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ABSTRACT

This project aims to explain the famous Riemann Hypothesis from an elementary perspective so that

undergraduate students with Mathematics background could understand more on this problem. We

will first introduce some results in Complex Analysis so that the readers can understand the following

chapters. Then, we examine how the functional equations of the Riemann zeta function were created.

Next, we will explain the zeros of zeta function and the Riemann Hypothesis. Finally, we will also study

the Generalized Riemann Hypothesis and some of its consequences.
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1 Introduction

Ever since Riemann’s paper “Üeber die Anzahl der Primzahlen unter einer gegebenen Grösse” (English

translation: On the Number of Primes Less Than a Given Magnitude) was published in November 1859,

countless Mathematicians have tried to solve the problem that comes with the paper, which is now known

as the Riemann Hypothesis. This problem was then listed in Hilbert’s 23 Mathematical Problems, which

is a collection of mathematical problems whose solutions will take mankind to the furthering of that

branch of Mathematics, in 1990 and the Millennium Prize Problems by the Clay Mathematics Institute

in 2000, meaning that the first person who gives a correct proof or a counterexample to it will get one

million US dollars from the Clay Mathematics Institute (Hilbert, 1902; Weisstein, n.d.; Clay Mathematics

Institute, n.d.).

Many Mathematics students can state the Riemann Hypothesis, namely, all non-trivial zeros of the

Riemann zeta function are on the critical line

<(s) =
1

2
.

Nevertheless, the development of the Riemann zeta function from Euler’s definition in 1737,

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
,

to its functional equation,

Γ
(s

2

)
π−

s
2 ζ(s) = Γ

(
1− s

2

)
π

1−s
2 ζ(1− s),

is hard for students to understand. This project aims to explain this problem from an elementary

perspective so that undergraduate students with Mathematics background could also have a proper

understanding of this famous problem. The first part of this paper is about some basic definitions and

theorems in Complex Analysis. And then, we will discuss the functional equations of Riemann zeta

function. After that, we will study the Riemann Hypothesis, the Generalized Riemann Hypothesis and

some of its consequences.
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2 Some Basic Definitions and Theorems

To study the Riemann Hypothesis, we should first study some results in Complex Analysis.

2.1 Basic Definitions In Complex Analysis

There are two representations of a complex number, namely the cartesian representation and the polar

representation. For the cartesian representation, we write z = x+ iy, where x, y ∈ R and i =
√
−1. We

denote <(z) as the real part of z and =(z) as the imaginary part of z. For the polar representation, we

write z = reiθ, where r ≥ 0 is the distance between z and the origin, and θ is the argument of z, which

is the the angle inclined from the real axis. Also, we denote C as the set of all complex numbers and

C̃ = C ∪ {∞}.

Definition 2.1. (Modulus of Complex Numbers)

The modulus of z = x+ iy is defined as

|z| =
√
x2 + y2.

This is actually the distance between z and the origin. Further, notice that zz̄ = |z|2, where z̄ is the

conjugate of z.

Definition 2.2. (Complex-valued Functions)

For A ⊂ C, a mapping f : A → C which assigns to each z ∈ A a unique complex number f(z) is called

a complex-valued function.

Moreover, we can express f(z) in terms of real-valued functions, that is f(z) = u(z) + iv(z), where

u(z) = <(f(z)) and v(z) = =(f(z)). Next, we shall discuss about the disks / discs and sets in C.

Definition 2.3. (Open Disks)

An open disk centered at a ∈ C with radius r > 0 is defined as

D(a, r) = {z ∈ C : |z − a| < r}

Definition 2.4. (Closed Disks)

A closed disk centered at a ∈ C with radius r > 0 is defined as

D(a, r) = {z ∈ C : |z − a| ≤ r}.

Definition 2.5. (Punctured Disks)

A punctured disk centered at a ∈ C with radius r > 0 is defined as

D′(a, r) = {z ∈ C : 0 < |z − a| < r}.
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An open disk is actually a collection of complex numbers in the disk except for its boundary |z − a| = r.

A closed disk is an open disk with its boundary. Meanwhile, punctured disk is a collection of complex

numbers in the open disk except for its center. Next, we shall take a look at the open sets and the closed

sets.

Definition 2.6. (Open Sets)

The set A ⊂ C is open if ∀z ∈ A, ∃ r > 0 such that D(z, r) ⊂ A.

Definition 2.7. (Closed Sets)

The set A ⊂ C is closed if C\A is open.

Next, we shall also review the limit and continuity of complex-valued function. Similar to Real Analysis,

their definitions are:

Definition 2.8. (Limit of Complex-valued Functions)

Let A ⊂ C, f : A→ C which is defined in A and a ∈ A. Then

lim
z→a

f(z) = w

if, ∀ ε > 0, ∃ δ > 0 such that

z ∈ A and 0 < |z − a| < δ ⇒ |f(z)− w| < ε.

Definition 2.9. (Continuity of Complex-valued Functions)

Let A ⊂ C, f : A → C which is defined in A and a ∈ A. Then f is continuous at a ∈ A if ∀ε > 0,

∃ δ > 0 such that

z ∈ A and |z − a| < δ ⇒ |f(z)− f(a)| < ε.

2.2 Holomorphic Functions

In some complex analysis books, they remark that the study of complex analysis is a study of holomorphic

functions. The concept of holomorphic functions is sort of like differentiability of functions in the complex

world, but we allow the h to take complex values. Thus, instead of the right-hand limit and left-hand

limit in real analysis, we have much more to consider. In this section, we shall study this important notion.

Definition 2.10. (Differentiability at a Point)

Let A be an open subset of C and f : A→ C, then f is differentiable at z ∈ A if

lim
h→0

f(z + h)− f(z)

h

exists.
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Notice that h ∈ C and z + h can approach z in any direction as h→ 0. Hence, we can not just consider

the left-hand limit and right-hand limit.

Definition 2.11. (Holomorphic Functions)

A complex-valued function f is said to be a holomorphic function in an open set A ⊂ C if it is

differentiable at every point on A. Moreover, we write H(A) as the set of all holomorphic functions

in A.

Notice that some textbooks use the term ‘Analytic Function’ instead of holomorphic function; they are

interchangeable. Further to holomorphic functions, we also have entire functions. Entire Functions are

functions that are holomorphic on the whole complex plane. Moreover, we have meromorphic functions

as well.

Definition 2.12. (Meromorphic Functions)

A function f on an open set A is meromorphic function if is holomorphic on A except a set of poles (i.e.

the points where f is not holomorphic at).

Next, we can look at some properties of holomorphic functions.

Theorem 2.13. (Basic Properties)

Let A be an open set, function f and g be holomorphic in A, and a ∈ C. Then af , f + g, fg, and f ◦ g

are also holomorphic in A. Moreover, (f ◦ g)′(z) also satisfies the Chain Rule, which means that

d

dz
f(g(z)) =

df

dg

dg

dz
.

By the above theorem, we know that if f(z) = z is holomorphic, then any linear combination of zn is

holomorphic as well.

Theorem 2.14. (Cauchy-Riemann Equations)

Let A be an open subset of C, z = x + iy, and f : A → C, f(x, y) = u(x, y) + iv(x, y), where u and

v are real-valued functions. If f is a holomorphic function on A, then u and v have first-order partial

derivatives at every z ∈ A and they satisfy the Cauchy-Riemann equations:

ux = vy and uy = −vy.

Proof. By the definition of differentiability, we have

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists. First, for h ∈ R, we have
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f ′(z) = lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

= lim
h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h

=
∂u

∂x
+ i

∂v

∂x

= ux + ivx

Next, for h ∈ iR, we let h = ik, k ∈ R and get

f ′(z) = lim
h→0

u(x, y + h) + iv(x, y + h)− u(x, y)− iv(x, y)

ik

= lim
h→0

u(x, y + h)− u(x, y)

ik
+ i lim

h→0

v(x, y + h)− v(x, y)

ik

=
1

i

∂u

∂y
+
∂v

∂y

= −i∂u
∂y

+
∂v

∂y

= vy − iuy

Comparing the results, we have ux = vy and vx = uy.

Notice that the contrapositive of the above theorem is “if f does not satisfy the Cauchy-Riemann

equations then it is not holomorphic”. This tools is useful for proving function that are non-holomorphic,

but it is not sufficient to show otherwise.

2.3 Complex Series and Power Series

The Riemann Zeta Function is actually a complex series {n−s}, where s ∈ C. Therefore, it is essential

to study some elementary properties of complex series.

To begin with, we shall state a few facts about the complex series. For complex series {an} ∈ C, we

have:

1.
∑
an is convergent ⇐⇒

∑
<(an) and

∑
=(an) are convergent.

2. If
∑
an is convergent, then an → 0 as n→∞.

3. If
∑
an is convergent, then ∃ M ∈ R such that |an| < M for all n .

4. If
∑
an and

∑
bn are convergent, then

∑
(san + tbn) is convergent for all s, t ∈ C.

5.
∑
an converges absolutely if

∑
|an| converges. If the series

∑
an converges absolutely, then

∑
an

converges.
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To test whether a series converges, we can use the following tests:

I. Comparison Test

Let {an} be a complex series,
∑
bn be a converge series with bn ≥ 0 ∀n, and k > 0. If |an| ≤ kbn for all

n, then
∑
an converges.

II. D’Alembert’s Ratio Test

If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists and less than 1, then

∑
an converges. If the limit exists and it is greater than 1, then

∑
an

diverges. If the limit exists and it is 1, this test gives no information.

III. Alternating Series Test

For series
∑

(−1)nan, where an is either positive ∀n or negative ∀n, if an is monotonically decreasing

and an → 0 as n→∞, then
∑

(−1)nan converges.

Next, we shall study some other definitions related to complex series.

Definition 2.15. (Arithmetical Functions)

A real- or complex-valued function defined on the set of positive integers is called an arithmetical function.

For example, the Euler’s Totient Function φ(n), counting the number of positive integers less than n

such that they are coprime to n, is an arithmetical function.

Definition 2.16. (Dirichlet Series)

A Dirichlet series is a series of the form
∞∑
n=1

f(n)

ns
,

where s = σ + it and f(n) is an arithmetical function.

Theorem 2.17. (Absolute convergence of Dirichlet series)

Suppose the series
∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣
does not converge for all s or diverge for all s. Then there exists a real number σa call the abscissa of

absolute convergence, s.t. the series converges absolutely if σ > σa but does not converge absolutely if

σ < σa.

Proof. Let A be the set of all real σ so that

∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣
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diverges. Then A is not empty because the series does not converge for all s. The set A is bounded

above since the series does not diverge for all s. Thus, A has a least upper bound, say σa. If σ < σa,

then σ ∈ A, otherwise σ would be an upper bound for A smaller than the least upper bound. If σ > σa,

then σ /∈ A since σa is an upper bound for A.

Definition 2.18. (Power Series)

A series of the form
∞∑
n=0

cn(z − a)n,

where a, cn ∈ C, is called a power series.

Definition 2.19. (Radius of Convergence)

The radius of convergence of a power series
∑
cn(z − a)n is defined as

R = sup{ |z| :
∑
|cn(z − a)n| converges }.

If
∑
|cn(z − a)n| converges for arbitrarily large |z|, we write R =∞.

By this definition, we know that
∑
|cn(z − a)n| converges for all |z| < R and

∑
|cn(z − a)n| will not

converge for any |z| > R. Next, we should study the relationship between power series, radius of

convergence and holomorphic function.

Theorem 2.20. (Hadamard’s Formula)

If R is the radius of convergence of the power series
∑
cnz

n, then

1

R
= lim sup |cn|1/n .

‘lim sup’ means if we cut the sequence {an} at n = N and consider only the sup of the rest of the

sequence. For N →∞, the sup of the rest of the sequence is called lim sup, i.e.

lim sup an = lim
n→∞

(
sup
N≥n

aN

)
For example, even the sequence {(1 + 1/n) sin(n)} does not converge and is not stable when n is small,

it oscillates between 1 and −1 when n → ∞. In this case, we say lim sup((1 + 1/n) sin(n)) = 1, and

similarly, we have lim inf((1 + 1/n) sin(n)) = −1.

Theorem 2.21. The power series f(z) =
∑∞
n=0 cnz

n is holomorphic in in its disc of convergence (i.e.

D(0, R)). Further, the derivative of f is the power series obtained by term-by-term differentiation:

f ′(z) =

∞∑
n=0

ncnz
n−1.

Page 9



A Study of The Riemann Hypothesis From An Elementary Perspective

Proof. First, we should show that the series g(z) =
∑∞
n=0 ncnz

n−1 has the same radius of convergence

as f . Note that n1/n → 1 as n→∞. Hence, we have lim sup |cn|1/n = lim sup |ncn|1/n, which implies f

and g have the same radius of convergence.

Next, we shall show that f ′ = g. Suppose |z| < r < R and let f(z) = AN (z) +Bn(z), where

AN (z) =

N∑
n=0

cnz
n and BN =

∞∑
n=N+1

cnz
n.

Then, we choose h such that |z + h| < r and get

f(z + h)− f(z)

h
− g(z) =

(
AN (z + h)−AN (z)

h
−A′N (z)

)
+ (A′N (z)− g(z)) +

(
BN (z + h)−BN (z)

h

)
As (an − bn) = (an−1 + an−2b+ · · ·+ abn−2 + bn−1), we have∣∣∣∣BN (z + h)−BN (z)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣ (z + h)n − zn

h

∣∣∣∣ ≤ ∞∑
n=N+1

|cn|nrn−1.

Since g converges absolutely on |z| < r, given ε > 0, we can find N1 ∈ N s.t. N > N1 implies∣∣∣∣BN (z + h)−BN (z)

h

∣∣∣∣ < ε.

As

lim
N→∞

A′N (z) = g(z),

we can find N2 ∈ N s.t. N > N2 implies |A′N (z)− g(z)| < ε.

As A′N is just a derivative of polynomial, we can find N > N1, N2 and δ > 0 s.t. |h| < δ implies∣∣∣∣AN (z + h)−AN (z)

h
−A′N (z)

∣∣∣∣ < ε

Thus, when |h| < δ, we have ∣∣∣∣f(z + h)− f(z)

h
− g(z)

∣∣∣∣ < 3ε,

and the result follows.

2.4 Integration on C

Lastly, we should take a look at integration in the complex world. It is of interest that we will use

tools in integration to prove the existence of high order derivative of holomorphic functions, or more

precisely infinite differentiability (i.e. f (n) always exists regardless of the value of n). But before that,

we should first study some important theorems in complex integration like Cauchy’s Theorem. Similar

to multi-variable calculus, we integrate functions along curves.
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Definition 2.22. (Curves)

Let [a, b] ⊂ R. A function γ : [a, b]→ C, γ(t) = x(t) + iy(t) is a curve in C, where t ∈ [a, b].

Furthermore, we say a curve is smooth if γ′(z) exists, is continuous on [a, b], and γ′(t) 6= 0 for t ∈ [a, b].

For the point t = a and t = b, we define γ′(a) and γ′(b) as a one-sided limit. We say a curve is

piecewise-smooth if γ is continuous on [a, b] and there exists points a = t0 < t1 < t2 < · · · < tn = b

such that γ(t) is smooth in [tj , tj+1] for j = 0, 1, 2, . . . , n− 1.

Definition 2.23. If f is a complex-valued function defined on a curve γ, then we define∫
γ

f(z)dz = lim
n→∞

n−1∑
j=0

f(zj)(zj+1 − zj),

where zj = γ(tj).

Notice that if a curve is smooth, then

n−1∑
j=0

f(zj)(zj+1 − zj) =

n−1∑
j=0

f(γ(tj))
γ(tj+1)− γ(tj)

tj+1 − tj
(tj+1 − tj)

→
∫ b

a

f(γ(t))γ′(t)dt as n→∞

Definition 2.24. (Primitive For a Function)

Suppose f is a function on an open set A. The function F which is holomorphic on A such that

F ′(z) = f(z) is called a primitive for f on A.

Theorem 2.25. If a continuous function f has a primitive F on an open set A, and γ is a curve in A

such that γ : [a, b]→ C, then ∫
γ

f(z)dz = F (b)− F (a).

Proof. If γ is smooth, then ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

=

∫ b

a

F ′(γ(t))γ′(t)dt

=

∫ b

a

d

dt
F (γ(t))dt

= F (b)− F (a)

The third line is an application of the Chain Rule. If γ is piecewise-smooth, then similarly we have∫
γ

f(z)dz =

n−1∑
k=0

∫ tk+1

tk

f(γ(t))γ′(t)dt

=

n−1∑
k=0

(F (γ(tk+1))− F (γ(tk)))

= F (γ(tn))− F (γ(t0))

= F (b)− F (a)
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Furthermore, a holomorphic function in an open disk has a primitive in that disk. Now, with the above

results, we can now study Cauchy’s work.

Theorem 2.26. (Cauchy’s theorem on a Closed Curve on a Disk)

If f is holomorphic in a disk, then for any closed curve γ in that disk, we have∫
γ

f(z)dz = 0.

Proof. Let γ : [a, b]→ C be a closed curve in that disk. Then we have γ(a) = γ(b). As f is holomorphic

in an open disk, it has a primitive in that disk. Thus,∫
γ

f(z)dz = F (γ(a))− F (γ(b)) = 0.

Cauchy extended his theory by consider the toy contour of closed curve and proved the following theorem,

which is now known as Cauchy’s Theorem.

Theorem 2.27. (Cauchy’s Theorem)

Let A be a simply connected open set (i.e. no holes) in C, f be holomorphic in A, and γ ⊂ A be a smooth

closed curve. Then, ∫
γ

f(z)dz = 0.

With this theorem, Cauchy discovered what is now known as the Cauchy Integral Formula.

Theorem 2.28. (Cauchy Integral Formula)

Suppose f is holomorphic in a simply connected open set D. If D is bounded by γ, then for all w ∈ D

f(w) =
1

2πi

∫
γ

f(z)

z − w
dz.

He proved the above formula by considering a disk with center w and radius ε. The proof is very

complicated and is left as an extended reading for the readers. (The proof can be found in most of the

Complex Analysis textbooks, e.g. Stein and Shakarchi’s (2002) Complex Analysis page 45 to 47).

Finally, we can show the following powerful property, that is, the existence of high order derivative of

holomorphic function.

Theorem 2.29. (Infinite Differentiability of Holomorphic Function)

If f is holomorphic on an open set A, then there exists f (n) for all n ∈ N on A.
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To prove this, we first show that the existence of f ′ implies the existence of f ′′ , and then by induction

we have that f (n) exists.

Proof. Let a ∈ A, γ ⊂ A and choose r > 0 so that D̄(a, r) ⊂ A. Since f is holomorphic, f ′ exists. For

|h| < r, we have

f ′(a+ h)− f ′(a)

h
=

1

2πih

∫
γ

f(z)

(z − a− h)2
dz − 1

2πih

∫
γ

f(z)

(z − a)2
dz

=
1

2πih

∫
γ

f(z)

(
1

(z − a− h)2
− 1

(z − a)2

)
dz

=
1

2πi

∫
γ

f(z)

(
2(z − a)− h

(z − a− h)2(z − a)2

)
dz

→ 1

2πi

∫
γ

f(z)

(
2(z − a)

(z − a)2(z − a)2

)
dz as h→ 0

=
1

2πi

∫
γ

2f(z)

(z − a)3
dz

Hence, f ′ exists implies that f ′′ exists. By induction, we know that ∃ f (n)∀n ∈ N.

One may notice that we did not cancel the 2 in the last equation, it is because we would like to further

derive the formula for the n-th derivatives, that is

f (n)(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ.

After studying some important definitions and theorems in complex analysis, we can now move on to

the functional equations of the Riemann zeta functions.
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3 The Functional Equations of Riemann Zeta Function

Before Riemann’s paper, Euler discovered some properties of the series
∑
n−x for x > 1. Based on

this discovery, Riemann extended the input of this function from real variable to complex variable and

denoted ζ(s) =
∑
n−s for <(s) > 1. The next reasonable question to ask is that whether we can further

extend the domain of ζ to the whole complex plane. Riemann answered this question with a technique

called analytic continuation and the key of this technique is functional equation. In this chapter, we

will study the development of the functional equations for the Riemann zeta function and see how he

extended the domain of ζ.

3.1 Euler’s Observation I

In Euler’s (1737) paper “Variae observationes circa series infinitas” (English translation: Several Remarks

on Infinite Series), he showed that the infinite series

1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

can be express in terms of an infinite product of prime numbers(
2s

2s − 1

)(
3s

3s − 1

)(
5s

5s − 1

)(
7s

7s − 1

)(
11s

11s − 1

)
. . . =

∏
p prime

ps

ps − 1

Theorem 3.1. (Euler’s Observation)

For s ∈ R and s > 1,
∞∑
n=1

1

ns
=

∏
p prime

ps

ps − 1
.

Proof. Let

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · · (1)

(1)× 1
2s , we have

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+ · · · (2)

(1)− (2), we get
2s − 1

2s
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+ · · · (3)

(3) × 1
3s we have

1

3s
× 2s − 1

2s
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+ · · · (4)

(3)− (4), we get
3s − 1

3s
× 2s − 1

2s
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+ · · · .
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Repeat the procedure with each prime number, we will have∏
p prime

(
ps − 1

ps

)
× ζ(s) = 1.

Making ζ(s) as the subject, we have

ζ(s) =
∏

p prime

(
ps

ps − 1

)
=

∏
p prime

1

1− p−s
.

Actually, Euler (1737) did not use the notation ζ in his paper, he just wrote the whole series for many

times. A hundred years later, Riemann (1859) used ζ to represent this series and made some new

breakthroughs. That is why this series is called ‘Riemann zeta function’. In Riemann’s paper, he first

changed the domain of ζ from real number greater than 1 to complex number with <(s) > 1. By Euler’s

observation, we have the following theorem:

Theorem 3.2. For s ∈ C and <(s) > 1, we have

ζ(s) =
∏

p prime

1

1− p−s
.

Furthermore, to extend the domain of ζ to the whole complex plane, we need analytic continuation.

Analytic continuation is an extension of domain of a function from the original set to a bigger set. In

general, we have the following definition:

Definition 3.3. (Analytic Continuation)

Let functions f and g be analytic functions on the domain A and B respectively with A ∩ B being

non-empty. If f = g on A ∩ B, then we say that g is an analytic continuation of f to B or f is an

analytic continuation of g to A.

In our case, Riemann aimed to extend the domain of ζ from the set {s ∈ C : <(s) > 0} to a bigger set

C, which is the set of all complex number.

3.2 Functional Equation of Riemann Zeta Function I

Before we look at the first functional equation of Riemann zeta function and its proof, we shall first

study the Jacobi’s ϑ function, the ψ function and the Gamma function. The ϑ and ψ function will be

used in proving the functional equation while the Gamma function is actually a part of the equations.

Definition 3.4. (Jacobi’s ϑ function)

For s ∈ C and <(s) > 0, we define

ϑ(s) =
∑
n∈Z

e−πsn
2

.
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Furthermore, the ϑ function has the functional equation ϑ(x) =
1√
x
ϑ

(
1

x

)
.

Lemma 3.5. For s ∈ C and <(s) > 0, if we define

ψ(s) =
∑
n∈N

e−πsn
2

,

then

ϑ(s) = 2ψ(s) + 1.

Proof.

ϑ(s) =
∑
n∈Z

e−πsn
2

=

−1∑
n=−∞

e−πsn
2

+ e−πs(0)
2

+

+∞∑
n=1

e−πsn
2

= 2

+∞∑
n=1

e−πsn
2

+ 1

= 2
∑
n∈N

e−πsn
2

+ 1

= 2ψ(s) + 1

Lemma 3.6. For s ∈ C and <(s) > 0, we have

ψ(s) =
1√
s
ψ

(
1

s

)
− 1

2
+

1

2
√
s
.

Proof. By the functional equation of ϑ function and Lemma 3.5, we have

ϑ(s) =
1√
s
ϑ

(
1

s

)
2ψ(s) + 1 =

1√
s

(
2ψ

(
1

s

)
+ 1

)
ψ(s) +

1

2
=

1√
s
ψ

(
1

s

)
+

1

2
√
s

ψ(s) =
1√
s
ψ

(
1

s

)
− 1

2
+

1

2
√
s
.

Next, we shall study the Gamma function which is an important part of the functional equations of the

zeta function.

Definition 3.7. (Gamma Function)

For s ∈ C and <(s) > 0, we define

Γ(s) =

∫ ∞
0

ts−1e−tdt.
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Same as the zeta function, we would like to extend the domain of Γ. By integration by part, we have

Γ(s) =

∫ ∞
0

ts−1e−tdt

= −(ts−1e−t)
∣∣∣∞
0

+

∫ ∞
0

(s− 1)ts−2e−tdt

= (s− 1)Γ(s− 1)

By the above functional equation, we can extend the domain of Gamma from {s ∈ C : <(s) > 0} to

{s ∈ C : <(s) > −1 and s 6= 0}. Applying the same manner, we can extend the domain of Gamma to

C\{0,−1,−2,−3, . . . }. Furthermore, by definition, we have Γ(1) = 1. Hence, one can easily see that

Γ(n) = (n− 1)! ∀n ∈ N. Although the Gamma function is not an entire function, the reciprocal of it is

differentiable everywhere. Before we show that it true, we shall first study the following two lemmas.

Lemma 3.8. For 0 < <(s) < 1, ∫ ∞
0

λs−1

1 + λ
dλ =

π

sin(πs)
.

Since the proof involves some of the advanced topic in Complex Analysis like contour integration and

residue formula, we skip it here. Moreover, it suffices to show the equality holds for 0 < <(s) < 1 as it

will then hold on C by analytic continuation. The next lemma states the following:

Lemma 3.9. For all s ∈ C,

Γ(s)Γ(1− s) =
π

sin(πs)
.

Proof. For 0 < <(s) < 1,

Γ(1− s) =

∫ ∞
0

e−uu−sdu.

For t > 0, let u = λt and get

Γ(1− s) = t

∫ ∞
0

e−λt(λt)−sdλ.

Next, consider Γ(s)Γ(1− s),

Γ(s)Γ(1− s) =

∫ ∞
0

e−tts−1dt Γ(1− s)

=

∫ ∞
0

e−tts−1Γ(1− s)dt

=

∫ ∞
0

e−tts−1t

∫ ∞
0

e−λt(λt)−sdλ dt

=

∫ ∞
0

∫ ∞
0

e−λt−tλ−sdλ dt

=

∫ ∞
0

∫ ∞
0

e−λt−tλ−sdt dλ.

Notice that ∫ ∞
0

e−λt−tλ−sdt =
λ−s

1 + λ

∫ ∞
0

e−t(1+λ)d(t(1 + λ))

=
λ−s

1 + λ

(
−e−t(1+λ)

) ∣∣∞
0

=
λ−s

1 + λ
.
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Hence,

Γ(s)Γ(1− s) =

∫ ∞
0

λ−s

1 + λ
dλ

=

∫ ∞
0

λ(1−s)−1

1 + λ
dλ

=
π

sin(π − sπ)

=
π

sin(πs)
.

By analytic continuation of Γ, the result follows.

Changing the subject of the above equation, we have

1

Γ(s)
=

sin(πs)Γ(1− s)
π

.

Note that the poles of Γ(s) are cancelled by the sine function. Hence, 1/Γ can be computed by the above

formula for non-positive integers. Thus, 1/Γ is entire with zeros at s = 0,−1,−2, . . . . The last lemma

before we introduce the functional equation states the following:

Lemma 3.10. For s ∈ C\{0, 1},∫ 1

0

x
s
2−1ψ(x)dx =

∫ ∞
1

x−
s
2−

1
2ψ(x)dx+

1

s(s− 1)
.

Proof. By the lemma 3.6, we have∫ 1

0

x
s
2−1ψ(x)dx =

∫ 1

0

x
s
2−1

(
1√
x
ψ

(
1

x

)
+

1

2
√
x
− 1

2

)
dx

=

∫ 1

0

(
x

s
2−

3
2ψ

(
1

x

)
+

1

2

(
x

s
2−

3
2 − x s

2−1
))

dx

=

∫ 1

0

x
s−3
2 ψ

(
1

x

)
dx+

1

2

[
1

s
2 −

1
2

x
s
2−

1
2 − 1

s
2

x
s
2

]1
0

=

∫ 1

0

x
s
2−

3
2ψ

(
1

x

)
dx+

1

s(s− 1)
.

Next, we substitute x =
1

y
. Note that dx = −y−2dy and as x = 0, y →∞; x = 1, y = 1. Hence, we have

∫ 1

0

x
s
2−1ψ(x)dx =

∫ 1

∞

(
1

y

) s
2−

3
2

ψ(y)

(
− 1

y2

)
dy +

1

s(s− 1)

=

∫ ∞
1

(
1

x

) s
2−

3
2

ψ(x)
1

x2
dx+

1

s(s− 1)

=

∫ ∞
1

x−
s
2−

1
2ψ(x)dx+

1

s(s− 1)
.

Now that we have all the tools needed, we can study the following important theorem by Riemann

(1859). Although he completed this proof in 5 lines, we shall provide a more detailed proof so that

normal undergrad students can understand.
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Theorem 3.11. (Functional Equation of Riemann Zeta Function)

For s ∈ C\{0, 1}, we have

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Proof. We shall begin our proof with the Gamma function:

Γ(s) =

∫ ∞
0

ts−1e−tdt

Γ
(s

2

)
=

∫ ∞
0

ts/2−1e−tdt.

Next, we let t = πn2x. Note that dt = πn2dx and when t = 0, x = 0; when t → ∞, x → ∞ as well.

Hence, we have

Γ
(s

2

)
=

∫ ∞
0

(
πn2x

)s/2−1
e−πn

2xπn2dx

=

∫ ∞
0

πs/2−1ns−2xs/2−1e−πn
2xπn2dx

=

∫ ∞
0

πs/2nsxs/2−1e−πn
2xdx

π−s/2Γ
(s

2

) 1

ns
=

∫ ∞
0

xs/2−1e−πn
2xdx.

Then, for <(s) > 1, we define

ξ(s) = s(s− 1)π−s/2Γ
(s

2

)
ζ(s).

Next, summation over n gives

∞∑
n=1

[
π−s/2Γ

(s
2

) 1

ns

]
=

∞∑
n=1

∫ ∞
0

xs/2−1e−πn
2xdx

π−s/2Γ
(s

2

) ∞∑
n=1

1

ns
=

∫ ∞
0

xs/2−1
∞∑
n=1

e−πn
2xdx

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞
0

xs/2−1ψ(x)dx

ξ(s) = s(s− 1)

∫ ∞
0

xs/2−1ψ(x)dx.

Next, breaking the integrals into two parts yields

ξ(s) = s(s− 1)

∫ ∞
1

xs/2−1ψ(x)dx+ s(s− 1)

∫ 1

0

xs/2−1ψ(x)dx

= s(s− 1)

∫ ∞
1

xs/2−1ψ(x)dx+ s(s− 1)

(∫ ∞
1

x−
s
2−

1
2ψ(x)dx+

1

s(s− 1)

)
(Lemma 3.10)

= s(s− 1)

∫ ∞
1

(
xs/2−1 + x−s/2−1/2

)
ψ(x)dx+ 1

= s(s− 1)

∫ ∞
1

1

x

(
x

s
2 + x

1−s
2

)
ψ(x)dx+ 1.

As ψ has exponential decay at ∞, i.e. the lim sup(ψ(s)) is bounded, ξ is an entire function. Finally,

notice that the R.H.S. of the above equation remain the same when the input of ξ is 1− s instead of s:
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ξ(1− s) = (1− s)(1− s− 1)

∫ ∞
1

1

x

(
x

1−s
2 + x

1−1+s
2

)
ψ(x)dx+ 1

= s(s− 1)

∫ ∞
1

1

x

(
x

s
2 + x

1−s
2

)
ψ(x)dx+ 1

= ξ(s).

Thus, we have

ξ(s) = ξ(1− s)

s(s− 1)π−s/2Γ
(s

2

)
ζ(s) = (1− s)(1− s− 1)π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Moreover, as ξ(s) = s(s− 1)π−s/2Γ
(s

2

)
ζ(s), we have

ζ(s) =
ξ(s)πs/2

s(s− 1)Γ(s/2)
.

As ξ and 1/Γ is entire function, the only poles for ζ are the point 0 and 1.

Recall that 1/Γ(s) = 0 for s = 0,−1,−2, . . . . It immediately follows that ζ(s) = 0 for s = −2,−4, . . . ,

which is call the trivial zeros of zeta function. We will discuss the zeros of zeta function again in chapter

4. After Riemann had proven the above functional equation, he showed another functional equation

which makes the trivial zeros more apparent to us. To show the second functional equation, the point

of departure is another observation by Euler.

3.3 Euler’s Observation II

31 years after “Variae observationes circa series infinitas”, Euler (1768) published another paper which

is very useful for our topic. The title of this paper is “Remarques sur un beau rapport entre les series des

puissances tant directes que reciproques” (English translation: Remarks on a beautiful relation between

direct as well as reciprocal power series).

In his paper, Euler (1768) stated the following:

Theorem 3.12. For s ∈ Z,

1− 2s−1 + 3s−1 − 4s−1 + 5s−1 − 6s−1 + · · ·
1− 2−s + 3−s − 4−s + 5−s − 6−s + · · ·

=
−1 · 2 · 3 · 4 · · · · · (s− 1)(2s − 1)

(2s−1 − 1)πs
cos
(πs

2

)
.

To simplify the above equation, we define

η(s) =

∞∑
n=1

(−1)n+1

ns
.
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Then, with the eta and Gamma functions, we get:

1− 2s−1 + 3s−1 − 4s−1 + 5s−1 − 6s−1 + · · ·
1− 2−s + 3−s − 4−s + 5−s − 6−s + · · ·

=
−1 · 2 · 3 · 4 · · · · · (s− 1)(2s − 1)

(2s−1 − 1)πs
cos
(πs

2

)
η(1− s)
η(s)

= − Γ(s)(2s − 1)

(2s−1 − 1)πs
cos
(πs

2

)
.

3.4 Functional Equation of Riemann Zeta Function II

To show the second functional equation,

ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin
(sπ

2

)
,

is true, one shall first notice that

(1− 21−s)ζ(s) = ζ(s)− 21−sζ(s)

=

∞∑
n=1

n−s − 2

∞∑
n=1

(2s)−s

= 1− 2−s + 3−s − 4−s + 5−s − 6−s + · · ·

(1− 21−s)ζ(s) = η(s). (5)

Then, by Theorem 3.12, we have

η(1− s)
η(s)

= − Γ(s)(2s − 1)

(2s−1 − 1)πs
cos
(πs

2

)
(1− 2s)ζ(1− s)
(1− 21−s)ζ(s)

= − Γ(s)(2s − 1)

(2s−1 − 1)πs
cos
(πs

2

)
ζ(1− s) =

2

(2π)s
Γ(s)ζ(s) cos

(πs
2

)
.

Now, if we put s instead of 1− s to the zeta function on the R.H.S., we will have

ζ(s) =
2

(2π)1−s
Γ(1− s)ζ(1− s) cos

(
π(1− s)

2

)
ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin

(sπ
2

)
.

However, as ζ(1) is undefined, the input cannot be 0 and 1. Also, the value of the ζ(s) is depending on

ζ(1 − s) and we only know the values of ζ(s) for <(s) > 1 from the original definition. Therefore, this

functional equation may not be useful in 0 ≤ <(s) ≤ 1. Also, as the domain of Γ is the set of all complex

number except non-positive integers, the domain of Γ(1 − s) is C\N. Therefore, the above functional

equation is useful in C\{0, 1, 2, . . . } ∪ {s ∈ C : 0 < <(s) < 1}. To make it more elegant, many textbooks

simply state the following:

For <(s) < 0, the functional equation for ζ is

ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin
(sπ

2

)
.
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On the other hand, from equation (5), we can see that

ζ(s) =
η(s)

1− 21−s
.

By the Alternating Series Test (section 2.3), one can easily show that η(s) is convergent for <(s) > 0.

Hence, the above equation is also an extension of zeta function from <(s) > 1 to <(s) > 0 with a pole

at the point 1 due to the denominator.

3.5 Short Summary

In short, there are four equations for the zeta functions:

For <(s) > 1, we have

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

ps

ps − 1
. (6)

For C\{0, 1}, we have

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s). (7)

For <(s) < 0, we have

ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin
(sπ

2

)
. (8)

For <(s) > 0 and s 6= 1, we have

ζ(s) =
η(s)

1− 21−s
. (9)
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4 Zeros of The Zeta Function: The Riemann Hypothesis

When we talk about the zeros of the zeta function, we mean the inputs of the function that make ζ = 0.

From Equation (8) of the last chapter, it is clear that for negative even integers, ζ(s) = 0 as sin s = 0

for s = kπ, for k ∈ Z. This is also known as the trivial zero of the zeta function. Apart from the trivial

zeros, are there non-trivial zero of the zeta function?

For <(s) > 1, we can see from Equation (6) that the values of ζ are products of positive numbers. Hence,

there are no zeros in this region.

For <(s) < 0, we can take a look at Equation (8). 2sπs−1 is obviously positive for all s in this region.

The Gamma function is also non-zero for all s in this region. ζ(1− s) in this region is actually same as

ζ(s) in <(s) > 1, implying non-zero in <(s) < 0 as well. Also, zeros of the sine function create the trivial

zeros only. Hence, we can conclude that there are no non-trivial zeros in <(s) < 0.

The remaining region is 0 ≤ <(s) ≤ 1, which is called the Critical Strip. Riemann suggested that may

be all the non-trivial zeros are on the line <(s) = 1/2, which is called the Critical Line . This conjecture

is now known as The Riemann Hypothesis. Riemann did not prove this statement, he explained: “ich

habe indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläiufig bei Seite

gelassen, da er für den nächsten Zweek meiner Untersuchung entbehrlich schien” (English translation:

“I have meanwhile temporarily put aside the search for [the proof] after some fleeting futile attempts,

as it appears unnecessary for the next objective of my investigation”) (Riemann, 1859, p. 139). Since

then, countless of Mathematicians have attempted to prove it, but none of them has succeeded.
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5 Generalized Riemann Hypothesis and Its Consequences

In this final chapter, we will talk about the Generalized Riemann Hypothesis and some of its consequences,

namely the weak form of the famous Goldbach’s Conjecture. But before we introduce this new conjecture,

we should first take a look on the Dirichlet charter χ mod k and the Dirichlet L-series L(s, χ).

Definition 5.1. (Dirichlet Characters)

A Dirichlet characters (mod k) is an arithmetical function χ : N→ C satisfying:

1. χ(mn) = χ(m)χ(n), ∀m,n ∈ N

2. |χ(n)| =


1 if (n, k) = 1

0 otherwise

3. χ(n+ km) = χ(n), ∀n,m ∈ N

4. χφ(k)(n) = 1, (n, k) = 1, where φ is the Euler’s totient function

This character is like a filter for relative prime. Non-relative prime input will becomes zero while relative

prime input will be preserved. Next, for the Dirichlet L-series, we have the following definition:

Definition 5.2. (The Dirichlet L-series)

For <(s) > 1, the Dirichlet L-series is defined as

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

Notice that Riemann zeta function is also a Dirichlet L-series with k = 1 and χ(n) = 1 ∀n ∈ N .

Conjecture 5.3. (Generalized Riemann Hypothesis)

For all Dirichlet characters, all the non-trivial zero of Dirichlet L-series lies on the critical line.

As ζ(s) is a Dirichlet L-series, the Generalized Riemann Hypothesis implies Riemann Hypothesis.

On the other hand, the Generalized Riemann Hypothesis also implies the weak form of the Goldbach’s

Conjecture (some textbooks refer it as odd Goldbach’s Conjecture or the 3-primes problem), which is

also an important hypothesis in Number Theory. In 1742, Christian Goldbach suggested the following:

Conjecture 5.4. (The Goldbach’s Conjecture (Weak Form))

For all odd number greater than 7, it can be expressed as the sum of three odd prime numbers.

Luckily, this conjecture, unlike the Riemann Hypothesis, has been proved in 2013 by Prof. Harald Andrés

Helfgott.
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