.lv2 <- 1/tau.lv2 

 lv1.pc[1] ~ dnorm(0, 0.1) 

 lv1.pc[2] <- -lv1.pc[1] 

 lv2.pc[1] ~ dnorm(0, 0.1) 

 lv2.pc[2] <- -lv2.pc[1] 

 for (i in 1:200) { # there are 200 clusters 

  lv2.e[i] ~ dnorm(0, tau.lv2) 

  for (j in 1:R) { 

   xi[i,j] ~ dnorm(0, tau.xi[j]) 

  } 

 } 

 for (j in 1:T) { 

  delta[j,1] ~ dnorm(0, 0.1) 

  delta[j,2] ~ dnorm(0, 0.1) 

  delta[j,3] ~ dnorm(0, 0.1) 

  delta[j,4] ~ dnorm(0, 0.1) 

 } 

 tau.xi[1] ~ dgamma(0.1, 0.1) 

 sigma.xi[1] <- 1/tau.xi[1] 

 iota[1] <- 0 

 for (j in 2:R) { 

  iota[j] ~ dnorm(0, 0.1) 

  tau.xi[j] ~ dgamma(0.1, 0.1) 

  sigma.xi[j] <- 1/tau.xi[j] 

 } 

} 
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Appendix E: Item Descriptions in the Subscales Reflecting Students’ Perceptions of 

the School Context in the ICCS 2009 

Domain Item Description  

Open schools IS2G16B Teachers encourage students to make up their own minds 

 IS2G16C Teachers encourage students to express their opinions 

 IS2G16D Students bring up current political events for discussion in 

class 

 IS2G16E Students express opinions in class even when their opinions 

are different from most of the other students 

 IS2G16F Teachers encourage students to discuss the issues with people 

having different opinions 

 IS2G16G Teachers present several sides of the issues when explaining 

them in class 

Student 

influence 

IS2G17A The way classes are taught 

IS2G17B What is taught in classes 

 IS2G17C Teaching and learning materials 

 IS2G17D The timetable 

 IS2G17E Classroom rules 

 IS2G17F School rules 

Student-teacher 

relations 

IS2G18A Most of my teachers treat me fairly 

IS2G18B Students get along well with most teachers 

 IS2G18C Most teachers are interested in students’ wellbeing 

 IS2G18E Most of my teachers really listen to what I have to say 

 IS2G18F If I need extra help, I will receive it from my teachers 
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Appendix F: Item Descriptions in the Love Relationship Scale (Chinese version) 

Domain No. Description  

Passion 2 我發現自己一天之中常常想到他（她）。 

 4 只要見到他（她），我就感到興奮快樂。 

 5 我覺得他（她）的身體很有吸引力。 

 9 我希望他（她）覺得我很有吸引力。 

 11 跟他（她）在一起我感覺很浪漫興奮。 

 19 即使他（她）不在身邊，我仍會常常想到他（她） 。 

 23 只要注視著他（她），我就感到很快樂滿足。 

 24 他（她）的一舉一動（一顰一笑）佔據了我的心思。 

Intimacy 1 我與他（她）的關係是溫暖愉快的。 

 3 當失意難過時，我能從他（她）得到適當的情緒支持。 

 6 當他（她）失意難過時，我能給他（她）適當的情緒支持。 

 8 我和他（她）心靈能相互溝通契合。 

 15 我們彼此能分憂解勞。 

 16 我和他（她）已經有親吻的親密舉動。 

 18 我覺得要告訴他（她）我的感受是很容易的事。 

 22 我和他（她）可說是無所不談。 

Commitment 7 我願與他（她）共度一生。 

 10 我仍然保持觀望，希望那一天能碰到更好的對象。 

 12 我還沒準備好接受和他（她）的這份情感。 

 13 我們有各自的路要走，還不到相互承諾的時候。 

 14 有時我覺得自己對他（她）還是有點虛情假意，不是很真實。 

 17 我還不想那麼快就和他（她）定下來。 

 20 對於終身的伴侶，現在的我還不知如何抉擇。 

 21 搞不清楚自己是真愛他（她）呢？還是只是習慣兩人在一起？ 

Note. Items 10, 12, 13, 14, 17, 20, and 21 are negatively worded items. 

 

 




