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Abstract

Knowledge and techniques from statistical physics have been extensively applied in many areas of

study, including complex networks and optimization problems. In this thesis, we study two inter-

disciplinary problems using methods from statistical physics, underlining the broad applicability

of statistical methods.

The first corresponds to a problem in transportation systems, in which selfish users exist and choose

alternative routes to minimize their individual costs instead of using the optimal paths provided.

The dynamics of selfish routing have been extensively studied and yet their impact on an initially

optimized transportation network have not yet been discussed. We apply the cavity method in spin

glass theory with probabilistic modeling to reveal the rerouting behaviors of selfish users as well

as their impacts. We also extend to the case of multiple rounds of selfish rerouting, to study the

Nash equilibrium of the system via simulation.

The second problem corresponds to the study of the energy landscapes of complex disordered sys-

tems. These systems exhibit glassy behaviors which are believed to be characterized by the en-

ergy landscapes. However, most existing methods describing the energy landscapes have omitted

important features. We introduce a method to reveal the complete energy landscape of complex

disordered systems, taking spin glasses and K−Satisfiability problems as examples. The energy

landscape is used to derive the non-equilibrium dynamics of these systems analytically, which

is computationally infeasible by simulations. Physical pictures of the glassy behaviors of these

systems are also discussed.

Keywords: Statistical physics, transportation optimization, Nash equilibrium, complex disordered

systems, energy landscapes
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Chapter 1: Introduction

Modern developments in statistical physics have led to its application in areas outside conventional

physical systems, bringing significant impacts. For instance, in the fields of complex systems and

social science, knowledge and techniques from statistical mechanics are used to study the blackout

sizes in power grids via scaling theory and self-organized criticality (Cao, Ding, Wang, Bao, and

Han 2009; Nesti, Sloothaak, and Zwart 2020; Po, Yeung, Zeng, andWong 2017), to identify optimal

paths in transportation networks (Yeung 2019; Yeung and Saad 2012; Yeung, Saad, andWong 2013)

and routing optimization in optical communication networks (Xu, Po, Yeung, and Saad 2021b),

and to understand the dynamics and optimization of epidemic spreading (Lokhov, Mézard, Ohta,

and Zdeborová 2014; Lokhov and Saad 2017; Pastor-Satorras and Vespignani 2001). In computer

science and applied mathematics, combinatorial optimization problems such as K−Satisfiability

problems and graph coloring (Gabrié, Dani, Semerjian, and Zdeborová 2017; Krzakała, Monta-

nari, Ricci-Tersenghi, Semerjian, and Zdeborová 2007; Marino, Parisi, and Ricci-Tersenghi 2016;

Mézard and Zecchina 2002; Ricci-Tersenghi and Semerjian 2009; Zdeborová and Krząkała 2007),

effective algorithms as well as phase diagrams of the solution space are produced by drawing an

analogy with spin glass systems.

In this thesis, we study two interdisciplinary problems using knowledge and techniques from statis-

tical mechanics. In the first part of the thesis, we study a problem in transportation systems where

selfish users choose alternative routes to minimize their individual costs, instead of using the opti-

mal paths provided. Due to the extensive number of routing possibilities, it is highly challenging

to identify the paths of the optimal configuration as well as the rerouting decisions of selfish users.

Methods originally aimed at studying spin glasses are applied to study the problem and lead to a
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clear physical picture about selfish users’ rerouting and their impacts on the system. In the second

part of the thesis, we study the energy landscape of complex disordered systems. That these systems

exhibit glassy behaviors has been extensively studied. We introduce methods to completely reveal

the energy landscape of these glassy systems, and are able to identify the minima of the systems

and preserve connectivity between states. Furthermore, we derive the non-equilibrium dynamics

of these systems analytically. We show how the techniques and knowledge derived from statistical

physics can be broadly applied to problems in different areas.

1.1 Transportation optimization: motivation and introduction

Traffic congestion is a serious problem in metropolitan areas worldwide, which is costly in both

monetary and environmental terms. For instance, in Europe, traffic congestion is costing nearly

€100 billion annually, or about 1% of the EU’s GDP (Directorate-General for Mobility and Trans-

port 2021). Therefore, easing congestion is important and can bring huge benefits to the society.

Alleviating congestion through infrastructure upgrades is costly and often infeasible in established

metropolitan areas. Alternatively, coordinating traffic through optimized routes coupled with vari-

able road-charges or financial inducements is one of the most feasible and promising approaches

to mitigate congestion (Bayati et al. 2008b; Dobrin and Duxbury 2001; Noh and Rieger 2002).

Although optimization algorithms have been derived for identifying optimal routes to achieve a

global objective that is beneficial to the whole system, some individuals often have to sacrifice and

travel on a slightly longer path (Yeung 2019; Yeung and Saad 2012; Yeung et al. 2013). Therefore,

even though optimally coordinated routes may be provided, it is trivial to observe that some selfish

individuals may choose alternative routes which drive the system away from the optimum (Prato

2009; Shiftan, Bekhor, and Albert 2011). Such dynamics of individual route decisions have been
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studied in game theory and operations research. For instance, mathematical models are constructed

to study dynamical selfish routing (Anshelevich and Ukkusuri 2009; Fischer and Vöcking 2004),

and to reveal the impact of economic incentives on suppressing selfish behaviors (Cole, Dodis, and

Roughgarden 2006). Selfish routing and the resulting Nash equilibria in capacitated networks have

also been investigated (Correa, Schulz, and Stier-Moses 2004). However, most of these studies

focus on the dynamics of individual route decisions only, while the impact of selfish routing on

an initially optimized transportation network has not yet been discussed, nor has any analytical

solution to the problem been devised. Such analysis can reveal the potential benefits of global

coordination of routes, which is important for future transportation systems in which route coordi-

nation is possible via self-driving vehicles and information technology.

In Chapter 2, we introduce the model of a transportation network, where users are initially provided

with the optimized routes from their starting points to a common destination, while some do not

follow the suggested routes and choose alternatives to minimize their own individual costs. We

employ the cavity method developed for studying spin glasses (Mézard and Zecchina 2002) and

probabilistic modeling to reveal the impact of selfish rerouting on the system. In Chapter 3, we

extend the model to the case of multiple rounds of selfish rerouting and study the Nash equilibrium

of such problems via simulation.

1.2 Energy landscapes of complex disordered systems: motivation and introduction

An energy landscape corresponds to the graph of the energy function of a physical system which

associates each possible variable configuration with an energy. Since most physical systems consist

of many variables, the energy landscapes of these physical systems are high-dimensional surfaces

and thus are extremely intricate to visualize. For instance, for a spin system with N spins, the
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configuration space is in N dimensions and there are a total of 2N possible variable configura-

tions(corresponding to spin “up” or spin “down” for each). Similar to physical systems, the energy

landscape of optimization problems can be understood as the graph of the cost functions. The en-

ergy landscapes serve an important role in characterizing the emergent behavior of these systems.

For instance, in spin systems, spins glasses are believed to be characterized by the existence of

a large number of local minima in the energy landscapes, while ferromagnetic spin systems are

characterized by energy landscapes without local minima (Mézard, Parisi, and Virasoro 1987b;

Nishimori 2001). Similarly, the algorithm hard and algorithm easy phases in combinatorial opti-

mization problems distinguishing how hard the system can be solved are also characterized by the

number of local minima in the energy landscapes (Krzakała et al. 2007; Zdeborová and Krząkała

2007). Therefore, methods that can reveal and analyze the complete energy landscape are crucial

in the study of these systems.

Since the energy landscapes are high-dimensional surfaces, revealing their structure completely

is highly challenging. While various approaches are used to investigate the energy landscapes of

complex systems, some features of the landscape are omitted so that the realization is feasible. For

instance, disconnectivity graphs (DGs) represents the energy landscapes by showing the set of all

minima and the lower energy barriers between any two minima (Becker and Karplus 1997), which

have been extensively applied to study problems in spin glasses (Biswas and Katzgraber 2020),

protein folding (Krivov and Karplus 2004) and machine learning (Ballard et al. 2017). Neverthe-

less, DGs only show the connectivity between minima by the path with the lowest energy barriers,

and the exact connectivity between states is omitted. Another approach commonly used is multi-

dimensional scaling (MDS), which maps all variable configurations in the N-dimensional config-

uration space to an assigned dimension (usually 2 or 3) and preserves the distance or similarity
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between any two states (Mead 1992). However, some important features including the connectiv-

ity, energy difference, as well as the energy barrier between states, are omitted, thus the landscape

is oversimplified by MDS. A method that can reveal the complete energy landscape showing the

exact connectivity between states remains unexplored.

In Chapter 4, we introduce a method to show the complete energy landscape of complex disordered

systems, using spin glasses and K−Satisfiability problems as examples. The obtained energy land-

scapes are then used to reveal the non-equilibrium dynamics analytically, at any given temperature

for any given time, which is computationally infeasible by simulation. The energy landscapes and

the non-equilibrium dynamics obtained are studied, and a complete physical picture of the long-

time dynamics is presented.
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Chapter 2: Selfish behavior on optimized transportation networks

2.1 Model formulation

Consider a transportation networkG = (V,E) comprising the set of nodes V and the set of links E.

The set V consists of N nodes, denoted as i = 1, . . . ,N. Every node i ∈ V on the network connects

to a set of neighboring nodes Ni. For every link (i j) ∈ E connecting the nodes i and j ∈ Ni, we

define wi j as the weight of the link, representing how costly it is for traveling through (i j), such as

the physical traveling distance. Since we are focusing on the physical properties of a transportation

system, we assume wi j = 1 ∀(i j) ∈ E for simplicity. Now, consider that there exist M vehicles,

denoted as ν = 1, . . . , M, traveling on the transportation network, and the density of vehicles for

the network is defined as α = M
N . Every vehicle ν is traveling to an arbitrary universal destination

nodeD from its starting node O that is randomly selected. We define σν
i j as the path configuration

of the vehicle ν on the link between nodes i and j, where: σν
i j = 1 if the vehicle ν is traveling from

node i to node j; σν
i j = −1 if the vehicle ν is traveling from node j to node i, and; σν

i j = 0 when ν is

not traveling on the link (i j). It is trivial that σν
i j = −σν

ji. The vector of the routing decisions made

by all vehicles is then defined by σ =
{
σν

i j

}
ν,(i j)

.

Yeung and Saad 2012 proved that, over an optimized transportation network, drivers always travel

in the same direction, i.e. either σν
i j ≥ 0 or σν

i j ≤ 0 ∀ν, for any link (i j) ∈ E. Since we are studying

selfish routing behavior over an optimized transportation network, we can assume all vehicles are

heading in the same direction on a certain link. The directed total traffic flow from node i to node

j on the transportation network, defined as the total number of vehicles traveling on link (i j), is
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denoted as Ii j, where

Ii j =
∑
ν

σν
i j, (1)

so that vehicles are traveling from i to j if Ii j > 0 and j to i if Ii j < 0. The total volume of traffic from

node i to j is
∣∣∣Ii j

∣∣∣ = ∑
ν |σν

i j| =
∣∣∣∣∑ν σ

ν
i j

∣∣∣∣. Similar to the real-life situation in which traffic congestion
usually occurs when vehicles’ paths are overlapping and sharing the same road, the social cost of

traffic is defined asH(σ|γ), given by

H(σ|γ) =
1
M

∑
(i j)

∣∣∣Ii j

∣∣∣γ = 1
M

∑
(i j)

∑
ν

∣∣∣σν
i j

∣∣∣γ . (2)

The exponent γ defines the preference of the transportation network. When γ > 1, the cost increases

with the traffic flow nonlinearly, meaning the system prevents a link being shared by multiple ve-

hicles. When γ = 1, the two summations in Eq.(2) are interchangeable, and the social costH(σ|γ)

becomes

H (σ|1) =
1
M

∑
(i j)

∑
ν

∣∣∣σν
i j

∣∣∣ = 1
M

∑
ν

∑
(i j)

∣∣∣σν
i j

∣∣∣ , (3)

meaning that the social cost is minimized when all users are minimizing their individual traveling

path lengths. We remark that the cost function in Eq.(2) can be replaced by other nonlinear costs

to fit the needs of different applications, such as the Bureau of Public Roads (BPR) latency func-

tion that is used frequently for studying realistic transportation networks (Lien, Mazalov, Melnik,

and Zheng 2016; United States. Bureau of Public Roads 1964). We will present how the social

costH(σ|γ) and the corresponding path configuration can be minimized using a message-passing
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algorithm proposed by Yeung and Saad 2012 in Section 2.3.

Now, assume that the social travel costH(σ|γ) is minimized, and the corresponding configuration

of route for every vehicle ν is identified and suggested to all vehicles. The optimized path for the

vehicle ν is defined as σν∗
i j . If the optimized path for ν is traveling from node i to node j, then

σν∗
i j = 1 and σν∗

ji = −1, and σν∗
i j = 0 otherwise. The vector of the optimized routing strategies for

all vehicles is then defined as σ∗, where

σ∗ = argmin
σ
H (σ|γ) . (4)

Next, the optimized directed total traffic flow from node i to j, denoted as I∗i j, is given by

I∗i j =
∑
ν σ

ν∗
i j . To study how selfish routing behavior impacts an optimized network, one must

first define the utility function for individual users. Consider that a fraction fs of M vehicles are

selfish, i.e. the number of selfish users is fsM. For any vehicle ν that is selfish, it aims to minimize

its own individual costs by traveling through another route σ̃ν =
{
σ̃ν

i j

}
(i j)
. We define the individual

travel cost asHν (σ̃|σ∗, γ), given by

Hν (σ̃ν|σ∗, γ) =
∑
(i j)

∣∣∣σ̃ν
i j

∣∣∣ (1 + ∣∣∣I∗i j − σν∗
i j

∣∣∣)γ−1
. (5)

The quantity
∣∣∣∣I∗i j − σν∗

i j

∣∣∣∣ represents the induced traffic condition due to the other users. The individ-
ual travel cost implies that, for the selfish vehicle ν, it is provided with the recommended traffic

condition as well as the induced traffic, and this information is used to minimize its own cost. The

exponent in Eq.(5) is defined as γ − 1 so that the sum of individual costs is equivalent to the social

cost in Eq.(2), which will be discussed below. Similar to Eq.(3), when γ = 2, the individual travel
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cost represents the total traffic flow experienced by ν over the route it decided.

We remark that both the social cost and the individual cost for every vehicle can also be defined

separately without satisfying the above conditions for other specific needs. The individual travel

cost is defined in this manner because Eq.(5) can relate the social cost H in Eq.(2) with the indi-

vidual cost Hν for convenience of treatment. Now, if we consider that all vehicles are following

the suggested optimal paths, i.e. σ̃ν
i j = σ

ν∗
i j ,∀ν, (i j), then we have

∣∣∣σ̃ν
i j

∣∣∣ (1 + ∣∣∣I∗i j − σν∗
i j

∣∣∣)γ−1
=


∣∣∣I∗i j

∣∣∣γ−1
, if

∣∣∣∣σν∗
i j

∣∣∣∣ = 1;

0 , if
∣∣∣∣σν∗

i j

∣∣∣∣ = 0.
, (6)

⇒
∣∣∣σ̃ν

i j

∣∣∣ (1 + ∣∣∣I∗i j − σν∗
i j

∣∣∣)γ−1
=

∣∣∣σ̃ν
i j

∣∣∣ ∣∣∣I∗i j

∣∣∣γ−1
. (7)

Using Eq.(7), and by summing the individual costs for all vehicles, we have

∑
ν

Hν(σν∗|σ∗, γ) =
∑
ν

∑
(i j)

∣∣∣σ̃ν
i j

∣∣∣ ∣∣∣I∗i j

∣∣∣γ−1

=
∑
(i j)

∑
ν

∣∣∣σ̃ν
i j

∣∣∣ ∣∣∣I∗i j

∣∣∣γ−1
=

∑
(i j)

∣∣∣I∗i j

∣∣∣γ = H(σ|γ). (8)

Therefore, the above equations show that if all vehicles are following the suggested optimal routes,

the sum of all individual costsHν is equal to the social costH . If there exist some vehicles that are

not following the suggested routes, the social cost would be either unchanged or increased, due to

the fact that the social cost is minimized under the suggested configuration.

To analyze the impact of selfish routing strategies, we have to quantify their impact on the social

cost in the next step. It is important to note that the preference of the route recommending system

can be different from the real social cost; for example, for maintenance proposes, the transportation
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system wants to minimize the total number of roads that are in use. Therefore, we separate them

by assigning γr and γ as the exponent in Eq.(2), representing the preference of the recommending

system and the real social cost respectively, where γr and γ not necessarily the same. We measure

the fractional change of the social costH induced by the rerouting caused by selfish drivers, defined

as

∆H(γr, γ) =
H (σ̃∗(γr)|γ) −H (σ∗(γr)|γ)

H (σ∗(γr)|γ)
, (9)

where the vector σ∗(γr) is the recommended route configurations that minimize H(σ|γr), pro-

vided that the real social traffic cost is characterized by H(σ|γ). Other than σ∗(γr), the vector

σ̃∗(γr) denotes the selfish rerouting strategies for all vehicles that optimize their own individ-

ual travel costs Hν (σ̃ν∗|σ∗, γr) by considering the recommended traffic configuration σ∗(γr), i.e.

σ̃∗(γr) = {σ̃ν∗(γr)}ν=1,...,M. Note that there are two types of users on the transportation network, the

first type who are compliant and follow the recommended routes provided, and the other type of

users who are selfish and follow the routes that can optimize their individual costs. Therefore,

σ̃ν∗(γr) =


σν∗(γr), for compliant vehicles,

argminσ̃νHν(σ̃ν|σ∗(γr), γ), for selfish vehicles.
(10)

In this chapter, we aim to study the impact caused by selfish routing decisions, including the fac-

tional change in social cost, and isolated individual costs for both compliant and selfish vehicles.

We remark that themodel discussed is applicable for any values of γr, γ ≥ 1. Nevertheless, since we

are focusing on the physical properties of the transportation system, we mainly study the following

two different scenarios of recommended traffic: (1) (γr, γ) = (1, 2). This scenario represents that
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originally, all vehicles are suggested to pick their shortest path, σ∗(1); (2) (γr, γ) = (2, 2). This

scenario represents that originally, all vehicles are suggested to pick the routes that minimize the

social cost H(σ|2) that prevent link-sharing. In both scenarios, the social cost is characterized by

H(σ|2) to discourage overlapping of traffic, while the individual travel costs are characterized by

Hν(σ̃ν∗|σ∗(γr), 2) for different γr. After recommended routes are provided to the selfish users, they

are rerouting to new paths σ̃ν to minimize their own individual costsHν(σ̃ν∗|σ∗(γr), 2).

To compute the quantities measuring the impacts caused by selfish routing, we apply tools and

techniques from statistical physics that are used to study spin glass systems. In Section 2.2, we first

introduce the cavity method which was originally introduced for studying spin glasses (Mézard,

Parisi, and Virasoro 1987a). In Section 2.3, we present the approach developed in Yeung and Saad

2012 in detail, showing how the analytical solution of the transportation system that minimizesH

can be found. In Section 2.4, we derive a new two-stage cavity method based on the framework in

Section 2.3, where the first stage of the method is identifying the optimal configuration of paths to

recommend to users, and the second stage corresponds to identifying the rerouting decisions made

by selfish vehicles. Following the two-stage cavity method, we describe the selfish routing behav-

ior of selfish vehicles by probabilistic modeling. In Section 2.5, we modify the newly developed

framework from Section 2.4 to derive an exhaustive analytic approach that can describe the precise

routing behaviors of all users before and after rerouting.

2.2 Ordinary cavity method

The cavity method was first presented byMézard et al. 1987a, originally for studying spin glass sys-

tems. The method is adapted very well to treelike graph structures, i.e. sparse graphs in which only

large loops exist, such as random regular graphs (Bollobás 2001) and Erdős–Rényi graphs (Erdös
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and Rényi 1959). The cavity method carries out rigorous probabilistic analysis by reproducing a

self-consistence recurrence relation for a system with N + 1 nodes based on the same system with

N nodes, assuming that when N is large enough, the correlations between any two nodes vanish,

i.e. the two nodes are statistically independent. Remarkably, the cavity method provides a frame-

work that is able to compute statistical properties for many disordered systems, such as condensed

matter and optimization problems. Although the replica method (Nishimori 2001) provides a more

elegant and rigorous mathematical formulation, the cavity method has unique advantages. First,

since concrete probabilistic modeling is done through the derivation of the cavity method, not just

macroscopic physical quantities (e.g. energy and entropy) can be measured, the method itself can

be considered as a tool and method for rigorous probabilistic analysis for complex systems.

Another important advantage is that, contrary to the replica approach, the derivation of the cavity

method firstly describes mathematically how the energy of a node depends on its neighbors and

other variables, and the macroscopic quantities are found by performing quenched averaging over

the disorder afterward. This allows us to define message-passing algorithms inspired by the deriva-

tion process of the cavity method. This important advantage makes the cavity method not only able

to produce theoretical results, but also produce algorithms that are applicable to a single instance

of problems, such as the message-passing algorithms similar to belief propagation discovered in

computer science and survey propagation algorithms in solving theK-satisfiability problems, which

have been proven to be very effective (Mézard et al. 1987a).

In the following sections, we make use of these advantages of the cavity method to produce the-

oretical solutions, carry out concrete probabilistic analysis, and produce a practical algorithm for

transportation networks. In Section 2.3, we first apply the conventional cavity method to optimize

the social travel cost H and simplify it into a more specific cavity method at zero temperature.
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Then we develop two different cavity methods for studying selfish routing behavior based on this

specific cavity method in Section 2.4 and Section 2.5.

2.3 Cavity method to optimize social travel cost

An optimization framework for identifying the optimal traffic condition has been proposed by

Yeung and Saad 2012. To provide a clearer picture of how the frameworks in Section 2.4 and

Section 2.5 are derived, we first present the original framework in this section.

Consider a transportation model as described above, while no selfish routing will occur after the

optimal configuration is found. This routing optimization problem is first mapped into a resource

allocation problem, where resources are transferring from a set of nodes to a universal sink. In this

case, every node i is assigned with a transportation load Λi, where

Λi =



1, if ∃ν s.t. Oν = i;

−∞, ifD = i;

0, otherwise.

(11)

In other words, every vehicle is transferring a positive unit of load from its origin to the common

destination, which can be understood as a universal sink. To ensure all paths to the universal sink

for each user are valid and identified, we have to restrict all traffic flow to integer values, i.e.

Ii j ∈ Z,∀(i j). Moreover, to ensure the identified paths are connected from their origin to the sink,

the net resources on any node i except the destination, denoted as Ri,∀i , D, have to be conserved,

where

Ri = Λi +
∑
j∈Ni

I ji = 0. (12)
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Figure 1. (a) The original transportation network. (b) The corresponding factor graph of the origi-

nal transportation network shown in (a).

Next, we assume that the networks we study are sparse, and that only large loops exist and with

treelike structures. Therefore, for any node i, when it is removed from the network, the neighbors

of i become statistically independent. We remark that although a treelike structure is assumed,

the analytical results obtained on non-tree structures are in good agreement with the simulation

results, as discussed in Bayati et al. 2008a and Yeung, Wong, and Li 2014. We next employ the

cavity method to optimize the system. Conventionally, the variables are usually defined over nodes

in the cavity method. Nevertheless, the current flow Ii j is defined over links in our model setup.

To tackle this problem, we switch the role of nodes and links in the corresponding factor-graph

of the transportation network. In particular, as shown in Fig. 1(b), the variable node a represents

the link connecting physical junctions i and l, while the function node i represents the physical

junction. For clear presentation, we also note that the traffic flow Iil = Ii→a = Ia→l for the variable

node a connecting i and l. We denote ∂′i and ∂′a as the set of neighbors of the node i and node

a, respectively, in the corresponding factor-graph of the transportation network. Employing the

cavity method with inverse temperature β, we define mi→a(Ii→a) as the message sent from node a
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to node i, as a function of Ii→a, given as

mi→a(Ii→a) =
∑

{Ib→i}b∈∂′i\a

e−β|Ii→a |γδ

Λi +
∑

b∈∂′i\a
Ib→i − Ii→a

 ∏
b∈∂′i\a

mb→i (Ib→i) , (13)

and mb→i(Ib→i) as the message sent from node b to node i, where

mb→i(Ib→i) =
∏

j∈∂′b\i
m j→b

(
I j→b

)
= m j→b

(
I j→b

)
. (14)

Note that the messages mi→a and ma→l are identical, we can combine them into one message mi→l

and remove all the variable nodes in the factor graph. The message passing equation then becomes

mi→l(Iil) =
∑
{I j→i} j∈∂′i\l

e−β|Iil |γδ

Λi +
∑

j∈∂′i\l
I ji − Iil

 ∏
j∈∂′i\l

m j→i

(
I ji

) . (15)

Since we are focusing on optimal configurations only, we can employ the cavity method at zero

temperature and further simplify Eq. (15) by mi→l(Iil) = e−βE(Iil) and take β to infinity. We define

Ei→l(Iil) as the optimized energy function terminated at node i to node l, as a function of the traffic

flow Iil on the link (il). Next, a recurrence relation can be formulated relating the energy Ei→l(Iil)

(the parent) at node i to the energies E j→i(I ji) (the descendants) of the neighbors j ∈ Ni except the

parent l, given by

Ei→l (Iil) = min{
{I ji} j∈Ni\l

|Ri=0
}
|Iil|γ +

∑
j∈Ni\l

E j→i(I ji)

 . (16)

Intuitively speaking, any given node i is providedwith themarginal energies of its descendant nodes

j except the parent node l, and tries to minimize the traveling cost and propagate to the parent node
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l by finding the optimal combination of the set of traffic flows
{
I ji

}
j∈Ni\l

of its descendant, given the

constraint that Ri = 0. Noting that the energy function Ei→l (Iil) is convex due to the convexity of

|I|γ for all γ ≥ 1, the computation of Eq. (16) can be further simplified. Making use of the convexity

of the energy function, we define the change of energy ∆±i (Iil) = Ei→l (Iil ± 1) − Ei→l (Iil) and we

have

∆±i (Iil) = |Iil ± 1|γ − |Iil|γ + min
j∈Ni\l

{
∆±j

[
I∗ji (Iil)

]}
,where

I∗ji (Iil) =


I∗ji (Iil) ± 1 , j = argmin j∈Ni\l

{
∆±j

[
I∗ji (Iil)

]}
I∗ji (Iil) , otherwise.

(17)

Therefore, instead of finding all combinations of the set of traffic flows
{
I ji

}
j∈Ni\l

, we just need to

find the value of min j∈Ni\l
{
∆±j

[
I∗ji (Iil)

]}
. Hence, the computational complexity of finding the en-

ergy function Ei→l (Iil) isO (⟨k⟩M). We further note that the quantity Ei→l(Iil) is extensive, meaning

that the values of the energies depend on the size of the system, which will be difficult to find by

iterations. Therefore, we have to modify Ei→l (Iil) and define a new intensive quantity EV
i→l (Iil),

where

EV
i→l (Iil) = Ei→l (Iil) − Ei→l (0) , (18)

which can be easily computed after all energy functions Ei→l (Iil) are found by Eq.(16).

The next step is to solve the systems analytically and obtain theoretical results. In the thermody-

namic limit as N → ∞, the correlation between nodes vanish and they become independent of

each other. Therefore, when a link (i j) is chosen, the energy EV
i→l (Iil) should follow a functional
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probability distribution P
[
EV(I)

]
, and to solve the system we have to first solve P

[
EV(I)

]
. In

the thermodynamic limit, in principle we can write a self-consistent equation, using Eq.(16) and

Eq.(18), given by

P
[
EV(I)

]
=

∫
dk

P(k)k
⟨k⟩

∫
dΛP(Λ)

k−1∏
j=1

∫
dEV

j P
[
EV

j (I)
]
δ
(
EV(I) − R

[{
EV

j

}
,Λ, I

])
, (19)

where we denote R as the right hand side of Eq.(18), which can be evaluated by the recurrence rela-

tion derived in Eq.(16); P(k) is the probability distribution of the nodes degree k over the network;

⟨k⟩ =
∫

P(k)kdk represents the average degree of nodes, for instance in the random regular graph,

P(k) = ⟨k⟩ = C, for some C ∈ Z; P(Λ) is the probability distribution of the transportation load, for

instance over a network of N = 100 and M = 10, we have P(Λ = −∞) = 0.01 and P(Λ = 1) = 0.1.

To obtain the converged functional probability distribution P
[
EV(I)

]
, one can employ a procedure

known as population dynamics (Mézard and Zecchina 2002) to iterate Eq.(19), which is a set of iter-

ative steps defining a stochastic process. Theoretically, P
[
EV(I)

]
should be a population of infinite

size, where the functional equation describing it would be extremely complicated and impractical.

Therefore, to make the distribution feasible to compute, we approximate P
[
EV(I)

]
as a pool with Ξ

functions EV(I) in which the function forms can be randomly drawn, and here we choose EV(I) = Iγ

for all functions. The procedure of population dynamics is to iterate Eq.(19) until the distribution

is converged. At each step of the iteration, we perform the following processes:

(i) Randomly select the degree k from the probability distribution P(k)k
⟨k⟩ .

(ii) Randomly select the transportation load Λ from the probability distribution P(Λ).

(iii) Randomly draw k − 1 functions EV(I) from the distribution P
[
EV(I)

]
.

(iv) Compute a new energy function EV(I), using

EV(I) = R
({

EV
j

}
,Λ, I

)
, (20)
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Figure 2. The combination of the trees characterized by the cavity energies. The dotted line repre-

sents the traffic flow that we aim to find.

where the functions in the set
{
EV

j

}
on the right hand side are the functions drawn in (iii).

(v) Randomly select a function from P
[
EV(I)

]
, and replace it with the function EV(I) that is

newly evaluated in (iv).

The above procedure is repeated until the approximated distribution P
[
EV(I)

]
is converged. We

remark that since our transportation system of interest has been proven to be in the replica symmet-

ric phase in Yeung and Saad 2012, where the ground state of the system presence as a single state,

the equilibrium state of P
[
EV(I)

]
would not be affected by the initial condition of the functions.

With the converged functional distribution, one is allowed to compute any macroscopic physical

quantities that we are interested in analytically. Since the cavity energy EV
i (Ii) characterizes the

energy of a tree structure sent to its parent node, we can compute the optimal configuration of

traffic flow of any link (i j) by merging two duplicated trees, as shown in Fig. 2. Therefore, the

optimal configuration of flow I∗ of any link (i j) is given by argminI

[
EV

i (I) + EV
j (−I) − |I|γ

]
, where

the term |I|γ in the argmin function is to cancel the double counting of the energy. Hence, the

average energy of the system ⟨E⟩ describing the average social cost over the optimal configuration
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can be found by

⟨E⟩ =
∑

I∗
P(I∗) |I∗|γ , where (21)

P(I∗) =
∫

dEV
i P

[
EV

i (I)
] ∫

dEV
j P

[
EV

j (I)
]∑

I∗
δ

(
I∗ − argmin

I

[
EV

i (I) + EV
j (−I) − |I|γ

])
. (22)

In this section, we have provided the derivation of the optimization framework for studying optimal

traffic flow where selfish users and rerouting behaviors do not exist. The derivation gives a basic

understanding of the cavity method and its practical application to a complex system. This gives a

clearer picture of how the framework is derived in the following sections, as it consists of multiple

steps and might be hard to follow.

2.4 Two-stage cavity method and probabilistic modeling of selfish routing

Consider the case in which we not only aim to find the optimal configuration that minimizes the

social traffic cost of the system, but also the impact of selfish rerouting. Note that the framework we

discussed in the last section does not consider individual travel routes. Therefore, in this case, we

first introduce an extra variable to single out a vehicle µ and study its route switching behavior from

the optimal path configuration suggested. We then use the probability distribution that describes

the selfish rerouting strategies to estimate the case when there are multiple selfish drivers.

Similar to Eq.(11), we defineΛi = (Λµi ,Λ
\µ
i ) to be the vector of transportation load on node i, where

Λ
µ
i and Λ

\µ
i are the transportation loads for the isolated vehicle µ and the other vehicles on the node
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i, respectively. The transportation resource Λi is then given by

Λi =



(1, 0), if Oµ = i;

(0, 1), if ∃ν , µ s.t.Oν = i;

(−∞,−∞), ifD = i;

(0, 0), otherwise.

(23)

Then, as in Eq.(12), we define R = (Rµ
i ,R

\µ
i ) as the vector of the net resources on node i, given by

Rµ
i = Λ

µ
i +

∑
j∈Ni

σ
µ
ji, (24)

R\µi = Λ
\µ
i +

∑
j∈Ni

I\µji = Λ
\µ
i +

∑
j∈Ni

∑
ν,µ

σν
ji, (25)

where Rµ
i and R\µi are the net resources for the isolated vehicle µ and the other vehicles on the

network, respectively; I\µji and σ
µ
ji are the traffic flow except µ and the path of µ, respectively. We

then restrict all flow σ and I to be integer valued and the vector of resources Ri = (Rµ
i ,R

\µ
i ) = (0, 0)

for all i , D, so the paths from the origins to the destination can be identified and are connected.

In the initial stage, the path configuration that minimizes the social costH(σ|γr) is identified and

recommended to all vehicles. Next, based on the suggested configuration provided, the vehicle

µ reroutes in order to minimize its own individual traffic cost Hµ(σ̃µ|σ∗, γ). To model the above

process mathematically, similar to Section 2.3, we assume the networks studied are sparse graphs

such that only large loops exist and in treelike structures. For any node i, we define Ei→l

(
σ
µ
il, I
\µ
il

)
as

the optimized energy terminated at node i, describing the marginal energy from i to l, as a function

of the traffic flow σ
µ
il and I\µil on the link (il). The energy is defined differently by introducing a new
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parameter to separate the contribution by the routing decisions of the user µ to the energy from the

other users on the link (il). We can then formulate the recurrence relation among Ei→l

(
σ
µ
il, I
\µ
il

)
and

E j→i

(
σ
µ
ji, I
\µ
ji

)
for all descendant neighbors j ∈ Ni \ l, given by

Ei→l

(
σ
µ
il, I
\µ
il

)
= min{

σ
µ
ji,I
\µ
ji

∣∣∣∣Ri=(0,0)
}
(|σµ

il| + |I
\µ
il |

)γr
+

∑
j∈Ni\l

E j→i

(
σ
µ
ji, I
\µ
ji

) , (26)

recalling that the exponent γr defines the preference of the recommending system to identify the

suggested optimal paths, offered to all users.

Eq.(26) only describes how the isolated vehicle µ and the other vehicles identify the optimal path

configuration. Therefore, we have to introduce another energy function Ẽi→l(σ̃
µ
il, σ

µ∗
il , I

\µ∗
il ) that

characterizes the selfish behavior of the singled-out vehicle µ. This function describes the strategy

of the vehicle µ that is replacing its recommended path configuration σµ∗
il by σ̃

µ
il, by considering the

recommended traffic I\µ∗il resulting from all vehicles except µ that optimize the social costH(σ|γr).

To achieve this, we have to identify the set of recommended traffic conditions on the links connect-

ing to any given node i by using Eq.(26). For any set (σµ∗
il , I

µ∗
il ), the corresponding optimal traffic

of the set
{
(σµ∗

ji , I
\µ∗
ji )

}
j∈Ni\l

from the neighbors j of node i except the parent l can be expressed by

{
(σµ∗

ji , I
\µ∗
ji )

}
j∈Ni\l

= argmin{
σ
µ
ji,I
\µ
ji

∣∣∣∣Ri=(0,0)
}
(|σµ

il| + |I
\µ
il |

)γr
+

∑
j∈Ni\l

E j→i

(
σ
µ
ji, I
\µ
ji

) . (27)

Therefore, the set
{
(σµ∗

ji , I
\µ∗
ji )

}
j∈Ni\l

can be understood as a function of (σµ∗
il , I

µ∗
il ), while for clear

presentation, we simply write this function as a variable, and these can be found in parallel with the

energy Ei→l

(
σ
µ
il, I
\µ
il

)
as Eq.(26) and Eq.(27) are two identical equations except one is finding the

minimal energy while another is looking for the arguments that give that energy. Subsequently, the
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Figure 3. A two-layered diagram to illustrate (1) the recurrence relation in Eq.(26) and Eq.(28)

about how the ancestor depends on its descendants, and (2) how Eq.(28) depends on Eq.(26). Both

recurrent relations are iterated in parallel until the joint probability distribution P
[
EV , ẼV

]
is con-

verged.

energy Ẽi→l(σ̃
µ
il, σ

µ∗
il , I

\µ∗
il ) can be written down as a recurrent relation with the descendants’ energies

Ẽ j→i(σ̃
µ
ji, σ

µ∗
ji , I

\µ∗
ji ) for all j ∈ Ni \ l, describing the singled-out user µ switching from recommended

route σµ
il to the route σ̃

µ
il that optimized its own individual traffic cost, given by

Ẽi→l(σ̃
µ
il, σ

µ∗
il , I

\µ∗
il ) = min{ {

σ̃
µ
ji

}
j∈Ni\l

∣∣∣∣∣Rµi =0
}
∣∣∣σ̃µ

il

∣∣∣ (1 + ∣∣∣I\µ∗il

∣∣∣)γ−1
+

∑
j∈Ni\l

Ẽ j→i(σ̃
µ
ji, σ

µ∗
ji , I

\µ∗
ji )

 . (28)

To conclude, the process of this two-stage message passing framework is illustrated in Fig. 3, and in

brief summary is described as follows: (1) In Eq.(26) we minimize the social travel cost that favors

the recommendation system H(σ|γr) for all vehicles. (2) For any given values of
(
σ
µ∗
il , I

\µ∗
il

)
, the

corresponding optimal path decisions
{
(σµ∗ji , I

\µ∗
ji )

}
j∈Ni\l

of all neighbors j of the terminated node i

except l is obtained by Eq.(27). (3) The information in (2) is provided to the singled-out vehicle µ to

optimize its own individual traffic costHµ(σ̃µ|σ∗, γ) and the selfish routing energy Ẽ is computed

by Eq.(28). Since Eq.(26) and Eq.(28) are extensive, we have to define two intensive quantities
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corresponding to E and Ẽ, given as

EV
i→l

(
σ
µ
il, I
\µ
il

)
= Ei→l

(
σ
µ
il, I
\µ
il

)
− Ei→l (0, 0) , (29)

Ẽi→l(σ̃
µ
il, σ

µ∗
il , I

\µ∗
il ) = Ẽi→l(σ̃

µ
il, σ

µ∗
il , I

\µ∗
il ) − Ẽi→l(0, 0, 0), (30)

where the energies EV and ẼV are computed by iterations based on Eq.(26) and Eq.(28), respec-

tively.

In the thermodynamic limit as N → ∞, it is assumed that the correlation between any 2 nodes

vanishes and thus they are statistically independent of each other. Then, the analytical solution

of the selfish rerouting strategy of the singled-out vehicle µ can be obtained by finding the joint

functional probability distribution P
[
ẼV(σ̃µ

il, σ
µ∗, I\µ∗), EV

(
σµ, I\µ

)]
. For a clear presentation, we

omit the arguments of both energy functions and denote this joint distribution as P
[
ẼV , EV

]
. Similar

to Eq.(19), using Eqs. (26)-(30), the self-consistent equation for P
[
ẼV , EV

]
can be written as

P
[
ẼV , EV

]
=

∫
dk

P(k)k
⟨k⟩

∫
dΛP(Λ)

k−1∏
j=1

∫
dEV

j dẼV
j P

[
ẼV

j , E
V
j

]
× δ

(
EV(σµ, I\µ) − R′

[{
EV

j

}
,Λ, σµ, I\µ

])
× δ

(
ẼV(σ̃µ, σµ∗, I\µ∗) − R′′

[{
ẼV

j

}
,Λ, σ̃µ, σµ∗, I\µ∗

])
, (31)

where R′ and R′′ refer to the right hand side of Eq.(29) and Eq.(30), respectively, which can

be computed by the recurrence relation defined in Eq.(26) and Eq.(28). Noted that P(k) and

⟨k⟩ =
∫

P(k)kdk represent the probability distribution and average of the nodes of degree k over

the network, and P(Λ) is the probability distribution of the transportation resources. Next, we can

solve the converged distribution P
[
ẼV , EV

]
numerically by employing population dynamics, for
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which the details were discussed in the previous section.

We remark that the computational complexity of the two-stage framework we introduce here is

approximately O (⟨k⟩ (8M − 5)), allowing us to analyze the dynamics of the target vehicle over

large systems. It is because when we are iterating Eq.(29) and Eq.(30) simultaneously, the optimal

configuration of the path extracted serves as the decision in the former stage and the self-rerouting

serves as the latter stage. This not only provides a tool to study selfish rerouting, but also general-

izes the cavity method as a tool for studying dynamical systems. Note that we have only done one

step ahead of selfish rerouting in the dynamics, and our framework can be extended to cases that

consider more steps.

2.4.1 Single user case: Probability of selfish rerouting

Recall that our goal is to derive the physical quantities relating to the impact caused by selfish rout-

ing decisions, and after deriving the self-consistent equation, we are able to compute p(σ̃µ∗, σµ∗, I∗),

measuring the probability of the traffic behavior of the singled-out vehicle µ, where µ is switching

from the original suggested route σµ∗ to another route σ̃µ∗, on a link on which the total recom-

mended traffic flow is I∗. For example, p(1, 0, 5) is the probability of the vehicle µ switching its

path to a link with the total flow of 5, where originally it was not on that link. Using the probability
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P
[
ẼV , EV

]
obtained in Eq.(31), we can express p(σ̃µ∗, σµ∗, I∗) by

p(σ̃µ∗, σµ∗, I∗) =
∫

dEV
1 dẼV

1 P
[
ẼV

1 , E
V
1

] ∫
dEV

2 dẼV
2 P

[
ẼV

2 , E
V
2

]∑
I\µ∗

{
δ
(
I∗ −

(
σµ∗ + I\µ∗

))
× δ

((
σµ∗, I\µ∗

)
− argmin

σ,I

[
EV

1 (σ, I) + EV
2 (−σ,−I) − |σ + I|γr

])
× δ

(
σ̃µ∗ − argmin

σ̃

[
ẼV

1 (σ̃, σµ∗, I\µ∗) + ẼV
2 (−σ̃,−σµ∗,−I\µ∗) − |σ̃|

∣∣∣1 + I\µ∗
∣∣∣γr−1

]) }
,

(32)

where the probability is evaluated by measuring the energy change caused by the given set of

routing strategies.

2.4.2 Single user case: Cost of rerouting

After obtaining the probability of the routing behavior of the vehicle µ, we can obtain the proba-

bility of the traffic flow P(I∗) by marginalizing p(σ̃µ∗, σµ∗, I∗). Thus, the probability of the initial

recommended total traffic flow I∗ on a link is given by

P(I∗) =
∑

σ̃µ∗,σµ∗
p(σ̃µ∗, σµ∗, I∗). (33)

The optimal social traffic costH(σ∗(γr)|γ) of the initial system with the suggested configurations

σ∗(γr) can then be computed by

H(σ∗(γr)|γ) =
∑

I∗
P(I∗) |I∗|γ . (34)

We recall that γr is the exponent reflecting the preference of the recommending system, for com-

puting the recommended traffic configurations and the resulting total traffic flow I∗ using Eq.(26),
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while the exponent γ is the exponent that defines the realistic social cost in Eq.(2). Similar to

Eq.(34), we can compute the updated social cost H(σ̃∗(γr)|γ) for the case in which only a single

selfish vehicle exists on the network and is rerouted from the initial suggested route, which is given

by

H(σ̃∗(γr)|γ) =
∑

σ̃µ∗,σµ∗,I∗
p(σ̃µ∗, σµ∗, I∗) (|I∗ − σµ∗| + |σ̃µ∗|)γ . (35)

Note that the traffic flow (|I∗ − σµ∗| + |σ̃µ∗|) represents the updated traffic flow after the vehicle has

taken its selfish rerouting strategy, where |I∗ − σµ∗| is the background initial total traffic flow ex-

cluding the route of vehicle µ, while the term |σ̃µ∗| represents the updated selfish rerouting decision

made by µ. WithH(σ∗(γr)|γ) andH(σ̃∗(γr)|γ) computed by Eq.(34) and Eq.(35) respectively, we

are allowed to compute the fractional change in social cost, ∆H(γr, γ), as defined in Eq.(9), for a

transportation system in which only one selfish vehicle exists.

2.4.3 Multiple user case: Cost of rerouting

To study the case in which multiple selfish users exist on the transportation system, we assume that

all selfish vehicles’ decisions are independent of each other, and represent their driving behavior

by the selfish driving behavior of the singled-out user µ we measured in Eq.(32). Given that a link

consists of n users and there are t selfish users, where the rerouting probability is given by p, the

total combinations of such a situation is the binomial distribution

B(n, p, t) = Cn
t pt(1 − p)n−t, (36)
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whereCn
t =

n!
t!(n−t)! is the binomial coefficient. We next define the conditional probability P(Ĩ∗|I∗) as

the probability when the resulting total traffic flow on a link after selfish rerouting is Ĩ∗, and when

the original total traffic flow on the link is I∗. We further define m̃∗s as the number of selfish vehicles

that exist on the link, after all selfish vehicles have already taken their selfish rerouting strategies by

considering the initial recommended configurations. Next, we evaluate the probability P(Ĩ∗, m̃∗s |I∗),

depending on the number of rerouting strategies, as

P(Ĩ∗, m̃∗s |I∗) =
min(M fs,I∗)∑

ms=max(0,M fs−(M−I∗))

[CM fs
ms CM(1− fs)

I∗−ms

CM
I∗

ms∑
r=0

B
(
ms, r,

p(0, 1, I∗)
p(0, 1, I∗) + p(1, 1, I∗)

)

×
M fs−ms∑

s=0

B
(
M fs − ms, s,

p(1, 0, I∗)
p(1, 0, I∗) + p(0, 0, I∗)

)
δĨ∗,I∗+(s−r)δm̃∗s ,ms+(s−r)

]
. (37)

The probability derived in Eq.(37) appears complicated but is relatively easy to understand. The

term
CM fs

ms CM(1− fs)
I∗−ms

CM
I∗

is the probability that there are ms selfish users on a link on which the total traffic

flow is I∗, and: (1) the denominator is the total combination in which I∗ users are on the link among

all M users, and; (2) the numerator is the total of combinations of choosing ms and I∗ −ms vehicles

on the link among all M fs selfish users and M(1− fs) compliant users. The probability p(0,1,I∗)
p(0,1,I∗)+p(1,1,I∗)

is the conditional probability that an arbitrary selfish vehicle leaves the link, given that it is on the

link in the initial recommendation. Similarly, p(1,0,I∗)
p(1,0,I∗)+p(0,0,I∗) is the conditional probability that an

arbitrary selfish vehicle switches into the link, given that it is not on the link in the initial recommen-

dation. Therefore, the binomial probabilityB
(
ms, r,

p(0,1,I∗)
p(0,1,I∗)+p(1,1,I∗)

)
is the probability that amongms

selfish vehicles that are initially on the link, there are r of them not traveling on the link after selfish

rerouting. Similarly, the binomial probability B
(
M fs − ms, s,

p(1,0,I∗)
p(1,0,I∗)+p(0,0,I∗)

)
is the probability that

of the remaining M fs − ms selfish users who are initially not traveling on the link, s of them are
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switching in and traveling on the link after selfish rerouting. Therefore, the probability P(Ĩ∗, m̃∗s |I∗)

we derived in Eq.(37) has considered all combinations of path changing by assigning the appropri-

ate weighted factors as explained above. We remark that we measure P(Ĩ∗, m̃∗s |I∗) instead of simply

measuring P(Ĩ∗|I∗) so that we can identify the number of selfish vehicles remaining on the link

after selfish rerouting and allowing us to compute the averaged traveling cost over the selfish and

compliant users after rerouting, as described below.

Since we have already obtained the probability P(Ĩ∗, m̃∗s |I∗), we can compute the probability P(Ĩ∗|I∗)

by marginalizing P(Ĩ∗, m̃∗s |I∗) over m̃∗s, given by

P(Ĩ∗|I∗) =
M fs∑

m̃∗s=1

P(Ĩ∗, m̃∗s |I∗). (38)

Hence, after obtaining P(Ĩ∗|I∗), the global traffic costH(σ̃∗(γr), γ) after rerouting can be found by

H(σ̃∗(γr), γ) =
∑

Ĩ∗

∣∣∣Ĩ∗∣∣∣γ ∑
I∗

P
(
Ĩ∗
∣∣∣ I∗

)
P (I∗) . (39)

Other than the global traffic cost, we can also compute the other major quantities of interest, in

order to study the impact of rerouting specifically on selfish and compliant users. Thus, the travel

cost averaged over the selfish users is evaluated by

Hselfish (σ̃∗(γr)|γ) =
1

M fs

∑
Ĩ∗,m̃∗s

m̃∗s ∣∣∣Ĩ∗∣∣∣γ−1 ∑
I∗

P(Ĩ∗, m̃∗s |I∗)P(I∗)

 , (40)
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and the travel cost averaged over the compliant users is evaluated by

Hcompliant (σ̃∗(γr)|γ) =
1

M(1 − fs)

∑
Ĩ∗,m̃∗s

(∣∣∣Ĩ∗∣∣∣ − m̃∗s
) ∣∣∣Ĩ∗∣∣∣γ−1 ∑

I∗
P(Ĩ∗, m̃∗s |I∗)P(I∗)

 . (41)

Note that after reordering Eq.(40) and Eq.(41), we have

M fsHselfish (σ̃∗(γr)|γ) + M(1 − fs)Hcompliant (σ̃∗(γr)|γ) =
∑
Ĩ∗,m̃∗s

∣∣∣Ĩ∗∣∣∣γ ∑
I∗

P(Ĩ∗, m̃∗s |I∗)P(I∗)


=H(σ̃∗(γr), γ), (42)

showing the trivial result that the sum of the averaged costs of selfish and compliant users is indeed

the total cost of the system. Thus, we can compute the fractional change ∆H(γr, γ), ∆Hselfish(γr, γ)

and ∆Hcompliant(γr, γ), of the global traffic cost, selfish users and compliant users respectively, as

defined in Eq.(9).

2.4.4 Cost of rerouting after incorporating distance into cavity equations

In the above derivation, we provided a generalized framework on how the cavity method can be

used to provide a vigorous probability analysis and measure quantities beyond the averaged en-

ergy, which can be extended and applied to other disordered and complex systems. We remark that

the above calculation of probabilities is not enough for predicting ∆H(γr, γ), ∆Hselfish(γr, γ) and

∆Hcompliant(γr, γ) with sufficient accuracy, and our hypothesis on this issue is that we have omitted

some crucial parameters that are highly correlated with the probabilities of interest. We further ob-

serve that the derivations in Section 2.4.3 are assuming all links in the network are homogeneous,

while an assumption of heterogeneity should be adopted. For instance, for any given link on the
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network with initial total traffic flow I∗ = 0, if it is closer to the universal destination, there would

be a higher probability that the corresponding total traffic flow
∣∣∣Ĩ∗∣∣∣ > 0 after rerouting. This is

because, for the links that are closer to the destination, most vehicles do not need to reroute to

a longer path in order to switch to the link which is more favorable to the users compare to the

links that are far from the destination. Therefore, in order to improve the equations we derived, we

incorporate the distance of a link from the universal destination into the derivation.

To facilitate the derivation, we define di as the minimum distance between the node i and the com-

mon destination. For any network, the minimum distance between any two nodes is defined as the

minimum number of links required to construct a connected path between them. Therefore, a node

i with di = 0 is indeed the universal destinationD. In simulations, one is allowed to use Dijkstra’s

method (Barbehenn 1998) to find the minimal distance of nodes, nevertheless, it is not applicable

in the cavity method as there is no fixed graph structure. Instead, we incorporate di into the cavity

energies defined in Eq.(26) and Eq.(28), where the variable di corresponds to the distance in the

message-passing process and is given by

di =


0, ifD = i, i.e. Λi = −∞

1 +min j∈Ni\l
{
d j

}
otherwise

, where (43)

di can be further simplified as di =
(
1 − δi,D

) (
1 +min j∈Ni\l

{
d j

})
. We remark that in the iteration

process of message-passing, Eq.(26), Eq.(28) and Eq.(43) are updating in parallel, and hence the
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self-consistent equation in Eq.(31) will be modified and becomes

P
[
ẼV , EV ,D

]
=

∫
dk

P(k)k
⟨k⟩

∫
dΛP(Λ)

k−1∏
j=1

∫
dEV

j dẼV
j dDP

[
ẼV

j , E
V
j ,D

]
× δ

(
EV(σµ, I\µ) − R∗

[{
EV

j

}
,Λ, σµ, I\µ

])
× δ

(
ẼV(σ̃µ, σµ∗, I\µ∗) − R∗∗

[{
ẼV

j

}
,Λ, σ̃µ, σµ∗, I\µ∗

])
× δ

(
D − (

1 − δi,D
) (

1 + min
j∈Ni\l

{
d j

}))
. (44)

Similarly, we can modify Eq.(32) to include the minimum distance D∗ to the common destination,

in order to compute the joint probability of rerouting p(σ̃µ∗, σµ∗, I∗,D∗), given by

p(σ̃µ∗, σµ∗, I∗,D∗) =
∫

dEV
1 dẼV

1 dD1P
[
ẼV

1 , E
V
1 ,D1

] ∫
dEV

2 dẼV
2 dD2P

[
ẼV

2 , E
V
2 ,D2

]∑
I\µ∗

{
δ
(
I∗ −

(
σµ∗ + I\µ∗

))
× δ

((
σµ∗, I\µ∗

)
− argmin

σ,I

[
EV

1 (σ, I) + EV
2 (−σ,−I) − |σ + I|γr

])
× δ

(
σ̃µ∗ − argmin

σ̃

[
ẼV

1 (σ̃, σµ∗, I\µ∗) + ẼV
2 (−σ̃,−σµ∗,−I\µ∗) − |σ̃|

∣∣∣1 + I\µ∗
∣∣∣γr−1

]) }
× δ (D∗ −min(D1,D2)) . (45)

With p(σ̃µ∗, σµ∗, I∗,D∗) established, we can obtain P(I∗,D∗) by marginalization as

P(I∗,D∗) =
∑

σ̃µ∗,σµ∗

p(σ̃µ∗, σµ∗, I∗,D∗). (46)
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Next, the conditional probability in Eq.(37) is modified to obtain P(Ĩ∗, m̃∗s |I∗,D∗), given by

P(Ĩ∗, m̃∗s |I∗,D∗) =
min(M fs,I∗)∑

ms=max(0,M fs−(M−I∗))

[CM fs
ms CM(1− fs)

I∗−ms

CM
I∗

ms∑
r=0

B
(
ms, r,

p(0, 1, I∗,D∗)
p(0, 1, I∗,D∗) + p(1, 1, I∗,D∗)

)

×
M fs−ms∑

s=0

B
(
M fs − ms, s,

p(1, 0, I∗,D∗)
p(1, 0, I∗,D∗) + p(0, 0, I∗,D∗)

)
δĨ∗,I∗+(s−r)δm̃∗s ,ms+(s−r)

]
,

(47)

which will also allow us to eventually compute P(Ĩ∗|I∗,D∗).

Thus, we can find the quantities of interest in order to measure the impact caused by selfish rerout-

ing. The social traffic cost of the whole system after selfish rerouting and including distance as a

variable is given by

H(σ̃∗(γr)|γ) =
∑

Ĩ∗

∣∣∣Ĩ∗∣∣∣γ ∑
I∗,D∗

P
(
Ĩ∗
∣∣∣ I∗,D∗

)
P (I∗,D∗) ; (48)

the travel cost averaged over the selfish users is evaluated by

Hselfish (σ̃∗(γr)|γ) =
1

M fs

∑
Ĩ∗,m̃∗s

m̃∗s ∣∣∣Ĩ∗∣∣∣γ−1 ∑
I∗,D∗

P(Ĩ∗, m̃∗s |I∗,D∗)P(I∗,D∗)

 ; (49)

and the travel cost averaged over the compliant users is

Hcompliant (σ̃∗(γr)|γ) =
1

M(1 − fs)

∑
Ĩ∗,m̃∗s

(∣∣∣Ĩ∗∣∣∣ − m̃∗s
) ∣∣∣Ĩ∗∣∣∣γ−1 ∑

I∗,D∗
P(Ĩ∗, m̃∗s |I∗,D∗)P(I∗,D∗)

 . (50)

Therefore, we can specifically investigate different kinds of vehicles, including vehicles on average,

selfish vehicles and compliant vehicles, and see whether they benefit or lose in cost after rerouting.

The results will be discussed in Section 2.6.
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2.4.5 Algorithm inspired by the cavity method

Remarkably, not only rigorous probability analysis can be carried out using the cavity method, but

an effective algorithm can be obtained for optimizing and investigating individuals’ behavior over

single instances. To do this, we can iterate Eq.(29) and Eq.(30) over the fixed network topology of

a particular instance until convergence is reached for both energies EV and ẼV . Then for any link

(i j) over the network, the optimal configurations to identify paths, σ̃µ∗
i j , σ

µ∗
i j and I\µ∗i j can be found

by

{
σ
µ∗
i j , I

\µ∗
i j

}
= argmin

{σ,I}

[
EV

i→ j (σ, I) + EV
j→i (−σ,−I) − |σ + I|γr

]
, and (51)

σ̃
µ∗
i j = argmin

σ̃

[
ẼV

i→ j

(
σ̃, σ

µ∗
i j , I

\µ∗
i j

)
+ ẼV

j→i

(
−σ̃,−σµ∗

ji ,−I\µ∗ji

)
− |σ̃|

∣∣∣∣1 + I\µ∗i j

∣∣∣∣γr−1]
. (52)

In simulations, it is common that the solutions of Eq.(51) and Eq.(52) exhibit degeneracy, meaning

that there exist multiple solutions that can achieve the optimal state of the system. Degeneracy in the

ground state might be highly complicated, for instance, it is difficult to identify the corresponding

paths of vehicles when there are multiple values of the optimal flow of a link. To break the degener-

acy, for any link (i j)we can assign a randomly selected quenched bias ϵi j, by adding ϵi j

∣∣∣∣σµ
i j + I\µ∗i j

∣∣∣∣ to
EV

i→ j

(
σ
µ
i j, I

\µ∗
i j

)
and adding ϵi j

∣∣∣∣σ̃µ∗
i j

∣∣∣∣ ∣∣∣∣1 + I\µ∗i j

∣∣∣∣ to ẼV
i→ j

(
σ̃
µ∗
i j , σ

µ∗
i j , I

\µ∗
i j

)
, while the iteration and merging

process remains the same. By adding the biases, the convergence of the iteration process will be

in a particular state without degeneracy. The convergence to a single state is due to the following:

Assuming there exists a set of states at minimum energy, by adding the quenched bias which is

very small in value into the cost function, these states are no longer at the same energy, but differ

by infinitesimal values from which one of these states would be identified as the ground state.
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2.5 Two-stage exhaustive cavity method and analytical solutions for selfish routing

As discussed in Section 1.1, it is crucial to develop a precise optimization framework and study why

the cavity method presented in Section 2.4 failed to provide accurate predictions of quantities of

interest. In this section, we adopt the same mathematical model defined in Section 2.1, and develop

a two-stage exhaustive optimization framework that is not only capable of measuring macroscopic

quantities relating to traffic conditions, but also able to measure microscopic quantities such as

the detail of the path configurations of all vehicles on the network. Similar to the cavity method in

Section 2.4, the first stage in the exhaustive optimization framework aims to identify the exact paths

of all users in the optimal configuration that optimize H(σ|γr) and recommended to all vehicles.

In the second stage, we randomly select a group of selfish vehicles and every vehicle µ in the group

optimizes its own individual traffic cost Hµ(σ̃µ|σ̃∗, γ) by switching to another path. To facilitate

the derivation, the transportation resource on node i is defined as Λi =
{
Λ
µ
i

}
µ
, where Λµi is defined

as the transportation load for the user µ in i, in particular,

Λ
µ
i =



1, if Oµ = i;

−∞, ifD = i;

0, otherwise.

(53)

Next, similar to Eq.(12), we define the vector of the net sources of all users on node i as R = {Rµ
i }µ,

therefore, we have

Rµ
i = Λ

µ
i +

∑
j∈Ni

σ
µ
ji, ∀µ (54)
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where Rµ
i is the net resource for the vehicle µ on the transportation network. Similar to the previous

two-stage cavity method, the paths σµ
il are restricted to be integers for all links (i j) and vehicles µ.

Then, ∀i , D, we restrict R = 0, i.e. Rµ
i = 0,∀µ,∀i, to ensure that all paths identified from origin

to destination are connected.

Assuming the networks are sparse, that are in treelike structure and only large loops exist, we em-

ploy the cavity method at zero temperature. For all nodes i, we define the optimized energy function

of the tree structures terminated at i as Ei→l (σil), whereσil =
{
σ
µ
il

}
µ
is the vector of routing decisions

for all users µ on the link (il). In contrast to the definition in Section 2.4, this approach measures

the exact path decisions of every user instead of the total traffic flow I, allowing us to identify the

contribution of energy by every vehicle. The recurrence relation among the energies Ei→l(σil) and

E j→i(σ ji),∀ j ∈ Ni \ l, can then be given by

Ei→l (σil) = min{
{σ ji} j∈Ni\l

|Ri=0
}

∑

µ

∣∣∣σµ
il

∣∣∣
γr

+
∑
j∈Ni\l

E j→i

(
σ ji

) , (55)

where the exponent γr identifies the recommended optimal paths by the recommending system.

After identifying the exact optimal path recommendations for all vehicles, we study the selfish

rerouting behaviors of the selfish vehicles. We first assume that all vehicles are selfish and in-

troduce
{
Ẽµ

i→l

(
σ̃
µ
il,σ

∗
il

)}
µ
as the set of energy functions for all vehicles µ. Similar to the case in

Section 2.4, the energy Ẽµ
i→l describes the energy for a user µ to switch to another choice of path σ̃

µ
il

from the original decision σµ
il, in order to optimize its own individual traffic costHµ by considering

the background traffic condition σ∗il that optimizeH(σ|γr). Using Eq.(55), for any optimal traffic

condition σ∗il on the link (il), the corresponding set of optimal traffic condition
{
σ∗ji

}
j∈Ni\l

of all de-

scendant neighbors j of the node i except the parent node l, which can be understood as functions
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Figure 4. A two-layered diagram to illustrate the recurrence relation in Eq.(55) and Eq.(57), as

well as their dependence. Both recurrence relations are iterated in parallel until the joint probabil-

ity distribution P
[
EV , ẼV

]
is converged.

of σ∗il, can be expressed as

{
σ∗ji

}
j∈Ni\l

= argmin{
{σ ji} j∈Ni\l

|Ri=0
}

∑

µ

∣∣∣σµ
il

∣∣∣
γr

+
∑
j∈Ni\l

E j→i

(
σ ji

) . (56)

Then, for all users µ, the energy function Ẽi→l

(
σ̃
µ
il,σ

∗
il

)
can be written down as a recurrence relation,

given by

Ẽµ
i→l

(
σ̃
µ
il,σ

∗
il

)
= min{{

σ̃
µ
ji

}
j∈Ni\l

|Ri=0
}
∣∣∣σ̃µ

il

∣∣∣ 1 +∑
ν,µ

∣∣∣σ̃ν
il

∣∣∣
γ−1

+
∑
j∈Ni\l

Ẽµ
j→i

(
σ̃
µ
ji,σ

∗
ji

) , (57)

where the exponent γ is responsible for evaluating the individual traffic cost of the vehicle µ.

Similar to the approach in Section 2.4, the message-passing procedure can be illustrated as in Fig. 4.

The process is exactly the same as in the previous section: the social travel cost is minimized by

Eq.(55) in the first step and the corresponding optimal path configurations identified by Eq.(56)
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are passed to Eq.(57) in order to minimize individual travel costs for all users µ.

We note that the energy functions Ei→l (σil) and
{
Ẽµ

i→l

(
σ̃
µ
il,σ

∗
il

)}
µ
are extensive and it is difficult to

obtain the converged analytical solutions. Thus, the corresponding intensive quantities EV
i→l (σil)

and
{
ẼV
µ,i→l

(
σ̃
µ
il,σ

∗
il

)}
µ
are defined as

EV
i→l (σil) =Ei→l (σil) − Ei→l (0) , (58)

ẼV
µ,i→l

(
σ̃
µ
il,σ

∗
il

)
=Ẽµ

i→l

(
σ̃
µ
il,σ

∗
il

)
− Ẽµ

i→l (0, 0) ∀µ, (59)

where the computations of EV and ẼV
µ are obtained by iterating Eq.(55) and Eq.(57).

In the thermodynamic limit as N → ∞, the correlation of variables between any 2 nodes is assumed

to vanish and the variables are independent of each other. The analytical solution of the detailed

routing strategies of every vehicle, before and after the selfish rerouting takes place, can then be

evaluated by the joint functional probability distribution P
[{

ẼV
µ (σ̃µ,σ∗)

}
µ
, EV (σ)

]
, in which the ar-

guments of the energy functions will be omitted for a clearer presentation, denoted as P
[{

ẼV
µ

}
µ
, EV

]
.

Making use of Eqs. (55)-(59), the self-consistent equation for P
[{

ẼV
µ

}
µ
, EV

]
can then be written as

P
[{

ẼV
µ

}
µ
, EV

]
=

∫
dk

P(k)k
⟨k⟩

∫
dΛP (Λ)

k−1∏
j=1

∫
dEV

j

M∏
ν=1

dẼV
ν, jP

[{
ẼV
µ, j

}
µ
, EV

j

]
× δ

(
EV (σ) − R∗

[{
EV

j

}
,Λ,σ

])
×

M∏
ν=1

δ
(
ẼV
ν (σ̃ν,σ∗) − R∗∗

[{
ẼV
ν, j

}
,Λ, σ̃ν,σ∗

])
, (60)

whereR∗ andR∗∗ correspond to the right hand side of the recurrence relation in Eq.(58) and Eq.(59),

respectively, and where P(k), ⟨k⟩ =
∫

P(k)kdk and P(Λ) represent the probability distribution, av-
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(a) (b)

· · ·

σil = 0

σj1i = 1 σj2i = −1
· · ·

σil = ±1

σji = ±1

Figure 5. An illustration of how the total number of combinations of path decisions σil of the an-

cestor and its descendants’ path σ ji can be reduced. (a) For the case when σil = 0, the total number

of combinations of the paths of descendants would be 2Ck−1
2 + 1 = k(k − 1) + 1, corresponding to

the sum of two sub-cases. One is σ ji = 0,∀ j ∈ Ni \ l, and another is selecting two descendants

j1, j2 such that σ j1i = 1 and σ j2i = 1, while σ ji = 0 for all other nodes j. (b) For the case when

σil = ±1, in each of the sub-cases, the total number of combinations of the paths of descendants

would be k − 1, i.e. 2(k − 1) in total, by selecting one descendant with σ ji = ±1, while σ ji = 0 for

all other descendant nodes.

erage of the nodes degree k over the network and the probability distribution of the transportation

resources, respectively.

2.5.1 Computational complexity of the exhaustive cavity method

Compared to the two-stage cavity method in Section 2.4, the computational complexity of the

exhaustive cavity method is more complicated. In general, without any simplification, for each

σµ there are three possibilities, −1, 0 and 1, thus the energy function EV(σ) consists of 3M val-

ues. On the other hand, ẼV
µ consists of 3M+1 values in which the optimal configuration is already

found in ẼV
µ . Therefore, the computational complexity of the two-stage cavity equations is given as

O
(〈

3M(k−1)
〉

k

)
, where ⟨·⟩k stands for the average of the quantities inside the angular bracket over the
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degree distribution P(k). Note that all vehicles are traveling in the same direction, so we can reduce

the total combinations of σ from 3M to 2M+1 − 1. To further simplify the total number of combina-

tions, we can first consider all combinations of the routing decisions of one user, then consider the

possible cases of σ when all users are combined. As shown in Fig.5, the total combinations of path

decisions
{
σ ji

}
j∈Ni

at any node i can be found by considering the following cases: (i) As shown in

Fig.5(a), when σil = 0, to ensure that Ri = 0, for all descendants j of node i except the ancestor

l, σ ji can be either all zero, or there exist two nodes j1 and j2 such that σ j1i = 1 and σ j2i = −1.

Therefore, the total combinations of this case would be 2Ck−1
2 + 1 = k(k − 1) + 1, denoted as a

for future calculations. (ii) As shown in Fig.5(b), when σil = ±1, to ensure that Ri = 0, one of

the descendants j of node i except the ancestor l, σ ji have to be ±1, while σ ji = 0 for the other

descendants j. Therefore, the total number of combinations of this case would be 2Ck−1
1 = 2(k−1),

denoted as b for future calculations. When we combine all M users, the total number of combi-

nations when there are τ users traveling with σ = 1 is given by CM
τ aM−τbτ. Therefore, the total

number of combinations is given as

2

 M∑
τ=0

CM
τ aM−τbτ

 − aM = 2
[
(a + b)M

]
− aM = 2

(
k2 − 2k + 2

)M
−

(
k2 − 3k + 3

)M
, (61)

where the term −
(
k2 − 3k + 3

)M
is to cancel the double counting of the case whenσ = 0. Similarly,

for any selfish vehicle µ, the total number of combinations of σ̃µ
ji for all neighboring nodes j of node

i is a+ b = k2 − k + 1. Therefore, the computational complexity of this 2-stage cavity method can

be reduced to O
(〈

k2M
〉

k

)
, which is much less than the complexity before reduction.
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2.5.2 Probability of selfish rerouting

After obtaining the converged joint functional probability distribution P
[{

ẼV
µ

}
µ
, EV

]
, we can mea-

sure the complete routing behaviors of the selfish rerouting σ̃∗ and the optimal traffic configura-

tions σ∗ by computing the joint probability p(σ̃∗,σ∗), and this probability can help us to evaluate

the physical quantities we desire, including the fractional change of various costs. The probability

p(σ̃∗,σ∗) can be found by

p(σ̃∗,σ∗) =
∫

dEV
1

∏
ν

dẼV
ν,1P

[{
ẼV
µ,1

}
µ
, EV

1

] ∫
dEV

2

∏
ν

dẼV
ν,2P

[{
ẼV
µ,2

}
µ
, EV

2

]
× δ

σ∗ − argmin
σ

EV
1 (σ) + EV

2 (−σ) −
∑

ν

|σν|
γr


×

∏
ν

δ

σ̃ν∗ − argmin
σ̃ν

ẼV
ν,1 (σ̃ν,σ∗) + ẼV

ν,2 (−σ̃ν,−σ∗) − |σ̃ν|
1 +∑

κ,ν

|σκ∗|
γ−1

 ,
(62)

which relies on evaluating the energy changes of particular selfish rerouting.

2.5.3 Cost of rerouting

While different from p(σ̃µ∗, σµ∗, I∗), although the computational complexity is much higher in this

approach, p(σ̃∗,σ∗) allows us to precisely calculate the optimal traffic I∗ recommended and the

resulting traffic condition after selfish rerouting Ĩ∗ for any given number of selfish vehicles with-

out any assumption and requirement. The probability of having optimal traffic on a link before

rerouting p(I∗) can be found easily by

p(I∗) =
∑
σ̃∗

∑
σ∗

p(σ̃∗,σ∗)δ

I∗ −
∑
ν

|σν|
 . (63)
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Consider now that there exist M fs selfish users on the whole network, and define Ĩ∗ and m̃∗s as

the resulting total traffic flow and the number of selfish users existing on the link after rerouting,

respectively. The probability P
(
Ĩ∗, m̃∗s

)
can then be evaluated by

P
(
Ĩ∗, m̃∗s

)
=

∑
σ̃∗

∑
σ∗

p(σ̃∗,σ∗)δ

Ĩ∗ −
M fs∑
ν=1

|σ̃ν∗| +
M∑

ν=M fs+1

|σν∗|

 δ

m̃∗s − M fs∑
ν=1

|σ̃ν∗|
 , (64)

and by marginalizing P
(
Ĩ∗, m̃∗s

)
over m̃∗s, the probability P

(
Ĩ∗
)
is given by

P
(
Ĩ∗
)
=

M fs∑
m̃∗s=1

P
(
Ĩ∗, m̃∗s

)
. (65)

Therefore, the social traffic cost before reroutingH (σ∗(γr), γ), the social traffic cost after rerouting

H (σ̃∗(γr), γ), the travel cost averaged over all selfish users Hselfish (σ̃∗(γr), γ) and the travel cost

averaged over all compliant usersHcompliant (σ̃∗(γr), γ) are given by

H (σ∗(γr), γ) =
∑

I∗
P(I∗) |I∗|γ , (66)

H (σ̃∗(γr), γ) =
∑

Ĩ∗

P(Ĩ∗)
∣∣∣Ĩ∗∣∣∣γ , (67)

Hselfish (σ̃∗(γr), γ) =
1

M fs

∑
Ĩ∗,m̃∗s

[
m̃∗s

∣∣∣Ĩ∗∣∣∣γ−1
P

(
Ĩ∗, m̃∗s

)]
, (68)

Hcompliant (σ̃∗(γr), γ) =
1

M(1 − fs)

∑
Ĩ∗,m̃∗s

[(∣∣∣Ĩ∗−∣∣∣ m̃∗s) ∣∣∣Ĩ∗∣∣∣γ−1
P

(
Ĩ∗, m̃∗s

)]
. (69)

Therefore, the fractional changes ∆H(γr, γ), ∆Hselfish(γr, γ) and ∆Hcompliant(γr, γ), for the global

traffic cost, selfish users and compliant users, respectively, can be computed using Eq.(9).
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2.5.4 Rerouting correlation

We note that the predictions in Section 2.6 of ∆H(γr, γ), ∆Hselfish(γr, γ) and ∆Hcompliant(γr, γ) made

by the two-stage cavity method derived in Section 2.4 are less accurate compared to the results

obtained from the exhaustive cavity method derived in this chapter. One of the major differences

between the twomethods is that the cavitymethod in Section 2.4 computes the probability P
(
Ĩ∗, m̃∗s

)
using probabilistic modeling by assuming every vehicle is acting independently and following the

routing behavior p(σ̃µ∗, σµ∗, I∗) obtained by the average vehicle singled out; in contrast, the ex-

haustive cavity method captures the exact routing behaviors of every vehicle to obtain the precise

probability distribution p(σ̃µ∗, σµ∗, I∗) even if a herd behavior exists under which selfish vehicles

are more likely to switch into certain links. Therefore, the interactions and correlations between

vehicles would be one of the major reasons for why the two-stage cavity method followed by

probabilistic modeling produces less accurate results compared to the exhaustive cavity method.

To examine the interaction between the vehicles, as well as the existence of any herd behavior, we

need to define a quantity to measure the likelihood of routing behaviors between different users.

We first define ∆σ = |σ̃∗| − |σ∗| as the change in the driving behavior of a vehicle. Now consider 2

users ν and µ traveling on the network. We define the conditional rerouting correlation, given the

total traffic flow I∗ on a link, as

⟨∆σν∆σµ⟩I∗ =
∑

{
(i j)∈E|I∗i j=I∗

}
∆σν

i j∆σ
µ
i j

Z
=

∑
{
(i j)∈E|I∗i j=I∗

}
(∣∣∣∣σ̃ν∗

i j

∣∣∣∣ − ∣∣∣∣σν∗
i j

∣∣∣∣) (∣∣∣∣σ̃µ∗
i j

∣∣∣∣ − ∣∣∣∣σµ∗
i j

∣∣∣∣)
Z

, (70)
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where Z is the normalization constant given by

Z =
∑

{
(i j)∈E|I∗i j=I∗

}
(
δ
(∣∣∣σ̃ν∗

i j

∣∣∣ + ∣∣∣σν∗
i j

∣∣∣) − 1
) (
δ
(∣∣∣∣σ̃µ∗

i j

∣∣∣∣ + ∣∣∣∣σµ∗
i j

∣∣∣∣) − 1
)
. (71)

The normalization constant counts links that both vehicles ν and µ is traveling in either recom-

mended and rerouting stages, so they both exist on the link and only the interaction between them

is under consideration. On the other hand, the quantity ∆σ can be understood as the switching

strategy of a user, and since |σ̃| and |σ| can only be 1 or 0, ∆σ consists of three possibilities only:

(i) ∆σ = 1 where (|σ̃| , |σ|) must be (1, 0), meaning that initially, the vehicle is not traveling on

that particular link and switches into the link after rerouting; (ii) ∆σ = −1 where (|σ̃| , |σ|) must

be (0, 1), representing the case that the vehicle is traveling on the link initially, but switches out to

another path after selfish rerouting; (iii) ∆σ = 0 where (|σ̃| , |σ|) can only be (1, 1) as we do not

consider the case that (|σ̃| , |σ|) = (0, 0), which means the vehicle is not changing its decision after

selfish rerouting. We further note that
∑{

(i j)∈E|I∗i j=I∗
} (δ (∣∣∣∣σ̃ν∗

i j

∣∣∣∣ + ∣∣∣∣σν∗
i j

∣∣∣∣) − 1
) (
δ
(∣∣∣∣σ̃µ∗

i j

∣∣∣∣ + ∣∣∣∣σµ∗
i j

∣∣∣∣) − 1
)
≥∑{

(i j)∈E|I∗i j=I∗
} (∣∣∣∣σ̃ν∗

i j

∣∣∣∣ − ∣∣∣∣σν∗
i j

∣∣∣∣) (∣∣∣∣σ̃µ∗
i j

∣∣∣∣ − ∣∣∣∣σµ∗
i j

∣∣∣∣), and thus the term ⟨∆σν∆σµ⟩I∗ must be bounded below

and above by -1 and 1, providing us with a clear picture of the conditional rerouting correlation.

⟨∆σν∆σµ⟩I∗ < 0 suggests that ν and µ are more likely to take opposite switching decisions. For

instance, user ν initially traveling on link (i j) switches to another link after selfish rerouting, while

another user µ initially not traveling on (i j) switches into (i j) after selfish rerouting. ⟨∆σν∆σµ⟩I∗ > 0

suggests that ν and µ are more likely to take the same switching decisions. Moreover, if the quantity

(⟨∆σν∆σµ⟩I∗ < 0) is closer to 1, then the likelihood of the routing behavior is higher. Therefore,

⟨∆σν∆σµ⟩I∗ provides a measurement of the likelihood of any two vehicles picking similar rerouting

strategies over links with the total traffic flow of I∗, allowing us to investigate which kind of links
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are more likely for vehicles to pick. On a macroscopic scale, we can further define the rerouting

correlation as

⟨∆σν∆σµ⟩ =
∑

I∗
⟨∆σν∆σµ⟩I∗ P(I∗), (72)

in order to evaluate the general level of the likelihood of choosing a similar rerouting strategy over

the whole network.

To obtain the quantities defined above analytically, we evaluate the probability

p(σ̃ν∗, σ̃µ∗, σν∗, σµ∗I∗) describing the joint probability of the routing behavior of ν∗ and µ over

links with the total flow I∗, given as

pZ(σ̃ν∗, σ̃µ∗, σν∗, σµ∗, I∗) =
1
Z

∑
σ̃

∑
σ

p(σ̃,σ)δ (σ̃µ−σ̃µ∗) δ (σ̃ν−σ̃ν∗) δ (σµ−σµ∗) δ (σν−σν∗) , (73)

where the normalization constant Z =
∑
σ̃

∑
σ p(σ̃,σ) (δ (|σ̃ν∗| + |σν∗|) − 1) (δ (|σ̃µ∗| + |σµ∗|) − 1).

Then the conditional rerouting correlation can be computed by

⟨∆σν∆σµ⟩I∗ =
∑

{σ̃ν∗,σ̃µ∗,σν∗,σµ∗}
∆σν∆σµpZ(σ̃ν∗, σ̃µ∗, σν∗, σµ∗, I∗)

∑
{σ̃ν∗,σ̃µ∗,σν∗,σµ∗}

(|σ̃ν∗| − |σν∗|) (|σ̃µ∗| − |σµ∗|) pZ(σ̃ν∗, σ̃µ∗, σν∗, σµ∗, I∗), (74)

and the rerouting correlation can be computed by

⟨∆σν∆σµ⟩ =
∑

I∗
⟨∆σν∆σµ⟩I∗ P(I∗). (75)
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2.6 Major results

In this section, we mainly study transportation systems under two situations with (γr, γ) = (1, 2)

and (2, 2). The reason for only choosing these two scenarios to study and compare is that they

represent two extreme conditions of traffic coordination, given the measurements of the social cost

are the same. The case (γr, γ) = (1, 2) represents the situation that exists in transportation systems

in our daily lives in that all drivers are picking their routes independently to minimize their own

traveling costs, and they can switch to other routes the next day after knowing the traffic condition

on the current day. The case (γr, γ) = (2, 2) represents a transportation network that is already

optimal in social cost, and where some drivers are not following the optimal configurations and

selfishly switch to other paths. In Section 2.6.1 and Section 2.6.2, we investigate the transportation

networks with random regular graph structures, i.e. the graphs in which all nodes have the same

connectivity k. In Section 2.6.3, we study selfish routing over England’s highway network to show

how our theoretical understandings develop to fit the results from a realistic system.

2.6.1 Analytical results by the two-stage cavity method and probabilistic modeling

To obtain the analytical results, we employ the derivation incorporating the distance from the desti-

nation in Section 2.4.4 into the calculation for better measurements of costs. To employ population

dynamics, the functional probability distribution P(ẼV , EV ,D) is approximated by a pool of 10,000
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sets of functions
{
ẼV
ξ , E

V
ξ ,Dξ

}
ξ
, where

P(Λ) =



1
N , if Λ = (1, 0);

M−1
N , if Λ = (0, 1);

1
N , if Λ = (−∞,−∞);

1 − M+1
N , otherwise.

, (76)

and P(k = 3) = 1 for the graph setup of a random regular graph with connectivity of 3. Since

it is computationally inefficient to measure the convergence of P(ẼV , EV ,D), we instead mea-

sure the social traffic cost H to determine whether the iteration process of population dynamics

is converged. On the other hand, the simulation results are generated by the results after averaging

over 1000 realizations, in which each is obtained by applying our cavity method to transportation

networks with randomly generated random regular graph structures with network size N = 100

and node connectivity k = 3. To study the accuracy of the prediction of p(σ̃µ∗, σµ∗, I∗,D∗) by the

cavity method, we also produce semi-analytical results by first obtaining the rerouting probability

p(σ̃µ∗, σµ∗, I∗,D∗) from simulation results instead of Eq.(45), then inserting this empirical proba-

bility into Eqs.(46) to (50) to compute the quantities for measurement of the system’s behavior.

Generally, the analytical and semi-analytical results should be similar, and this would suggest that

the probabilities measured by the cavity method are accurate.

As shown in Fig. 6, the analytical and semi-analytical results capture the positive and negative

regimes as well as the trends of simulation results, but there are discrepancies. Note that the analyt-

ical and semi-analytical results are in good agreement, suggesting that the cavity method provides

a good estimation of the rerouting probability p(σ̃µ∗, σµ∗, I∗,D∗) in simulations. We also note that
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when (γr, γ) = (2, 2), there results in little difference between analytical and simulation results,

suggesting that over a socially optimal state, Eq. (47) provides a good estimate of P(Ĩ∗, m̃∗s |I∗,D∗).

When (γr, γ) = (2, 2), optimal route recommendations aim to minimize the social cost, and vehicles

tend to be evenly distributed over the whole network, so the routing decisions of all vehicles are

similar and hence a mean-field probability p(σ̃µ∗, σµ∗, I∗,D∗) is sufficient to describe the routing

decisions of all vehicles. When (γr, γ) = (1, 2), however, the discrepancies are much larger, vehi-

cles are recommended to follow their shortest paths and depending on the network topology, their

routing decisions can vary greatly, hence a mean-field probability p(σ̃µ∗, σµ∗, I∗,D∗) is not enough

to describe the routing decisions of all vehicles. Therefore, we believe that the discrepancies come

from using p(σ̃µ∗, σµ∗, I∗,D∗) as a mean-field probability for every vehicle’s routing decision. In

Section 2.6.2, we show the discrepancies are reduced by applying the two-stage exhaustive cavity

method.

I. Shortest path recommendation - (γr, γ) = (1, 2):

To investigate the scenario when (γr, γ) = (1, 2), we obtain the fractional change in the social travel

cost averaged over all vehicles, ∆H(1, 2), from all three approaches for different cases of vehicle

density α = 0.1, 0.5 and 0.9. As shown in Fig. 6(a), H(1, 2) is a convex curve, first decreasing

to negative values and then increasing back to positive as fs increases. This is because users are

following their shortest path in the case of the shortest path recommendation. When fs is small,

the small fraction of selfish users will pick the routes that are less used (i.e. I∗ is smaller) in the

rerouting stage, which is beneficial to the whole system and hence ∆H(1, 2) becomes negative,

since the social cost is a nonlinear convex function in total traffic flow and links are less crowded

after rerouting. However, when fs further increases, the large fraction of selfish vehicles will switch

into the less occupied links in the initial stage, generating more serious congestion compared to the
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Figure 6. The fractional change obtained by the analytical, semi-analytical and simulation results,

in (a) the social cost ∆H , (b) the traveling cost of selfish users ∆Hselfish and (c) the traveling cost

of compliant users ∆Hcompliant, as a function of fs, averaged over all selfish and compliant vehicles,

respectively, for vehicle density α =0.1, 0.5 and 0.9, with (γr, γ) = (1, 2). The corresponding

fractional change in costs are shown in (d),(e) and (f) respectively for the case (γr, γ) = (2, 2). The

simulation results are obtained on transportation networks with random regular graph structures

with network size N = 100 and node connectivity k = 3, averaged over 1000 realizations. The

analytical results are obtained by the cavity method. The semi-analytical results are obtained by

estimating the probability P(Ĩ∗, m̃∗s |I∗,D∗) by p(σ̃µ∗, σµ∗, I∗,D∗) measured in simulations.
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simulation results for (a) ∆H(1, 2), (b) ∆Hselfish(1, 2) and (c) ∆Hselfish(2, 2) are shown in terms of

the vehicle density α and the fraction of selfish drivers fs.
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initial stage and resulting inH(1, 2) becoming positive.

Furthermore, we note that in Fig. 6(a), when the density α is smaller, the critical value of fs at

which ∆H starts to become positive is larger. We show the regime of transportation system gain

(i.e. ∆H < 0) after selfish rerouting, in terms of α and fs, as shown in Fig. 7, in order to demonstrate

the benefits brought by the selfish rerouting. The regime of gaining exists for all users and selfish

users when (γr, γ) = (1, 2), while the regime exists for selfish users only when (γr, γ) = (2, 2). As

we can see in Fig. 7(a), the regime of the system gaining decreases as α increases. This implies that

it is beneficial to the system with a suitable value of the fraction of selfish vehicles fs, given that all

vehicles are following their shortest path initially. Similar to Fig. 6, the results from the analytical

and semi-analytical approaches capture the trends, but show discrepancies when compared to the

simulation results. The agreement of trends shows that in the case of (γr, γ) = (1, 2), the analytical

approach provides the correct physical picture, though it does not give the exact regime.

Next, we investigate the fractional change of traveling cost over different groups of selfish and com-

pliant users. We remark that there should be at least one selfish vehicle on the network to calculate

Hselfish, thus 1
M is the smallest value of fs for ∆Hselfish. As shown in Fig. 6(b), when fs increases, the

fractional change in the traveling cost of selfish users, ∆Hselfish, increases from a negative value to

positive. When the fraction of selfish vehicles fs is smaller, the value of ∆Hselfish is more negative

in value, suggesting that selfish users can better make use of the less-used links and gain more

from rerouting when there are fewer selfish drivers. Nevertheless, when fs increases, the gain of

the selfish users will disappear because there are more selfish vehicles traveling on the less-used

links in the initial stage which incur congestion. In Fig. 7(b), we can see that the critical value of

fs at which the selfish users start to lose decreases as the vehicle density α increases. Remarkably,

Fig. 6(c) shows that ∆Hcompliant < 0 for any fs > 0 and the magnitude of ∆Hcompliant increases as fs
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increases. This suggests that the compliant users that are following the recommendations always

benefit from the presence of selfish users, and when there are more selfish users, the compliant

users gain more. This is because when the selfish drivers are switching into the less-used links, the

links that are originally crowded will be less occupied and thus the travel cost of compliant users

decreases.

II. Socially optimal recommendation - (γr, γ) = (2, 2):

In this scenario, since the optimal configuration is suggested to drivers, the social traffic cost is

minimized in the initial stage and after selfish rerouting, the social cost can only be unchanged or

increased. Therefore, we can see that ∆H > 0 for all fs and α in Fig. 6(d), and ∆H increases as fs

increases, meaning the more selfish users, the higher the social cost. On the other hand, we can see

that in terms of magnitude, the fractional change of costs for the case (γr, γ) = (2, 2) is much less

than the case (γr, γ) = (1, 2), as shown in Fig. 6. This suggests that over an optimal configuration,

there are no or very few specific less-used routes that can benefit most users, thus after rerouting,

the correlations and congestion caused only slightly affect the system. Interestingly, better than

the case when (γr, γ) = (1, 2) in Fig. 6(a), we can see that the analytical and semi-analytical results

show good agreement with the simulation results. This may because when the social traffic cost

is optimized, the traffic load is balanced already and the heterogeneity of links is reduced, thus

fewer links are attractive to selfish vehicles, which will be discussed more in Section 2.6.2 by the

rerouting correlation, and therefore the cavity method measures the probabilities better in this case.

We notice an interesting property that although transportation must lose for any changes made to

the system, selfish drivers may gain in their individual travel costs by harming the system and

compliant users, as shown in Fig. 6(e). When the fraction of selfish users fs is small, ∆Hselfish is

negative and ∆Hselfish increases and becomes positive as fs increases. This suggests that a small
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fraction of selfish users are able to take advantage of the less-used routes, yet this strategy backfires

due to congestion and correlations when fs further increases. In Fig. 7(c), we show the parameter

regime in which the selfish users gain from rerouting, and the boundary of the regime shows the

critical value of fs at which selfish users start to lose if fs further increases, for a given density α.

We can see that the critical value of fs decreases as α increases, suggesting that when the density

of vehicles α increases, the fraction of selfish vehicles that can gain is smaller. Furthermore, we

can see that the regime where ∆Hselfish < 0 for the case (γr, γ) = (2, 2) is much less than the case

(γr, γ) = (1, 2), as shown in Fig. 7(b) and (c). This suggests that compared to the uncoordinated

system in which γr = 1, fewer selfish drivers can gain from rerouting in an originally optimized

system in which γr = 1. This is because compared to the uncoordinated system, the traffic load

in the originally optimized system is more balanced and selfish users have difficulty finding alter-

native paths to improve individual travel costs. On the other hand, in contrast to the case when

(γr, γ) = (1, 2), compliant users always lose for all fs > 0, and ∆Hcompliant increases as fs increases,

but not to a large degree. This may because the correlation is diminished in the socially optimal

transportation system and there are very few favorable less-used routes that attract selfish users,

resulting in very few links being less occupied and thus the individual travel costs of compliant

users are not decreased.

To conclude the case with (γr, γ) = (2, 2), we can see that in the case when the social traffic cost is

initially minimized, rerouting by the selfish drivers is increasing the social traffic cost, increasing

the individual costs of compliant users, while selfish users may gain if they are in the minority in

the system.

In Section 2.6.1.I and 2.6.1.II, the analytical results successfully reveal the properties of the dynam-

ics of path switching and the corresponding impact to the system, such as the regimes of gaining
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and losing for different costs of interest. Compared to the conventional transportation studies that

mainly focus on the equilibrium of selfish routing (Fotakis, Kontogiannis, Koutsoupias, Mavroni-

colas, and Spirakis 2002; Roughgarden and Tardos 2002), it is more complex to study the dynamics

of routing and its impact. Therefore, in an unexplored aspect of selfish routing studies, the two-

stage cavity method with probabilistic modeling provides a new set of tools, as well as a new

understanding.

III. Critical values of γr for phase transition of gaining and losing:

We observe that in Fig. 6(a), when γr = 1, in which drivers initially follow their shortest paths,

∆H < 0 if fs is small, meaning that if only a small fraction of selfish vehicles exist on the system,

all users gain on average; while in Fig. 6(d), when γr = 2, in which drivers initially follow the opti-

mal route configuration, ∆H > 0 for all fs > 0, meaning that all users always lose on average when

selfish users exist. On the other hand, as shown in Fig. 6(c) and (f), when γr = 1, ∆Hcompliant < 0

for all fs > 0, i.e. compliant users always gain; while when γr = 2, ∆Hcompliant > 0 for all fs > 0,

i.e. compliant users always lose. The reason is that when γr is small, the original traffic load is

distributed unevenly, thus selfish users are shifting as a group from the originally over-used links to

the originally less-used links, causing the originally over-used links to become less occupied after

rerouting and beneficial to the compliant users; on the other hand, when γr is large, the traffic load

is already distributed evenly in the initial stage, resulting in no favorable less-used links to provide

an incentive for selfish users to shift as a group, very few links become less occupied after rerouting

and, hence, the compliant users lose.

To further investigate the observation, we identify the critical values of γr for which the fractional

change of costs is equal to zero, denoted as γ∗r , beyond which the system or compliant users start

to lose. Given a small fraction of selfish users fs = 0.1, the corresponding values of γ∗r for which
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Figure 8. The critical values γ∗r for which (a) ∆H = 0 and (b) ∆Hcompliant = 0, as a function

of the vehicle density α. The regimes in which ∆H and ∆Hcompliant are positive and negative are

also indicated in (a) and (b), respectively. The simulation results are obtained on transportation

networks with random regular graph structures with network size N = 100 and node connectivity

k = 3, averaged over 1000 realizations. The analytical results and semi-analytical results are also

obtained and shown.

∆H = 0 and ∆Hcompliant = 0 identified by the analytical, semi-analytical and simulation results

are shown in Fig. 8(a) and (b), respectively. We observe that in Fig. 8, for both groups of users,

the critical values γ∗r increase as the vehicle density α increases. When the density α increases, a

larger value of γr is needed to distribute the traffic load evenly so that very few favorable less-used

links exist on the network, and therefore the critical values γ∗r beyond which compliant users lose

increased. In our setup, since fs is small, most drivers are compliant and hence the critical values

γ∗r beyond which all users lose on average increases as α increases, which is similar to Fig. 8(b), as

shown in Fig. 8(a).

2.6.2 Analytical results by the exhaustive cavity method

To illustrate that our exhaustive cavity method derived in Section 2.5 provides an accurate ana-

lytic solution to path switching behavior, compared to the previous cavity method derived in Sec-
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tion 2.4.4, we focus on the same two scenarios as in Section 2.6.1, where the initial path configura-

tions are computed based on γr = 1 and 2, and individual vehicles then reroute according to γ = 2.

Due to the high computational complexity of this exhaustive approach, we examine transportation

networks with a different density α = M/N by fixing the number of vehicles to be M = 8 and vary

the number of nodes N. To employ population dynamics, the functional probability distribution of

P(ẼV , EV) is approximated by a pool of 2000 sets of functions
{
ẼV
ξ , E

V
ξ

}
ξ
, where

P(Λ) =



1
N , if ∃µ s.t. Λµ = 1, and Λν = 0 for all ν , µ;

1
N , if Λν = −∞, for all ν;

1 − M+1
N , otherwise.

, (77)

and P(k = 3) = 1 for the graph setup of a random regular graph with connectivity of 3. As in

Section 2.6.1, instead of measuring the convergence of P(ẼV , EV ,D), we measure the social cost

H for checking the convergence of the iteration process. On the other hand, the simulation results

are generated by the results after averaging over 1000 realizations, in which each is obtained by

transportation networks with randomly generated random regular graph structures with a different

density α = M/N by fixing the number of vehicles to be M = 8 and varying the number of nodes N,

with node connectivity k = 3. We then compare the analytic solutions obtained by our exhaustive

approach with those obtained by the previous approach and the simulation results.

As shown in Fig. 9, for both scenarios of (γr, γ) = (1, 2) and (2, 2), our exhaustive approach agrees

much better with simulation results than the first approach in Section 2.4 in terms of the fractional

change in the social traffic cost H and the individual travel costs Hselfish and Hcompliant of selfish

and compliant users. As in Section 2.6.1, the cavity method provides a good estimate ofHselfish and
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Figure 9. The fractional change in (a) the social cost ∆H , (b) the traveling cost of selfish users

∆Hselfish and (c) the traveling cost of compliant users ∆Hcompliant, as a function of fs, averaged

over all selfish and compliant vehicles, respectively, for the vehicle density α =0.1 and 0.8, with

(γr, γ) = (1, 2). The corresponding fractional changes in costs are shown in (d),(e) and (f) re-

spectively for the case (γr, γ) = (2, 2). The simulation results are obtained by averaging 1000

realizations on random regular graphs with a fixed number of vehicles M = 8 and k = 3 for density

α = M/N = 0.1 and 0.8. The analytical results obtained by the exhaustive cavity method and the

first approach in Section 2.4 are also shown.

Hcompliant, yet it yields a smaller value of H compared to simulations but still captures the trend.

This suggests that if one prefers accurate analytical results describing the rerouting behavior, the

exhaustive approach which articulates all route choices in Eq. (55) and Eq. (57) for a small group

of vehicles is a better option, compared to the first approach in Section 2.4 which is capable of

analyzing a system with a larger number of vehicles.

I. Herd behavior in rerouting:

The discrepancies between the results obtained by the exhaustive and the probabilistic modeling

methods imply that the latter method cannot capture some fundamental mechanisms in selfish
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Figure 10. The conditional rerouting correlation ⟨∆σν∆σµ⟩I∗ as a function of I∗ for γr = 1 and 2,

α = 0.1 and 0.5. Insets: The overall rerouting correlation ⟨∆σν∆σµ⟩ as a function of α for

γr = 1 and 2. The results are the analytical solutions obtained by the exhaustive cavity method.

rerouting. We first note that in the probabilistic modeling approach, the traffic condition after

rerouting is estimated by computing the rerouting choice of a specific vehicle, which leads to

a mean-field switching probability for all vehicles, assuming all of them make an independent

rerouting decision. The discrepancies thus come from the invalidity of this mean-field assumption,

suggesting a correlation underlying the rerouting decisions of individual vehicles. For instance, a

route may be favorable to most users and hence they are correlated and switch into those favorable

links, which can be considered as a herd behavior in path switching.

To examine herd behavior in rerouting, we compute the conditional rerouting correlation

⟨∆σν∆σµ⟩I∗ in Eq. (74) and the overall rerouting correlation ⟨∆σν∆σµ⟩ in Eq. (75), as shown in

Fig. 10 and its inset, respectively. We observe that when γr = 2, where the path configurations

optimizing the social traffic cost are initially recommended to all users, the values of ⟨∆σν∆σµ⟩I∗

and ⟨∆σν∆σµ⟩ are very small for all α and I∗ , 1. We also note that when I∗ = 0, ⟨∆σν∆σµ⟩ = 1
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since |σ∗| = 0 and hence |σ̃| = 1 if |σ̃| + |σ∗| , 0. This suggests that over a globally optimized

transportation network, when traffic flows tend to be evenly distributed on the whole network,

roads that are favorable to most vehicles do not exist and hence rerouting strategies among selfish

vehicles tend to be uncorrelated. This also explains that when γr = 2, H obtained by the proba-

bilistic modeling approach gives a better estimation than that obtained when γr = 1, as shown in

Fig. 6 and Fig. 9, since rerouting is less correlated in the former.

On the other hand, in the case of γr = 1 with α = 0.1 or 0.5, ⟨∆σν∆σµ⟩I∗ > 0 for all I∗ as shown

in Fig. 10, and in particular, ⟨∆σν∆σµ⟩I∗ first decreases then increases as I∗ increases. When

the initially recommended traffic flow I∗ on a link is small, it is trivial that |σ∗| ≈ 0 and hence

∆σ = |σ̃| − |σ∗| > 0 implies |σ̃| > 0 in most cases, suggesting the two vehicles tend to switch into

the same link that they initially do not travel on. Therefore, ⟨∆σν∆σµ⟩I∗ > 0 implies that selfish

vehicles consider the road to be relatively less-used and favorable to travel, so they switch to the

road together. Then, when I∗ increases, ⟨∆σν∆σµ⟩I∗ decreases as the switching options become

more even, and selfish vehicles can either stay or leave the recommended road to minimize their

individual costs, since the link they are traveling already has low total traffic flow. Finally, when

I∗ further increases, since the shortest paths are recommended to vehicles in the case of γr = 1 and

a large portion of vehicles are already traveling on the link, and hence the remaining options for

the selfish vehicles are to stay (∆σ = 0) or to leave (∆σ = −1) the road. Therefore, in such cases

the most possible values of ∆σν∆σµ would be either 1 or 0. An increasing ⟨∆σν∆σµ⟩I∗ therefore

implies that more selfish vehicles choose to leave the road together, leading to herd behavior in

switching.

Next, we examine the dependence of herd behavior on vehicle density. As shown in the inset of

Fig. 10, the overall rerouting correlation ⟨∆σν∆σµ⟩ decreases as the density of vehicles α increases.
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This can be understood as when the vehicle density is small, most vehicles are recommended to

travel on a limited number of paths, leading to under-loaded roads and multiple selfish vehicles

tend to switch to these roads which lead to a relatively higher ⟨∆σν∆σµ⟩ than the case with high

vehicle density α.

The above results show that there is a high correlation when vehicles reroute, leading to herd be-

havior and thus sub-optimal route configurations, suggesting why the cavity method in Section 2.4

is unable to estimate the transportation costs as accurately as the exhaustive cavity method. We

remark that the computational complexity of the exhaustive approach is much higher than that

of the probabilistic modeling approach. On the other hand, the exhaustive approach provides an

accurate theoretical solution that can only predict small systems, however the mean-field approach

is less accurate but is workable on large systems and is able to capture the clear physical properties

of the system. Therefore, it is a trade-off between system size and precision for deciding which

approach to employ.

2.6.3 England highway network: selfish routing case

To study the impact of selfish rerouting in a realistic transportation system, we simulate the mathe-

matical model we derived on England’s highway network that consists of 395 nodes, representing

the starting or ending highway junctions based on the data in Highways Agency network journey

time and traffic flow data 2018, and for simplicity we assign the weights of all links to be iden-

tical. We also create a node in the location of London and define it as the universal destination

as shown in Fig. 11(b). To visualize the simulation, an example of the transportation flow on this

highway network before selfish rerouting, with M = 11 vehicles are following the shortest path

configuration(γr = 1), is shown in Fig. 11(b); the resulting transportation flow after all vehicles
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Figure 11. (a) The region of the England highway network we use in simulation, enclosed by the

rectangle. England’s highway network consists of 395 nodes, and each node is representing the

starting point or the ending point of the junction of roads. (b) An example of the initial traffic

condition consisting of M = 11 users following their shortest paths and traveling from their origin,

denoted as red filled circles, to the universal destination in London, denoted as the blue triangle.

(c) The updated traffic flow after selfish rerouting of all users, by considering the traffic condition

in (b). The users switch to the less-used roads in the initial stage, leaving the originally over-loaded

roads empty.

rerouted is shown in Fig. 11(c). Similar to the example shown, the origins of users are randomly

selected and the universal destination is fixed at London for every realization of the simulation. All

users are initially following the recommended configuration obtained based on the value of γr, and

a fraction of selfish users are switching to other paths to optimize their individual traveling costs

by considering the recommended configuration.

In Fig. 12, we show the fractional change in the social cost ∆H averaged over all users, the travel-

ing cost ∆Hselfish and ∆Hcompliant averaged over selfish and compliant users respectively, with 500

realizations of simulations. The corresponding regimes to indicate when all users and selfish users

gain after selfish rerouting are shown in Fig. 13. We note that England’s highway network and

random regular graphs have very different topological characteristics. For instance, the England

highway network has many loops and is not in a treelike structure. But remarkably, the results
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Figure 12. The fractional change in (a) the social cost ∆H , (b) the traveling cost of selfish users

∆Hselfish and (c) the traveling cost of compliant users ∆Hcompliant, as a function of fs, averaged

over all selfish and compliant vehicles, respectively, for the vehicle density α =0.1, 0.5 and 0.9,

with (γr, γ) = (1, 2). The corresponding fractional changes in costs are shown in (d), (e) and (f)

respectively for the case (γr, γ) = (2, 2). The simulation results are obtained by averaging 500

realizations on England’s highway networks.

obtained from simulation results on the network are similar to those we predicted via the analytical

results of the probabilistic modeling and exhaustive approaches, as well as the simulation results on

random regular graphs, for both (γr, γ) = (1, 2) and (2, 2), as shown in Fig. 6, Fig. 7 and Fig. 9. This

implies that although the analytical results obtained by the probabilistic modeling and exhaustive

approaches in Section 2.4 and Section 2.5 are derived based on tree structures, these methods are

able to qualitatively capture the impact of selfish rerouting in realistic transportation networks.

2.7 Summary

In this chapter, we derived theoretical frameworks by employing the cavity method developed for

the study of spin glasses to study transportation systems in which optimized paths are suggested
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Figure 13. The positive or negative regimes for (a) ∆H(1, 2), (b) ∆Hselfish(1, 2) and (c)

∆Hselfish(2, 2) obtained by simulation results on England’s highway network are shown in terms

of the vehicle density α and the fraction of selfish drivers fs.

to users initially, while some of them would choose alternative paths in order to minimize their

individual costs instead of following the suggestions.

Both analytical and simulation results show that, in the case of transportation networks in which

vehicles are initially following their shortest paths, a small fraction of selfish users are beneficial

to the whole system due to the reduction of social traffic cost. The individual traffic costs of the

selfish users are also reduced by switching to the less-used links and yet, when the fraction of

selfish users further increases, the social cost and the individual costs of selfish users increase, due

to the congestion caused by the rerouting. Remarkably, for compliant users who do not switch to

other paths, their individual costs always decrease for any values of the fraction of selfish users.

On the other hand, in the case when all users are recommended with the optimal configuration of

paths, the social cost of the whole system as well as the individual costs of the compliant users are

increased due to the selfish rerouting. For selfish users, they may gain from rerouting if they are

only a minority in the system, but they may lose if the size of their group increases.

Using the exhaustive cavity method and computing the rerouting correlation, we also studied the

correlation between users over the transportation networks. We showed that in the case of vehicles
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that are initially following their shortest paths, selfish users are highly correlated while rerouting,

which leads to the failure of the probabilistic modeling approach. This phenomenon can be un-

derstood as the herd behavior of users. While in the case when all users are recommended with

the optimal configuration of paths, the correlation is small and both the probabilistic modeling and

exhaustive approach have good agreement with simulations.

The mean-field cavity method we derived is capable of studying systems of large size and success-

fully captures the trend as well as the features of transportation networks after path switching, but

it can only provide a rough estimate of the numerical values of the rerouted system. In contrast, the

exhaustive cavity method can only work on small networks due to high computational complexity,

but it can precisely analyze the impact of rerouting, as well as identifying the detailed routing

behavior of each user on the network, and carry out correlation analysis. Therefore, it is a trade-off

between system size and precision in choosing which method to use.
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Chapter 3: Nash equilibrium of multiple rounds of a selfish routing game over

transportation networks

3.1 Iterative approach to reach Nash equilibrium

In Section 2.6, we showed that the transportation system may benefit after one round of rerouting.

In this chapter, we aim to investigate the Nash equilibrium state (Osborne and Rubinstein 1994)

of the system. If a system is in its Nash equilibrium state, then the corresponding strategies (path

decisions) of each player (vehicle) are in its local optimal point that no player can gain their payoff

(reduction of individual travel cost) by changing their own strategy while other players remain

unchanged. Therefore, in such a state, all players (vehicles) in the system will no longer switch

to other paths in selfish rerouting, making the system effective and stable. Nevertheless, in our

transportation network problem, it is almost impossible to list all possibilities of routing decisions

of all users. Instead, we investigate a transportation systemwithmultiple rounds of selfish rerouting

via simulation. If all vehicles no longer change their routing strategies for certain time steps, then

that is the Nash equilibrium state of the system.

In this chapter, we employ the same mathematical model developed in Section 2.1 and we define

σt =
{

tσν
i j

}
∀ν,(i j)

as the routing configuration of all vehicles at time step t. At time t = 0, all users are

following their recommended paths σ∗ that are minimizingH(σt|γr), i.e. σ∗ = argminσt
H(σt|γr).

When γr = 1, vehicles are following their shortest paths, and they are following the path config-

urations that minimize the social cost H when γr = 2. Afterward, for any time t > 0, a fraction

fs of selfish users are randomly selected, then every selfish user µ is switching to a path that min-

imizes their individual travel cost Hµ(σ̃
µ∗
t |σ∗t−1(γr), γ) instead of the recommended path, based on

the traffic condition σ∗t−1(γr) at time t − 1.
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3.2 Simulation results

Consider an example of multiple rounds of selfish rerouting on a transportation network of size

N = 30 with M = 14 users, such that all users are traveling to the common destination by their

shortest paths under 2 different scenarios: (i) the fraction of selfish users fs = 0.5, as shown in

Fig. 14(a), (b) and (c); and (ii) the fraction of selfish users fs = 1, as shown in Fig. 14(a), (d)

and (e). As shown in the example with fs = 0.5 in Fig. 14(a), (b) and (c), we find that when

the fraction of selfish users fs is small, the path configuration converges to the Nash equilibrium

state very quickly after a few iterations, in which no selfish users further switch afterward. On

the other hand, when fs is large, the dynamics of the path configuration may become a limit cycle

that fluctuates repeatedly between certain states, when all users are switching simultaneously. For

instance, drivers are departing at the same time for work on their daily commute. As shown in the

example of Fig. 14(a), (d) and (e) with fs = 1, users are following their shortest paths at t = 0

and leaving some links that are relatively less occupied. At t = 1, most users reroute to those less

occupied links at t = 0, leaving the highly occupied links at t = 0 to become less occupied at t = 1.

At the next time step t = 2, users switch back to those underloaded links at t = 1. The above

process is then continued and switching back and forth repeatedly between the path configurations

at time t = 1 and t = 2. Therefore, in this example with fs = 1, the system never converges to a

Nash equilibrium state.

In Fig. 15, we show the time series of the social traffic cost H for exemplar instances, in order

to further investigate the convergence and alternating rerouting behavior we observed in Fig. 14,

over different cases of vehicle density α. We show in Fig. 15(a) that, in the cases when the vehicle

density is low with α = 0.1, the social costH converges in the instances with fs = 0.1 and 0.5when
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(a)

Initial condition:
t = 0

(b) (c)

fs = 0.5 :
t = 1

fs = 0.5 :
converged at t = 9

(d) (e)

fs = 1 :
t = 1, 3, 5, · · ·

fs = 1 :
t = 2, 4, 6, · · ·

Figure 14. An example of multiple rounds of selfish rerouting on a transportation network com-

prising N = 30 nodes with M = 14 vehicles, under 2 scenarios with different fractions of selfish

users, fs = 0.5 ((a), (b) and (c)) and fs = 1 ((a), (d) and (e)). The origin of vehicles and the universal

destination are indicated as black filled circles and red triangle, respectively. Links with non-zero

traffic flow are indicated in green and the width of links are proportional to the volume of flow.

(a) Initially at t = 0, all users are traveling to the destination by their shortest paths, (b) shows that

when fs = 0.5, half of the users reroute at t = 1 to minimize their individual travel costs, and (c)

shows the system reaching a Nash equilibrium state at t = 9. While in the case when fs = 1, (d)

shows all vehicles reroute at t = 1 and some links near to the common destination have very low or

zero volume, (e) shows that at t = 2, all users are switching to the less-used links at t = 1, resulting

in the other links being underloaded. The system is then switching back and forth between the path

configurations in (d) and (e) repeatedly and never reaches a Nash equilibrium state.
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(γr, γ) = (1, 2), and; all instances with fs = 0.1, 0.5 and 0.9 when (γr, γ) = (2, 2). To investigate

the convergence of social cost in general, we show in Fig. 15(c) the fraction of instances for which

the social cost is unchanged in the last 2500 steps in a simulation of a total of 5000 steps over

1000 realizations. We observe that almost all instances converge except the instances with a larger

fraction of selfish users fs = 0.9 when (γr, γ) = (1, 2), which is possibly due to the large amount

of selfish rerouting simultaneously. The time series of H of an example in this case is shown in

Fig. 15(a). When fs = 0.9 and (γr, γ) = (1, 2), H robustly fluctuates at high values relative to

its initial value, which is similar to the example we show in Fig. 14(a), (d) and (e). These results

imply that when the density α is low, most cases of the transportation system converge to a Nash

equilibrium by selfish rerouting, no matter whether the users are following the global optimal or

the shortest path configuration.

On the other hand, we show the time series of the social cost H from instances in Fig. 15(b), for

the cases when the vehicle density is high with α = 0.9. For the instances of fs = 0.5 and 0.9 when

(γr, γ) = (1, 2), we can see that the time series ofH fluctuates more seriously than the correspond-

ing instances in Fig. 15(a). As shown in Fig. 15(d), for the cases with (γr, γ) = (2, 2), although

the convergence is marginally lower than the case when α = 0.1, most instances still converge.

Nevertheless, for the cases with (γr, γ) = (1, 2), the ratio of convergence starts to drop rapidly after

fs = 0.1, which is completely different from the cases with low vehicle density. The above results

imply that the higher the vehicle density α, the more difficultly the transportation system has in

converging to a Nash equilibrium state by selfish rerouting, especially for the case in which the

users are following their shortest paths in the initial step. The results also imply that the globally

optimal route coordination provided in the initial step plays an important role in facilitating the

convergence of Nash equilibrium.
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Figure 15. (a) and (b) are the time series of the social cost H , where the time t is the number of

rounds for selfish rerouting on specific instances of a random regular graph with N = 3, k = 3,

(γr, γ) = (1, 2) and (2, 2) and various values of fs, for (a) α = 0.1 and (b) α = 0.9. (c) and (d) are

the fraction of instances which have no change in social traffic cost H in the last 2500 steps in a

simulation of 5000 iteration steps, for α = 0.1 and 0.9 respectively, over 1000 realizations. The

simulation results are obtained on random regular graphs with size N = 100 and degree k = 3,

averaged over 1000 realizations.



68

Apart from the convergence, we also aim to examine how much the system gains or loses af-

ter multiple rounds of selfish rerouting. Since the social cost H might fluctuate over time for

the cases with different choices of parameters, we measure the time-averaged social traffic cost

⟨H⟩t = 1
100

∑200
101H(σt|γ) instead of the social cost of a state in a fixed time step, then we define ψ

as the fractional change of cost, given by

ψ =
⟨H⟩t −H(σ∗(γ)|γ)
H(σ∗(γ)|γ)

, (78)

in order to compare the time-averaged social traffic cost after multiple rounds of selfish rerouting

with the social traffic cost in the initial step t = 0. The fractional change quantity ψ as a function

of the fraction of selfish users fs and the vehicle density α, is shown in Fig. 16. As shown in the

figure, in both cases of (γr, γ) = (1, 2) and (2, 2), ψ exhibits similar behaviors with respect to fs

and α, while the magnitude of ψ is much larger for the case when (γr, γ) = (1, 2). Remarkably, we

observed that in general, ψ increases as fs and α increase, starting from ψ ≈ 0. This suggests that

for a transportation system with a small vehicle density and a small fraction of selfish vehicles, the

system is reaching a Nash equilibrium state that is close to the optimal state, regardless of the initial

state of the system. On the other hand, if the vehicle density or the fraction of selfish users is large,

for the case when the vehicles are initially following their shortest path ((γr, γ) = (1, 2)) at time

step t = 0, it is difficult for the system to reach a Nash equilibrium state, and possibly fluctuating

between largely suboptimal states. While for the case of optimal recommendation ((γr, γ) = (2, 2)),

the system can still converge to a suboptimal Nash equilibrium state that is not far from the optimal

solution in most cases, when compared to the shortest path case. The results show that initial route

coordination not only facilitates the convergence to Nash equilibrium, but also reduces the impact
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Figure 16. The fractional change ψ between the social traffic cost H after multiple rounds of

selfish rerouting and the socially optimal traffic cost, as a function of α and fs, for (γr, γ) = (1, 2)

and (γr, γ) = (2, 2), respectively. The smaller the value of ψ, the social cost of the final state of

the system is closer to its optimal configuration. The simulation results are obtained on random

regular graphs with size N = 100 and degree k = 3, averaged over 1000 realizations.

of selfish rerouting.

3.2.1 England’s highway network: Multiple rounds of selfish rerouting

Similar to Section 2.6.3, we show the simulation results on the same England highway network

as in Fig. 17 and Fig. 18, in order to study the impact of multiple rounds of selfish rerouting over

a realistic network. Remarkably, just like the one-step selfish rerouting case in Section 2.6.3, as

shown in Fig. 17 and Fig. 18 these simulation results on the England network have similar be-

haviors to the random regular graphs case as shown in Fig. 15 and Fig. 16. This suggests that

our approach not only works on artificial graph structures, but is also capable of studying realistic

transportation networks. Nevertheless, as we can see in Fig. 17(a) and (b), over specific realistic

network topology, more instances have a fluctuating time series ofH value, suggesting it is more

difficult for multiple rounds of self-rerouting to converge to a Nash equilibrium state. Moreover,
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the fraction of instances with no change in cost shown in Fig. 17(c) and (d) suggest that in general,

the fraction of instances with no change in cost is much lower than that in the random regular

graphs case. In particular, for the case with (γr, γ) = (1, 2), we can see that even when the vehicle

density is as low as α = 0.1, the convergence starts to drop significantly after fs = 0.3; while when

α = 0.9, almost no instance can converge to a Nash equilibrium state. On the other hand, for the

case with (γr, γ) = (2, 2), in both cases when α = 0.1 and 0.9, the convergence is much larger

than the corresponding case with (γr, γ) = (1, 2). The results suggest that route coordination in

the initial step also plays an important role in facilitating the convergence of Nash equilibrium in a

realistic network, validating the efficacy of our approach in artificial network topologies. As shown

in Fig. 18, similar to what we observed in the random regular graphs, ψ increases with fs and α in

both cases of (γr, γ) = (1, 2) and (2, 2), suggesting that when the vehicle density and the fraction

of selfish users are small, the average social cost of the system will be close to the optimal social

cost. These results suggest that the qualitative behavior of multiple rounds of selfish rerouting is

valid against realistic network topologies.

3.3 Summary

In this chapter, we adopted the mathematical model we derived in Chapter 2, and extended the

one-step selfish rerouting on transportation networks into multiple rounds of selfish rerouting via

numerical simulations. We showed that after multiple rounds of selfish rerouting, the transportation

system may converge to Nash equilibrium states, where users do not further benefit from switching

to other paths. Remarkably, when the vehicle density and the fraction of selfish users are small,

the social traffic costs at the Nash equilibrium states are close to the optimal social cost. Further-

more, we observe similar results on simulations of the England highway network, showing that our
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Figure 17. (a) and (b) show the time series of the social costH on the England highway network,

measured on instances with (γr, γ) = (1, 2) and (2, 2) and different values of α = 0.1 and 0.9

respectively. (c) and (d) are the fraction of instances which have no change in social traffic costH

in the last 500 steps in simulations of 1000 iteration steps, for α = 0.1 and 0.9 respectively, over

500 realizations. The simulation results are obtained on the England highway network averaged

over 500 realizations.
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Figure 18. The fractional change ψ between the social traffic cost H on the England highway

network before and after multiple rounds of selfish rerouting, as a function of α and fs, for

(γr, γ) = (1, 2) and (γr, γ) = (2, 2) respectively. The simulation results are obtained on the England

highway network averaged over 500 realizations.

approach also works on realistic transportation networks.
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Chapter 4: Complete realization of energy landscape and trapping dynamics in

optimization processes in spin glasses and combinatorial optimization

problems

In this chapter, we introduce a methodology for revealing the complete energy landscape of com-

plex disordered systems that allows us to perform detailed and exact analysis. We first introduce the

disordered system models in Section 4.1. We then introduce our approach and obtain the coarse-

grained energy landscape (CEL) of the disordered systems of small size in Section 4.3, and discuss

the physical properties we obtain. In Section 4.4, we compute the non-equilibrium dynamics ana-

lytically using the obtained energy landscapes, at arbitrary temperature and an arbitrarily long time

that is out of reach of simulations due to computational capability. Finally, in Section 4.5, we obtain

the partial coarse-grained energy landscape (PCEL) of the disordered systems with large system

size by introducing a variant of the method we used in Section 4.3.

4.1 Models studied

In general, we consider a system that consists of N Boolean variables si = ±1, for i = 1, 2, . . . ,N.

We denote the vector s⃗ = (s1, s2, . . . , sN) as the variable configuration, and the corresponding en-

ergy or the objective function of the system is denoted as E(s⃗). In this chapter, we investigate two

glassy systems as examples of our approach, which are (i) spin glasses (Mézard et al. 1987b) and

(ii) K-satisfiability problems (Malik and Zhang 2009).

4.1.1 Spin glasses

For the problem of spin glasses, we consider a spin system with N Ising spins, characterized by

the Boolean variable si = ±1 for i = 1, 2, . . . ,N. The interactions between any two spins i and j
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are denoted as Ji j = ±1. The graph topology of the spin system is characterized by the adjacency

matrix (ai j), where ai j = 1 if i and j are interacting with each other, and ai j = 0 otherwise. Then,

given a configuration of Ising spins s⃗, the corresponding energy E(s⃗) of the spin system, is given

by

E(s⃗) =
1
2

∑
i< j

ai jJi jsis j, (79)

where the interaction Ji j = +1 with a probability f+ and Ji j = 0 otherwise. Unlike the common

definition used in studies of spin glasses, we introduce the factor 1
2 into the energy function so that

a single flip of a spin leads to a unit change in energy for each active interaction. The spin system

exhibits different phases, such as paramagnetic, ferromagnetic and spin glass phases (Mézard et

al. 1987b; Nishimori 2001; Sherrington and Kirkpatrick 1975), which depend on the topology, the

temperature and the probability distribution of Ji j.

4.1.2 K-satisfiability problems

The K-satisfiability (K-Sat) problem consists of N Boolean variables si = ±1, for i = 1, 2, . . . ,N

subject to M constraints called the clauses. Every clause ζl, l = 1, 2, . . . , M, is a logical formula of

OR(∨), of exactly K randomly selected Boolean variables {sir}r=1,...,K , in which each of the variables

is being negated (¬) with a probability of 1
2 , such as ζi = (si1 ∨ si2 ∨ ¬si3). The K-Sat problem is

to identify if there exists at least one configuration s⃗ of the variables such that all M clauses are

satisfied. Given a configuration s⃗, the energy of each clause ζl is given by

El(s⃗) =
K∏

r=1

1 − Jlr slr

2
, (80)
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where Jlr = −1 if the r-th variable in the clause ζl is negated, and Jlr = 1 otherwise. The energy

El(s⃗) = 0 if the clause is satisfied and El(s⃗) = 1 if the clause is violated. The total energy E(s⃗) of

the whole system is then given by

E(s⃗) =
M∑

l=1

El(s⃗), (81)

which is equivalent to the number of violated clauses. Therefore, when E(s⃗) = 0, all clauses are

satisfied and the system is in the ground state. Varying the value of the controllable ratio α = M
N , the

system exhibits different phases including the Easy-SAT phase, Hard-SAT phase and the UNSAT

phase as α increases (Mézard and Zecchina 2002).

4.2 Full energy landscape(FEL)

In the above systems, there are N Boolean variables and each variable can only have 2 possible

values, either 1 or -1. Therefore, the total number of different variable configurations is 2N , and the

configuration space is a N−dimensional discrete space. Next, consider two configurations s⃗x = {sx
i }

and s⃗y = {sy
i }, the Hamming distance between s⃗x and s⃗y , denoted as ∥s⃗x − s⃗y∥H, is the number of

variables they differ by, i.e.

∥s⃗x − s⃗y∥H =
N∑

i=1

(
1 − δsx

i ,s
y
i

)
, (82)

and we consider that the two configurations s⃗x and s⃗y are connected to each other if the Hamming

distance ∥s⃗x − s⃗y∥H = 1. Thus, the configuration space is indeed an N−dimensional hypercube.

Since the disorders J and the variables we defined in the above systems are integers, the resulting

energy of these systems are also integral, which leads to discrete energy levels, allowing us to
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(a) (b)

Figure 19. (a) The FEL of an example with 2N = 32 configurations from E = 0 at the bottom to

E = 6 at the top, from a 3-Sat problem with the number of variables N = 5 and α = 4. (b) The

corresponding CEL with the number of clusters C = 17. The global minima and the local minima

of the system are shown as squares and triangles, respectively. The node size is proportional to the

number of configurations within the clusters. The connections between any cluster and the local

minima are shown as red links.

present this hypercube as an energy landscape which can be shown as a network. Each variable

configuration s⃗ is represented as a node on the network, and any two nodes are connected with a

link if their Hamming distance is 1. Then all nodes with the same energy are arranged on the same

horizontal level in the network, and where the configurations with lower energy are at a lower

level. We call this network layout the full energy landscape (FEL). To give a clear illustration

of this completely new approach, we show the FEL of a small 3-Sat problem with N = 5 and

α = 4 in Fig. 19(a) as an example. As shown in the figure, we can see how the 2N = 32 variable

configurations are arranged on the FEL at different energy levels starting from E = 0 at the bottom,

and how they are connected with their neighboring configurations. Note that the total number of

variable configurations increases exponentially with N, and thus illustrating that the configuration
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Figure 20. The number of clusters in the CEL divided by the total number of variable configura-

tions, C/2N , as a function of N, for different values of α. (b) The exponent γ in the relationC ∝ 2γN ,

as a function of α. (c) The rescaled average number of local minima in the CEL,
〈
nML/NK−1

〉
of the

K−Sat problem as a function of α for different size N with K = 3. (d) The rescaled probability dis-

tribution of the number of local minima in the CEL, NK−1P(nML/NK−1), as a function of nML/NK−1.

The simulation results are obtained by averaging more than 10000 instances for N ≤ 20 and more

than 700 instances for N ≤ 25.

space by FEL will quickly become computationally infeasible and hard to visualize as there are

too many links and nodes on the network. Therefore, we need to introduce another approach to

simplify and present the energy landscape in a clear visualization.
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4.3 Coarse-grained energy landscape (CEL)

To simplify the FEL, we define a simplified energy landscape as a new network G such that every

node in G represents a cluster on the original FEL, with each cluster containing the connected

nodes that are on the same energy level. Therefore, each cluster in this simplified energy landscape

G represents a connected sub-graph in the FEL in which all nodes in the cluster are of the same

energy. The total number of clusters in G is denoted as C. Two clusters a and b are connected

with a link (ab) in G, if there exists at least one variable configuration in a is connected with at

least one variable configuration in b in the FEL. Every link (ab) in G is assigned with a weight wab,

where wab is the total number of links in the FEL that connect a variable configuration in a to one

in b. We name such a simplified energy landscape G the coarse-grained energy landscape (CEL).

For illustration, in Fig. 19(b) we show the corresponding CEL of the FEL in Fig. 19(a), where the

number of variable configurations is reduced from 2N = 32 nodes in the FEL to C = 17 clusters in

the CEL.

To examine the size reduction effect of the CEL, we take theK−Sat problemwith K = 3 as an exam-

ple, showing the ratio of the total number of clusters to the total number of variable configurations,

i.e. C2N in Fig. 20(a). Remarkably, the ratio C
2N decreases exponentially as the number of variables

N increases linearly, suggesting that the reduction effect of grouping variable configurations in the

CEL is increasing with N. Furthermore, from Fig. 20(a), we have the relation log2

(
C
2N

)
= mN + d

for some constant d and m < 0, implying that the total number of clusters C ∝ 2γN , i.e. C = A2γN

for some constant A and reduction exponent γ < 1, and the value of γ as a function of α is shown

in Fig. 20(b). As shown in the figure, the exponent γ increases as α increases, suggesting that the

structure of the energy landscape is more complicated when the value of α is larger. This result is
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Figure 21. (a) The reduction exponent γ as a function of α
K2 for the K−Sat system with different

values of K = 3, 4, 5 and 6. (b) The scaled ratio Ã
(
C
2N

) 1
1−γ as a function of N, where Ã = A

1
1−γ , for

different values of K and α.

consistent with the existing understanding of K−Sat systems that the structure of the solution space

is more complicated in the Hard-SAT phase than that in the Easy-SAT phase at small α (Krzakała

et al. 2007; Mézard and Zecchina 2002).

4.3.1 Reduction effect of the CEL

We further investigate the reduction effect of the CEL by studying the number of clusters in the CEL

for the K−Sat problem with K = 3, 4, 5 and 6. Remarkably, as shown in Fig. 21(a), the reduction

exponent γ collapses onto a common function of α
K2 for different values of K. The result implies

that the reduction effect of decreasing the number of nodes by the clustering in CEL is universal for

different values of K,N and α. On the other hand, as shown in Fig. 21(b), the scaled ratio Ã
(
C
2N

) 1
1−γ

collapses onto a common function which decreases exponentially with N, for different values of K

and α, which further validates this universal reduction effect. The effect allows us to estimate the

total number of clusters in the CEL of a K−Sat problem with any given values of K,N and α.
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(a) (b)

Figure 22. The low-energy part of the exemplar CELs for an instance of (a) spin glasses on a

random regular graph with f+ = 0.5 and; (b) K−Sat problem with K = 3 and α = 4. The number

of variables in both instances is N = 15. The node size corresponds to the number of variable

configurations inside the clusters; the global and local minima are shown as squares and triangles

respectively; the red links correspond to the connections to the local minima.

(a) (b)

Figure 23. Another example of CELs showing the low-energy part for an instance of (a) spin

glasses on a random regular graph with f+ = 0.5 and; (b) K−Sat problem with K = 3 and α = 4.

The number of variables in both instances is N = 20. The node size corresponds to the number of

variable configurations inside the clusters; the global and local minima are shown as squares and

triangles respectively; the red links correspond to the connections to the local minima.
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4.3.2 Identification of CEL local minima

Besides reducing the size of the energy landscape, another important advantage of CEL is to iden-

tify the local minima of the energy landscape. In FEL, it is nontrivial and difficult to identify if

a variable configuration is at local minimum, and then we have to prove that all paths connecting

the configuration to any other configurations with lower energy must pass through at least one

configuration with higher energy. In CEL, since all connected variable configurations that have

the same energy are formed into clusters, the CEL with L different levels of energy is indeed a

L−partite graph, i.e. the CEL can be partitioned into L independent sets by energy, in which every

node in the CEL is only connecting to nodes on different energy levels. Therefore, for any nodes

in the CEL, the energies of its neighboring nodes can either be higher or lower, and hence the

local minima in the CEL are the nodes where all neighbors are of higher energies, which can be

identified easily. In the CEL in Fig. 19(b), there exist two local minima with energy E = 1 that are

shown as triangles as an example. The low-energy part of another exemplar CEL of spin glasses

on a random regular graph with f+ = 0.5 and N = 15 is shown in Fig. 22(a). Note that for any

variable configuration s⃗ in the spin system, the configurations s⃗ and −s⃗ must have the same energy

by Eq. (79), which leads to an energy landscape with a symmetric structure as shown in Fig. 22(a),

with a pair of local minima of E = 3. On the other hand, another example of a K−Sat problem with

K = 3, N = 15 and α = 4, in which the corresponding CEL consists of six local minima at E = 1,

is shown in Fig. 22(b). We also show two more CEL examples in Fig. 23 with a larger number of

variables N.

Since we can easily identify the local minima in the CEL, we are allowed to study the statistics of

local minima. We show in Fig. 20(c) the scaled average number of local minima,
〈
nLM/NK−1

〉
, as
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a function of α, for the K−Sat problem with K = 3 and different values of N. We observe that the

local minima become non-zero and start to rise for α > αLM ≊ 2.5, suggesting that the system starts

to become hard to be solved. This is consistent with the phenomenon that the algorithmic hardness

of K−Sat systems increases as α increases. Remarkably, as shown in Fig. 20(c), the number of local

minima nLM scales with NK−1, suggesting that the scaled number of local minima as a function of

α is universal for different system sizes. Furthermore, as shown in Fig. 20(d), we can see that from

the probability distribution of nLM/NK−1, as the system size N increases, the distribution becomes

narrower, suggesting the larger the system size, the more stable the distribution. We remark that

most previous studies on small combinatorial systems with an exhaustive approach focus on the

ground states only (Ardelius and Zdeborová 2008), therefore our results are different from these

studies and provide a new physical picture about combinatorial optimization problems.

4.4 Markov chain Monte Carlo (MCMC) dynamics through optimization

According to common belief, a probably impractically long time is required for glassy systems to

converge to their equilibrium, due to the complex energy landscape that local minima may define

(Vincent, Hammann, Ocio, Bouchaud, and Cugliandolo 1997), and yet the full picture of the en-

ergy landscape has seldom been studied. Now, the CEL can largely reduce the number of nodes

and identify the local minima of glassy systems. Therefore, we are able to reveal the complete

non-equilibrium dynamics of these glassy systems which are trapped in the local minima, at an

arbitrary temperature for an arbitrarily long time.

Consider a combinatorial system with energy function s⃗. Following the Boltzmann distribution

(HASTINGS 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953), at equilibrium,
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the probability that a system is in a variable configuration s⃗ is given by

P(s⃗) =
1
Z

e−βE(s⃗), (83)

where β = 1/T is the inverse temperature and Z =
∑

s⃗ e−βE(s⃗) is the normalization constant to ensure

that
∑

s⃗ P(s⃗) = 1. When the system is in its equilibrium, it follows the principle of detailed balance

where the transition of variable configurations is reversible. To be precise, consider a reversible

Markov process of the transition of configurations, given an equilibrium probability distribution of

configurations P⃗ =
(
P1(s⃗1), P2(s⃗2), . . . , P2N (s⃗2N )

)
, for any time steps t, and for any two connecting

variable configurations s⃗i and s⃗ j, we have

PiTi→ j = P jT j→i, (84)

where Ti→ j = P(Xt+1 = s⃗ j|Xt = s⃗i) is the transition probability and Xt is the configuration of

the system at time step t. Then, using the CEL, we can describe the Markov chain Monte Carlo

(MCMC) dynamics of the system by formulating the transition probabilities Ta→b(β) from a cluster

a to another cluster b. Given the inverse temperature β, for any variable configuration s⃗i within the

cluster a, with a flip of a single variable, it can either be transiting to its neighboring configurations

in a cluster b with probability Ta→b(β), or staying at its current cluster with probability Ta→a(β)

which can be either rejecting the flip or transiting to another configuration with the same cluster a.
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Therefore, given the inverse temperature β, the transition probability Ta→b(β) for a , b is given by

Ta→b(β) =
wab

naN
e−β∆Ea→b

e−β∆Ea→b + 1
, and

Ta→a(β) = 1 −
∑
b∈∂a

Ta→b, (85)

where ∆Ea→b = Eb − Ea is the energy difference between the clusters a and b, and na is the number

of variable configurations in cluster a. The quantity naN is the total possible number of links in the

FEL connecting the variable configurations with the cluster a, which includes those links connect-

ing to the configurations within the clusters internally. Therefore, the quantity wab/naN represents

the probability of choosing a particular variable to flip, while the quantity e−β∆Ea→b/(e−β∆Ea→b + 1)

is the probability that the flip is accepted, and the system is then transiting from cluster a to b. To

reveal the MCMC dynamics, we denote P⃗t = (Pt
1, P

t
2, . . . , P

t
C) as the probabilities of the system in

a variable configuration within different clusters at time step t, and we have

P⃗t = TβP⃗t−1 = T t
βP⃗0, (86)

where Tβ = [Ta→b(β)]C×C for a, b = 1, 2, . . . ,C, is the transition probability matrix. We note that

if there exists an eigenvalue λ of Tβ with λ = 1 and its corresponding eigenvector is P⃗∗, then we

have λP⃗∗ = P⃗∗ = TβP⃗∗, and thus the eigenvector P⃗∗ is the equilibrium probability distribution of

configurations for the system. Furthermore, by the matrix decomposition of Tβ, we have

Tβ = QβDβQ−1
β , (87)
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where Dβ = diag(Λβ) with Λβ = (λ1(β), λ2(β), . . . , λC(β)) and λi(β) is the i−th largest eigenvalue of

Tβ, which can be found by spectral analysis, and Qβ is a C × C matrix in which the i−th column is

the corresponding eigenvector of Tβ. Therefore, we can compute T t
β efficiently by

T t
β = QβDt

βQ
−1
β , (88)

where Dt
β = diag(Λt

β), with Λ
t
β = (λt

1(β), λt
2(β), . . . , λt

C(β)). Alternatively, to calculate T t
β, one can

first break down into powers of 2, i.e. represents t in the form
∑⌊log2(t)⌋

i=0 ai2i for some {ai}i=1,...,⌊log2(t)⌋,

and thus,

T t
β =

⌊log2(t)⌋∏
i=0

T ai2i

β . (89)

Noted that all the terms T 2i

β = T 2i−1

β · T 2i−1

β can be computed by one induction process with at

most ⌊log2(t)⌋ matrix multiplications being needed. This induction method would be better than

the matrix diagonalization method when the eigenvalues of the matrix are too complicated to find.

Thus, the term T t
β in Eq. (86) can be computed easily and efficiently, hence the dynamics P⃗t can be

revealed at an arbitrary temperature for an arbitrarily long time, which is out of reach of simulations

using modern computational capability.

For any specific instance with an inverse temperature β, we can compute the eigenvalues of the

transition probability matrix Tβ as described above, and we denote λi(β) to be the i−th largest

eigenvalue of Tβ. The first ten eigenvalues λ1(β), λ2(β), . . . , λ10(β), for different inverse tempera-

ture β for the instances of spin glass and 3−Sat shown in Fig. 22(a) and (b) are shown in Fig. 24(a)

and (b), respectively. Interestingly, due to the symmetric structure of the energy landscape, we
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Figure 24. (a, b) The first ten eigenvalues λ1(β), λ2(β), . . . , λ10(β) of the transition probabilitymatrix

Tβ, with different values of β = 1, 2, 10, of the spin glass and the 3−Sat problem instances shown

in Fig. 22(a) and (b) respectively. (c, d) The corresponding probability of finding the ground states,

Pg, of the instances as a function of β, obtained by Eq. (86), for t = 103 and 105 iteration steps,

compared with the MCMC simulation results. Insets: The time series of Pg.

can see that the eigenvalues of the spin glass instance are in pairs. Another interesting result is

that the λi differ more when β is small, while some eigenvalues after λ1 are approaching 1 as β

increases. The number of λi approaching 1 is equal to the number of local minima in the CEL of

the corresponding instance. In particular, in the spin glass instance, λ3 and λ4 correspond to the

two symmetric local minima at E = 3 in Fig. 22(a). On the other hand, in the 3−Sat instance, λ2 to

λ7 correspond to the six local minima at E = 1 in Fig. 22(b). That the eigenvalues are approaching

1 as β increases also implies that trapping of MCMC dynamics in local minima are increasing,

similar to the trapping in global minima in which the corresponding eigenvalue λ1 = 1. This raises

an important question as to whether at zero temperature as β → ∞, the equilibrium of the system

is at the ground states. It is because λi → 1 at the local minima as β → ∞, which is equivalent to

the largest eigenvalue λ1 = 1 at the ground states, and hence the equilibrium condition P⃗′ = TβP⃗′

is satisfied for any P⃗′ = (P′1, . . . , P
′
C) with

∑C
i=1 P′i = 0 = 1 and P′i = 0 for all clusters i that are not

local and global minima.

With the transition probability matrix and using Eq. (86), we can compute the complete dynamics
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at any given inverse temperature for an arbitrarily long time. Starting with a uniform distribution

P⃗0, i.e. Pi = 1/C for all clusters i, we obtain the probability Pg being in the ground states after

t = 103 and 105 iteration steps as a function of β, for the spin glass and 3−Sat instances, as shown

in Fig. 24(c) and (d) respectively. As expected, we observe that Pg firstly increases as β increases,

but remarkably Pg decreases when β further increases, which is due to the trapping of local minima.

We further notice that, for a given fixed β, Pg after t = 105 iterations is higher than that after 103.

The MCMC simulation results are in good agreement with the theoretical predictions by CEL and

Eq. (86). These results suggest that given a random initial condition, the trapping of dynamics at the

local minima becomes more significant as the inverse temperature β increases after some specific

values, implying that it is more difficult to locate the ground states within a short period of time.

We show the time series of Pg in the insets of Fig. 24(c) and (d) to further investigate the trapping

of dynamics at the local minima, and we can see that Pg increases with t as expected. Nevertheless,

multiple jumps and plateaus are observed as Pg increases, suggesting that the local minima are trap-

ping the system and occupying some probability, but these trappings start to vanish at different time

steps t at which Pg starts to increase again. This phenomenon can be explained by the eigenvalues

of the transition probability matrixTβ. Note that the eigenvalues λi(β) of the local minima are close

to 1 and the value of λt
i(β) is sufficiently less than 1 only when t is sufficiently large, which can

stop the trapping of local minima. This also suggests that the values of λi(β) of the local minima

are affecting their ability in trapping the system, in which the values may depend on the network

topology of the CEL. The closer λi(β) is to 1, the trapping effect of the local minima is stronger

and, hence, by examining λi(β), one can estimate the characteristics of the system.

To further validate our theory, we show another instance of a 3−Sat problem in the Easy-Sat phase

having a simple CEL in Fig. 25, which is contrary to the cases we showed in the above. We can
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Figure 25. (a) The low-energy part of a less complex CEL for an instance of a 3−Sat problem with

α = 1 that is in the Easy-Sat phase. (b) The corresponding first ten eigenvalues λ1(β), . . . , λ10(β)

of the transition probability matrix Tβ, with different values of β = 1, 2, 10. (c) The corresponding

probability of finding the ground states, Pg, of the instances as a function of β, obtained by Eq. (86),

for t = 103 and 105 iteration steps, compared with the MCMC simulation results. Insets: The time

series of Pg.
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Figure 26. The sample averaged probability Pg of finding the ground states as a function of the

inverse temperature β, obtained by Eq. (86), for t = 104 and 105 iteration steps, compared with the

MCMC simulation results for (a) both CEL and FEL of the spin glass on random regular graphs

with N = 10 and f+ = 0.5, and (b) 3-Sat problems with N = 15 and α = 4.

see that in Fig. 25(b), for an instance without local minima, only the largest eigenvalue λ1 = 1 and

the next eigenvalues will not approach 1 as β increases, as shown in Fig. 25(b). Furthermore, as

shown in Fig. 25(c), we notice that Pg is a strictly increasing function with β; and the time series

of Pg is also strictly increasing with t without any jump and plateau, as shown in the inset. These
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results imply that the existence of local minima is the key to the trapping of the MCMC dynamics.

On the other hand, we also show the sample averaged results for both the theoretical predictions by

Eq. (86) and MCMC simulations in Fig. 26, showing that the sample averaged Pg exhibits similar

behavior to that we observed in the single instances, and the theoretical predictions obtained from

CEL, FEL and the sample averagedMCMC simulation results are in good agreement, including the

jumps and plateaus in the time series of Pg, and the drop of Pg with β, while the differences between

the MCMC simulations and the theoretical predictions may come from the mean-field nature of the

transition probability within the clusters in Eq. (86).

4.4.1 Implications for simulated annealing

Aside from revealing the non-equilibrium dynamics, the eigenvalues of the transition probabil-

ity matrix Tβ from the CEL also have implications for the importance of the cooling schedule in

simulated annealing (SA) (Kirkpatrick, Gelatt, and Vecchi 1983). SA is a physics-inspired meta-

heuristic algorithm to find the global optimal configuration of a system by gradually decreasing

the temperature. At each step, the SA heuristic compares the energies between the current variable

configuration s⃗ and the neighboring configuration s⃗′ after flipping one variable, respecting the

detailed balance condition, and the system is transiting to s⃗′ with probability e−β
(
E(s⃗′)−E(s⃗)

)
or else

staying at the current configuration. The temperature is decreasing throughout the iterating process

and, in general, it is believed that the system is converging to the global optimal configuration after

an extended iteration time.

Recall that as in Fig. 24(c) and (d), the system can identify the global minima from the local min-

ima when β is small, in which the differences among the eigenvalues are large enough that λ1 of

the global minima are much larger than the λi of the local minima. Nevertheless, the differences
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between the eigenvalues decrease as β increases, regardless of the initial condition, implying that

the global and local minima are similar in nature. Starting from a high temperature in SA, the

system is not in a randomly selected configuration at each cooling stage. Instead, throughout the

cooling process, the system is biased towards the global minima induced by the difference between

the largest eigenvalue λ1 and the other eigenvalues λi of the local minima, in which the difference

diminishes as the temperature decreases. This suggests that comparing with the fixed-temperature

non-equilibrium dynamics, SA is more effective in identifying the global optimal variable config-

uration. Nevertheless, if the system is trapped in a local minimum configuration, further cooling

in SA only lowers the transiting probability, which is unable to help the system escape from the

trapping. To escape from the local minima in the dynamics, one may only rely on an extremely slow

cooling schedule, which is computationally infeasible. Remarkably, since we are able to obtain the

optimal value of β when the probability Pg is maximum in the non-equilibrium dynamics, one can

design a cooling schedule based on this optimal β to boost the crossing of the energy barrier. For

instance, the cooling schedule can increase from β = 0 and stop at the optimal β for a long period of

time until a solution is found. Therefore, the transition probability matrix Tβ from the CEL and the

eigenvalue analysis we discussed provide a new set of tools, allowing us to study the trapping of

local minima in both the non-equilibrium dynamics and the dynamics in SA analytically, in order

to accelerate the energy barrier crossing.

4.4.2 Other applications revealing non-equilibrium dynamics of glassy systems

We remark that revealing the CEL and the non-equilibrium dynamics of a glassy system is not

limited to finding the probability of being in the ground states. Indeed, since the probabilities and

the energies of all states are known, one can measure any extra quantities in the non-equilibrium
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dynamics at finite temperature, such as the average energy and the magnetization of the system. In

particular, since all states ai within the cluster a have the same energy Ea and hence the probabilities

of being in these states are all identical, i.e. the probability being in each state within the cluster is

equal to Pa/na. This convenient property allows us to measure any physical quantities of a glassy

system simply by obtaining the expected value of the mean value of clusters. For instance, the

average energy of the system ⟨E⟩ can be found by

⟨E⟩ =
∑

i

PiEi =
∑

a

∑
ai

Pai Eai =
∑

a

PaEa. (90)

Taking magnetization as another example, the magnetization m can be evaluated by

m =
1
N

∑
i

Pi∥s⃗i∥ =
1
N

∑
a

∑
ai

Pai∥s⃗ai∥ =
1
N

∑
a

Pa

∑
ai

∥s⃗ai∥
na
=

1
N

∑
a

Pa
〈∥s⃗∥〉a , (91)

where ∥s⃗i∥ =
∑N

j=1 si
j and

〈∥s⃗∥〉a is the average value of ∥s⃗ai∥ of all states ai in the cluster a. There-

fore, the method of revealing CEL and the non-equilibrium dynamics not only aims at finding the

probability of being in ground states, but also able to access various physical quantities using the

probabilities of being at different clusters.

4.5 Partial coarse-grained energy landscape (PCEL)

For systemswith large variable sizeN, it becomes infeasible to compute the CEL of the system since

there are in total 2N variable configurations to examine. Instead of the complete CEL, we introduce

a method to obtain the partial-grained energy landscape (PCEL) for large systems, which focuses

on the configurations with low energies. In this method, variable configurations are sampled in

the MCMC simulations of the non-equilibrium dynamics at a given sampling inverse temperature
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(a) (b)

Figure 27. (a) An example of PCEL showing the low-energy part for a 3-Sat problem instance

with variable size N = 50 and α = 4, configurations are sampled with T = 105 at βs = 5 with

10 restarts. (b) The corresponding simplified PCEL which keeps only one of the shortest paths

between any two minima. The node size corresponds to the number of variable configurations

inside the clusters; the global and local minima are shown as squares and triangles respectively;

the red links correspond to the connections to the local minima.

βs for a given time steps T , then the sampling process is restarted with randomly selected initial

conditions for multiple rounds. All the sampled variable configurations are recorded and the PCEL

is constructed with these configurations, following the same procedures as in CEL. Thus, any spe-

cific part of the landscape can be extracted by choosing a suitable value of βs. For instance, with

moderately large βs, we can extract the low-energy part of the energy landscape.

Note that the PCEL is only an approximation of the energy landscape by MCMC simulations with

finite time T which can only sample a small fraction of all 2N configurations, and even the number

of configurations sampled can already be much larger than the number of configurations examined

for small systems we showed above. Moreover, some clusters of the same energy in the PCEL

may be contained in a larger cluster because some of the intermediate configurations between two

clusters can be unvisited in the MCMC simulation. An example of PCEL showing the low-energy
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Figure 28. The probability Pg of finding the ground state as a function of β for the 3-Sat problem

instance in which the simplified PCEL is shown in Fig. 27. The theoretical predictions are obtained

by Eq. (86) with the transition probability matrix from the simplified PCEL sampled with T = 105

at βs = 5 with 10 restarts, for t = 104 and 105 iteration steps, compared with the simulation results.

Insets: the time series of Pg, where the time t in the theoretical predictions are multiplied by the

factor ln
(

2N

n(s⃗PCEL)

)
where n(s⃗PCEL) is the number of variable configurations in the PCEL, in order to

rescale the size between the PCEL and the original system.

part for a 3-Sat problem instance with N = 50 is shown in Fig. 27(a). Since the glassy behaviors

of the non-equilibrium dynamics are mainly contributed by the global and local minima as we

discussed above, we further simplify the energy landscape by leaving only a single shortest path

betweenminima in the PCEL to obtain a simplified transition probability matrix T̃β and a simplified

PCEL as shown in Fig. 27(b). In our studies, we found that the results obtained by T̃β are similar

to the results without simplification.

We remark that the major advantage of analyzing the dynamics of the systems by PCEL is that

one can obtain the dynamics of the system at any temperature and for any arbitrarily long iteration

time that is out of the reach of simulations, by simply obtaining the PCEL with a single MCMC
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Figure 29. The sample averaged probability Pg of finding the ground state as a function of β, for the

3-Sat problems with N = 50 and α = 4, obtained by Eq. (86) with the transition probability matrix

from the simplified PCEL sampled with T = 105 at βs = 5 with 10 restarts, for t = 104 and 105

iteration steps, averaged over 50 realizations, compared with the MCMC simulation results. In-

sets: the time series of the sample averaged Pg, where the time t in the theoretical predictions are

multiplied by the factor ln
(

2N

n(s⃗PCEL)

)
where n(s⃗PCEL) is the number of variable configurations in the

PCEL.

procedure at a single sampling temperature βs. We show in Fig. 28 the non-equilibrium dynamics

of an instance of a 3−Sat problem with N = 50 and α = 4, which is obtained by Eq. (86) with

the transition probability matrix from the simplified PCEL shown in Fig. 27 sampled at a single

βs = 5. Since the number of variable configurations sampled in the PCEL, denoted as s⃗PCEL, is

just a small portion of all 2N variable configurations in the original system, the non-equilibrium

dynamics using the corresponding transition probability matrix would be much faster than that of

the original system as there are much fewer possible transitions between clusters. Thus, to compare

the theoretical predictions with the MCMC simulations, we rescale the time series of the theoretical

predictions by multiplying the time t by the factor ln
(

2N

n(s⃗PCEL)

)
. As we can see in Fig. 28, the theoret-

ical and simulation results are in good agreement for different values of β except when β is small,
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which is because the sampling of PCEL focuses on the variable configurations with low energies

and high-energy configurations are explored when β is small. Remarkably, as is the case in small

systems, the same phenomenon can be observed in the non-equilibrium dynamics obtained using

PCEL for large systems, in which: (1) Pg firstly increases then decreases as the inverse temperature

increases; and (2) multiple jumps and plateaus exist in the time series of Pg. We also show in Fig. 29

the corresponding sample averaged Pg against β, and we can see that similar behaviors are observed

as the case in the single instance. These results imply that the findings in small systems obtained

using the CEL can also be observed using the PCEL in large systems. This shows that CEL and

PCEL provide a new set of tools and a platform for revealing the non-equilibrium dynamics over

an arbitrary long time for combinatorial systems.

4.6 Limitations of the CEL and PCEL

Although in our example, the PCEL works very well in the cases of systems with N = 50, it might

not be the case in extreme large systems containing millions of variables. When the number of vari-

ables is large, the number of total possible configurations will be extremely large. In such cases,

even though the number of configurations sampled in theMCMC simulations is very large, it would

still be a very small portion of all total possible configurations. Thus the PCEL constructed would

only be a small part of the whole energy landscape and the non-equilibrium dynamics obtained

might not be representing the true system. To tackle this problem, one has to design a method to

create a PCEL that can represent the whole picture of the true energy landscape, which will be one

of the directions in our future studies.

Another disadvantage of our proposed methods is that the CEL and PCEL can only work on com-

binatorial systems with discrete energy functions. Note that to construct the CEL, one has to group
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the connected configurations with the same energy into the same cluster. Nevertheless, if the energy

function is a continuous function, then it is almost impossible to find two connected configurations

with the same energy and hence it is very difficult to construct a CEL with high size reduction

effect. Similarly, for any systems in which the variables are not discrete, it is also very difficult to

construct the FEL and CEL.

4.7 Summary

In this chapter, we introduced a method to reveal the complete energy landscapes of combinatorial

systems with small size, namely the coarse-grained energy landscape (CEL). This novel method

provides advantages not only in exploring the energy landscape, but also provides a new under-

standing of glassy systems. The innovative part of the method is that by obtaining the transition

probability matrix using the CEL of the system, we can obtain the non-equilibrium dynamics of

the system analytically at any arbitrary temperature for any arbitrary time steps, which is com-

putationally infeasible by MCMC simulations. On the other hand, to tackle the problem of too

many configurations in large systems, we propose a variant of the CEL approach to reveal the

partial coarse-grained energy landscape (PCEL) by single MCMC simulation at a single sampling

temperature, in which the same analysis as in the small systems can also be done.

In terms of providing new understanding, our method unveils the complete physical picture about

how glassy systems are trapped in local minima, including the property that the probability of

finding the ground states decreases as temperature increases, as well as the existence of jumps and

plateaus in the time series of the ground states probability. To conclude, our method contributes a

new set of tools to analyze the non-equilibrium dynamics of complex systems at any temperature

for any long period of time, allowing us to obtain new understandings and insights theoretically
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that existing methods are computationally unable to provide.
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Chapter 5: Conclusion

In this thesis, we applied knowledge and techniques from statistical physics to study two inter-

disciplinary problems. In particular, we studied the problem of selfish routing over optimized

transportation networks in Chapters 2 and 3, and we studied the problem of revealing the complete

energy landscape of disordered systems in Chapter 4.

In the first part of the thesis, we studied transportation systems in which some selfish users choose

alternative routes that minimize their own costs instead of following the optimal configuration of

paths suggested to them. We derived two theoretical two-stage message-passing frameworks by

employing the cavity method developed for studying spin glasses (Mézard and Zecchina 2002) to

study the impact and behaviors of selfish rerouting in the system. The frameworks are the two-stage

cavity method followed by probabilistic modeling, and the two-stage exhaustive cavity method.

The former approach captures the rerouting behaviors and impacts of the rerouting of selfish users

using a probability estimation in which the energy functions can be relatively simple in terms of

computational complexity. Therefore, the method is capable of studying systems of large size with

a good estimate of trends and features. On the other hand, the exhaustive cavity method derived

exhaustive energy functions which measure the detailed routing decisions of every user before and

after rerouting accurately, and thus can provide precise measurements of the impacts and behaviors

of selfish rerouting, as well as carrying out correlation analysis. Nevertheless, the computational

complexity is extremely high and only small systems can be studied. Therefore, we provide two

sets of tools that serve different needs, and it is a trade-off between system size and precision for

choosing which method to use.

Using both methods, we demonstrated how they can be applied to study the impacts of selfish
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rerouting on various groups of users, including the compliant users, selfish users and the whole

system. In particular, we showed that over uncoordinated transportation networks, a small fraction

of selfish users are beneficial to the whole system. Interestingly, we discovered that compliant users

always gain in the uncoordinated transportation network and selfish users may gain under some

conditions in the optimized systems. We also showed that the discrepancies between the results

obtained by the probabilistic modeling approach and the simulation results come from the highly

correlated routing behaviors between selfish users, which are assumed to be independent in the

probabilistic modeling approach. We remark that the cavity methods we presented are not limited

to considering two steps of dynamics; one can extend the frameworks by introducing more layers

of energy functions to fit the use of other problems. Furthermore, they can be generalized to study

iterative game-theoretical problems by deriving new mathematical models and the corresponding

energy functions.

Next, we extended this single round selfish rerouting problem into the scenario of multiple rounds

selfish rerouting, and this problem was studied via simulations. We showed that when the frac-

tion of selfish users and the vehicle density are small, the system can easily converge to its Nash

equilibrium after multiple rounds of selfish rerouting, in which the social cost is close to the global

optimum.

In the second part of the thesis, we focused on studies of the energy landscapes of glassy systems,

including the spin glasses and K−satisfiability problems. While various conventional approaches

omit some features of the energy landscape, such as the connectivity between configurations or

the dimensions of the configuration space are reduced, we proposed methods using the techniques

of grouping connecting configurations with the same energy to obtain the coarse-grained energy

landscape (CEL) for small systems and the partial coarse-grained energy landscape (PCEL) for



100

large systems. Such methods can completely reveal the landscape, showing the detailed connec-

tivity of each cluster and identifying the local minima. Furthermore, using the CEL and PCEL,

we derived the transition probability matrix analytically, allowing us to reveal the non-equilibrium

dynamics of glassy systems at any temperature and for any extended time that would be infeasible

via simulations. Additionally, we provided a new understanding of how glassy systems are trapped

by the local minima in the non-equilibrium dynamics. We found that below the suitable range of

temperature, the probability of finding the ground states decreased as the temperature further de-

creased. Remarkably, by revealing the whole non-equilibrium dynamics, we observed jumps and

plateaus in the time series of the ground states probability, which may be caused by the trapping

of local minima. We remark that the contribution of this work is not limited to providing new

physical pictures about K−satisfiability and spin glasses; more importantly, this research provides

a new set of tools to study complex disordered systems which can generate results and insights that

are currently computationally infeasible by simulations.

In conclusion, two interdisciplinary problems were studied in this thesis using the techniques and

knowledge developed in statistical physics. The cavity method, originally developed for studying

spin glasses, is employed in the first problem to reveal the impact of selfish rerouting in trans-

portation systems. In the second problem, we introduced a set of tools that can be used to study

complex disordered systems including spin glasses, and showed how the non-equilibrium dynam-

ics are trapped by the local minima, which can be applied to any combinatorial systems. All these

studies show how the techniques and knowledge from statistical physics can be broadly applied to

problems in different areas, and the newly developed results can also provide fresh understanding

in the conventional fields of physics.
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