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Highlight 

 Longer pause time is associated with more efficient problem-solving strategies.  

 Students with longer pause time take fewer steps to solve a problem. 

 Students with longer pause time complete more problems on their first attempt. 

 Students with longer pause time reset and reattempt problems less frequently.  

 Math knowledge, but not self-efficacy or anxiety, predicts strategy efficiency.  
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Abstract 

We examined the influences of pre-solving pause time, algebraic knowledge, mathematics self-

efficacy, and mathematics anxiety on middle-schoolers’ strategy efficiency in an algebra learning 

game. We measured strategy efficiency using (a) the number of steps taken to complete a 

problem, (b) the proportion of problems completed on the initial attempt, and (c) the number of 

resets prior to completing the problems. Using the log data from the game, we found that longer 

pre-solving pause time was associated with more efficient strategies, as indicated by fewer 

solution steps, higher initial completion rate, and fewer resets. Higher algebraic knowledge was 

associated with higher initial completion rate and fewer resets. Mathematics self-efficacy and 

mathematics anxiety was not associated with any measures of strategy efficiency. The results 

suggest that pause time may be an indicator of student thinking before problem-solving, and 

provide insights into using data from online learning platforms to examine students’ problem-

solving processes. 

  

Keyword: pause time, strategy efficiency, algebra problem-solving, online learning environment, 

metacognitive skills 
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Slow Down to Speed Up: Longer Pause Time before Solving Problems Relates to Higher 

Strategy Efficiency 

Efficient and flexible problem-solving is a primary goal in mathematics education 

(Common Core State Stands, 2010), and noticing mathematical structures is an important 

foundation for learning algebra (Kaput, 1998; Venkat et al., 2019). However, students struggling 

with algebra often do not notice the structures that afford efficient strategies (Carpenter et al., 

1980; Star & Rittle-Johnson, 2008). For example, 3(2+x) = 18 can be solved either by using a 

three-step standard strategy: 1) distribute 3 into the parentheses, 2) subtract 6 from both sides, 

and 3) divide both sides by 3; or a two-step more efficient strategy: 1) divide both sides by 3, and 

2) subtract 2 from both sides. Although the latter versus former strategy involves fewer steps and 

more simplified computations, it requires students to notice the multiplicative relation between 3 

and 18. Students rushing into the problem may apply the distribution procedure by rote (i.e., 

PEMDAS: Parenthesis, Exponents, Multiplication, Division, Addition, Subtraction) without 

noticing or leveraging the  relations between numbers. To better support the development of 

strategic problem-solving, researchers have examined how factors such as mathematical 

knowledge and affective dispositions influence students’ strategy selection and efficiency 

(Newton et al., 2020; Pajares, 1996; Ramirez et al., 2016; Star & Rittle-Johnson, 2008). We 

extend prior research by examining whether pause time before solving predicts strategy 

efficiency.  

1.1 Strategy Efficiency  

Strategy efficiency has been operationalized as selecting a strategy that uses the fewest 

steps and/or the computation that involves small, whole numbers rather than large numbers or 

fractions (Xu et al., 2017). Strategy efficiency is an important skill in mathematics because it 
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reflects students’ understanding of mathematical structures (Robinson et al., 2006; Venkat et al., 

2019), and solving problems efficiently allows students to reserve cognitive resources for 

challenging contents. It is hypothesized that the ability to use efficient strategies requires 

specialized mathematical knowledge (e.g., understanding of equivalence), and such knowledge 

may be more important than general cognitive factors (e.g., intelligence; Hoffman & Schraw, 

2010). Other researchers argue that affective factors, such as mathematics self-efficacy and 

anxiety, also contribute to students’ uses of efficient strategies, and thus should not be ignored 

(Mayer, 1998; Ramirez et al., 2016).  

Related to but distinct from efficient strategies, many students believe that mathematics 

problems should be solved quickly within five minutes (Schoenfeld, 1992). These kinds of 

beliefs about mathematics may contribute to students’ tendency to rush through problems rather 

than practice pausing, which may indicate thinking about the problem at hand. Some studies 

have shown a positive relation between pausing and mathematical performance (e.g., Paquette et 

al., 2014). Specifically, algebra students with long pause time between steps (≥ six seconds) tend 

to show improved learning in an online environment compared to those with short pause time (≤ 

five seconds). However, little is known about the impact of pause time on students’ strategy use 

in equation-solving.  

Here, we use pre-solving pause time (hereafter pause time)—the time between the start of 

a problem and students’ first action—as a proxy indicator of thinking before problem-solving. 

We examine the unique influences of pause time on students’ strategy efficiency within an online 

algebra game. In this game, students can reset and reattempt problems multiple times, and all 

their actions are time-stamped and recorded. Therefore, in addition to the traditional measure of 

strategy efficiency (i.e., the number of steps taken on a problem), we include two relevant 

This is the pre-published version published in Learning and Individual Differences, 
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measures of strategy efficiency—initial success of problem-solving and frequency of resetting 

problems—to further investigate its relation with pause time. In the following sections, we 

review the literature on the influences of pause time, mathematical knowledge, and affective 

dispositions on problem-solving strategies.   

1.2 Pause Time as a Proxy Indicator of Thinking Before Problem-Solving 

To apply efficient strategies, students need to notice the mathematical structure of 

problems, and inhibit applying standard procedures by rote. However, students often try to solve 

problems quickly without noticing important structures or implementing efficient strategies 

(Schoenfeld, 1992). A recent study indicated that fifth- and sixth-graders varied in whether they 

took the time to process and understand mathematical problems before solving, and this behavior 

was associated with more accurate judgement of problem-solving performance (García, 

Rodríguez, González-Castro, et al., 2016). Pausing, therefore, may support understanding of the 

problem, and help students suppress more automatic yet incorrect or inefficient strategies in 

favor of more efficient but not so obvious strategies. 

Metacognition refers to the knowledge of one’s own cognitive processes, and the ability 

to regulate and monitor the processes (Flavell, 1976). Some strategic regulation of behaviors, 

such as orienting to the task and planning the actions, reflect metacognitive skills and contribute 

to students’ success in mathematical tasks (Garofalo & Lester, 1985). For example, fifth- and 

sixth-graders who spent more time on a problem were more likely to solve the problem correctly 

(García et al., 2019), and they reported planning strategies to a greater extent than their peers 

who solved the problem incorrectly. Further, prompting students to think about what, when, and 

why certain strategies should be applied, improved ninth-graders’ mathematical learning in an 

online environment (Kramarski & Gutman, 2006). Similarly, fifth-graders who received an 
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intervention that involved understanding the problem and devising strategies showed 

improvement on problem-solving (Vula et al., 2017). Together, these studies suggest that 

spending time to understand the problem and devise a plan before solving may be a pathway to 

efficient problem-solving.  

We posit that pause time may be a proxy indicator of thinking about and planning for the 

problem at hand. Adults who paused longer prior to their first move in the Tower of Hanoi task 

(rearranging disks according to specified rules) completed the task with fewer moves, and they 

reported using that time for planning (Welsh et al., 1995). Similarly, students who spent more 

versus less time on developing plans prior to responding perform better on critical thinking tasks 

that involved hypothesis testing and argument analysis (Ku & Ho, 2010). Further, researchers 

have used the number and duration of pauses as indicators of students’ cognitive engagement in 

an online science intelligent tutoring system (Gobert et al., 2015). Similarly, in Cognitive Tutor 

Algebra, long pause time before solving or requesting support (≥ six seconds) was used as an 

indicator of thinking, whereas short pause time (≤ five seconds) was used as an indicator of 

guessing (Paquette et al., 2014). Even though longer pause time may indicate thinking and 

planning, and associate with more efficient strategies, it may also contribute to and extend the 

total problem-solving time, leading to longer time on a problem. Therefore, Li and colleagues 

(2015) accounted for students’ total problem-solving time by computing the percent pause time 

(i.e., pre-solving pause time / total problem-solving time), and found that longer percent pause 

time still significantly predicted more efficient strategies, as measured by the number of steps 

taken to solve a puzzle.  

Together, these prior studies demonstrate the importance of pause time on students’ 

problem-solving performance; however, they do not account for the potential influences of 
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knowledge and affective factors, which are known to predict strategy efficiency. Therefore, we 

simultaneously estimate the effects of pause time, mathematical knowledge, self-efficacy, and 

anxiety to examine their relative influences on students’ strategy efficiency. Further, we compute 

and use students’ percent pause time in the analyses to account for the potential individual 

variation in students’ total problem-solving time.  

1.3 Mathematical Knowledge 

To tailor strategies to a problem, students need to have the content knowledge—

knowledge of underlying concepts and procedures to carry out solutions (Star & Rittle-Johnson, 

2008). This association between knowledge and strategy use has been demonstrated across age 

groups and mathematics topics. For example, second-graders with low mathematics achievement 

tend to use one familiar strategy when solving arithmetic equations, whereas students with higher 

mathematics achievement show more variation in their strategy use, and are more likely to select 

efficient strategies to achieve the answer more quickly and accurately (Torbeyns et al., 2006). 

Similarly, middle-schoolers with higher versus lower mathematics achievement are more likely 

to use a strategy that involves fewer steps when solving algebraic equations (Newton et al., 2020; 

Wang et al., 2019). 

Beyond the correlational findings, the influence of knowledge on strategy use has been 

examined in experiments that aim to increase students’ algebraic knowledge. For example, after 

an instructional intervention that demonstrates multiple strategies of solving algebraic equations, 

sixth-graders are more likely to use more efficient strategies that involve fewer steps (Star & 

Rittle-Johnson, 2008). Although mathematical knowledge and strategy use seem to be tightly 

related to each other, they are only moderately correlated (r = .27; Xu et al., 2017). Students with 

the knowledge of multiple strategies still do not use the most efficient strategy frequently or 
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consistently, likely because the knowledge tends to precede the ability of implementing efficient 

strategies. This finding also suggests that other factors, such as students’ affective dispositions, 

may contribute to their strategy selection. 

1.4 Mathematics Self-Efficacy and Anxiety 

Students’ affective dispositions towards mathematics, including self-efficacy and anxiety, 

are associated with their general mathematics performance, and strategy efficiency specifically. 

Self-efficacy refers to an individual’s belief in their own ability to perform the behaviors that 

achieve a specific outcome (Bandura, 1977). Mathematics self-efficacy refers to the belief in 

one’s own ability to do and learn mathematics. Students with high mathematics self-efficacy tend 

to perform well in mathematics (Fast et al., 2010; Pajares, 1996). Mathematics anxiety, first 

introduced by Dreger and Aiken as number anxiety (1957), refers to the feelings of fear, tension, 

and apprehension when engaging with mathematics (Ashcraft, 2002). Students with higher 

versus lower mathematics anxiety tend to perform worse, especially on complex equations and 

problems (Ramirez et al., 2018; Wu et al., 2012). Although mathematics self-efficacy and 

mathematics anxiety seem to be related to each other, they capture distinct aspects of affective 

dispositions and are not mutually exclusive. For example, a student can have high mathematics 

self-efficacy but still suffer from high mathematics anxiety.    

Prior work suggests that students’ affective dispositions may influence their mathematics 

performance through learning approaches and strategy choices. One on hand, fifth- and sixth-

graders with higher versus lower mathematics self-efficacy tend to approach mathematical 

learning with the goal of a deep understanding; on the other hand, students with higher versus 

lower mathematics anxiety tend to approach mathematical learning with the goal of passing the 

course. This surface level approach to learning negatively predicts mathematics achievement 
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(García, Rodríguez, Betts, et al., 2016). Further, first- and second-graders’ strategy choice 

mediates the association between mathematics anxiety and achievement (Ramirez et al., 2016). 

Students with higher mathematics anxiety tend to use advanced retrieval-based strategies less 

frequently, leading to lower mathematics achievement.   

Focusing on strategy efficiency, students’ mathematics self-efficacy tends to be 

positively associated with strategy efficiency. For example, undergraduate and graduate students’ 

mathematics self-efficacy positively predicts equation-solving efficiency, as measured by 

accuracy and reaction time, above and beyond working memory capacity (Hoffman, 2010). 

Furthermore, increasing ninth-graders’ self-efficacy is related to more accurate and efficient 

mathematics problem-solving that involves fewer help-seeking behaviors (Bernacki, et al., 

2015). Conversely, students’ mathematics anxiety is negatively related to their strategy 

efficiency. For example, undergraduate students with higher versus lower mathematics anxiety 

tend to select less efficient strategies for addition problems (Ashkenazi & Najjar, 2018). The 

negative impact of mathematics anxiety is also observed in primary (Ramirez et al., 2016) and 

secondary (Passolunghi, et al., 2016) students’ approaches to calculations. Students with higher 

versus lower mathematics anxiety tend to be slower at written calculations and use fact retrieval 

less often.  

Together, these findings suggest that strategy efficiency is positively associated with 

mathematics self-efficacy (Bernacki et al., 2015; Hoffman, 2010) and negatively associated with 

mathematics anxiety (Ashkenazi & Najjar, 2018; Passolunghi et al., 2016; Ramirez et al., 2016). 

Given that mathematical knowledge, self-efficacy, and anxiety are known correlates of strategy 

efficiency, it is important to consider these factors simultaneously with pause time to estimate 

their unique relations with strategy efficiency. Doing so will allow researchers and educators to 
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identify predictors of strategy efficiency and inform instructional designs that support students’ 

problem-solving.   

1.5 The Current Study 

We examine the influences of pause time, mathematical knowledge, mathematics self-

efficacy, and mathematics anxiety on students’ strategy efficiency, as measured by solution steps 

(Figure 1a), initial success in problem-solving (Figure 1b), and resets (Figure 1c) in From Here 

to There! (FH2T). FH2T is an interactive game where mathematical terms are turned into digital 

objects that can be manipulated, and students transform starting expressions into specified goals 

(Figure 2). The data in the current study came from a larger Randomized Control Trial (RCT) 

testing the efficacy of FH2T (Chan, et al., 2021). Previously, we found that students who 

received FH2T showed improved mathematical understanding compared to students who 

received online problem sets with hints and immediate feedback. Going beyond the intervention 

effects, we focused on students in FH2T to examine their problem-solving processes and 

potential mechanisms of learning. Here, we used students’ mouse- and keyboard-action data 

within FH2T to investigate the influence of pause time on strategy efficiency. Strategy 

efficiency, rather than algebraic knowledge, was our focal outcome because we aimed to 

examine whether and how students’ pause time relates to their problem-solving. We asked 

whether students’ pause time, mathematical knowledge, mathematics self-efficacy, and 

mathematics anxiety predict (1) the number of steps they take to solve a problem, (2) their 

completion rate of problem-solving on the initial attempt, and (3) the number of times they reset 

and reattempt problems prior to completing the problem? 

 

This is the pre-published version published in Learning and Individual Differences, 
available online at: https://doi.org/10.1016/j.lindif.2021.102109



PAUSE TIME AND STRATEGY EFFICIENCY                          9 

 
Figure 1.  Conceptual models illustrating the research questions that test the effects of pause 

time, algebraic knowledge, mathematics self-efficacy, and mathematics anxiety on students’ 

solution steps (a; RQ1), initial completion rate (b; RQ2), and reset frequency (c; RQ3) 

 

 By addressing these questions, we extend prior research in two ways. First, we 

simultaneously compare the relative influences of students’ metacognitive (i.e., pause time), 

cognitive (i.e., mathematical knowledge), and affective (i.e., mathematics self-efficacy and 

mathematics anxiety) factors on their strategy efficiency. Second, we extend beyond solution 

steps and explore how student factors predict other aspects of strategy efficiency—specifically, 

students’ initial success in problem-solving and the number of resets prior to completing a 

problem.   

2 Methods 
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2.1 Participants 

The sample was drawn from a RCT conducted in Fall 2019, which aimed to improve 

students’ algebra learning through educational technologies (Chan et al., 2021). The students 

were recruited from 29 classrooms across six middle-schools in a large, suburban district in the 

Southeastern United States. In the RCT, 689 students were randomly assigned within classrooms 

at the student level to complete four 30-minute intervention sessions using FH2T (n = 348) or 

online problem sets (n = 341). Here, we focused on the students who used FH2T because FH2T 

recorded all student actions during problem-solving, providing detailed information on students’ 

pause time and strategy efficiency. The online problem sets presented students with textbook 

problems (e.g., 3(2+x) = 18) and students entered the answer in a textbox (x = 4); therefore, they 

did not provide the data for our research questions.  

Among the 348 students, we removed 45 students who did not complete the pretest, and 

18 students who made low progress in FH2T due to class scheduling constraints. Because the 45 

students did not complete the pretest, we could not compare their cognitive and affective 

characteristics to the final analytic sample. The 18 students excluded due to low progress did 

complete the pretest; their algebraic knowledge (M = 0.37) and mathematics self-efficacy (M = 

2.63) were descriptively lower than those of the final sample (algebra knowledge: M = 0.57; 

mathematics self-efficacy: M = 3.71), whereas their mathematics anxiety (M = 1.70) was 

descriptively higher than those of the final sample (M = 1.22). We discuss these differences in 

the Limitation and Future Directions section.  

The analytic sample included 285 students (11- to 13-year-olds); the majority were in 

sixth grade (97%), and the remaining in seventh grade (3%). In terms of the mathematics 

instruction level, 86% were in advanced classes, 9% in on-level classes, and 5% in support 
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classes. All participating seventh-graders were in support classes and learning sixth-grade 

content, suggesting that their mathematical knowledge might be comparable to that of sixth-

graders. Therefore, the seventh-graders were included in the analyses. Within the analytic 

sample, we received demographic information on 278 students from the school district. Of the 

278 students, 45% were female and 55% were male; 51% were above grade level in academic 

achievement. In terms of race/ethnicity, 52% were Asian, 38% were White, 5% were Hispanic, 

2% were Black, 1% were Native American, and 2% were Multi-racial. The sample affords 95% 

power to detect a small to medium effect of f2 ≥ .04 at p = .05. The conventional cut-offs for 

small, medium, and large effects are .02, .15, and .35, respectively (Cohen, 1992).   

This research was approved by the Institutional Review Board at a University in the 

Northeastern United States. This research involved typical educational practices and did not 

require parental consent. Parents received a letter about the research and were offered the 

opportunity to opt-out. No parents opted their child out of this study.    

2.2 Procedure 

The intervention study consisted of a 45-minute pretest, four 30-minute intervention 

sessions, and a 40-minute posttest within six weeks. All study assignments were administered 

online during mathematics instructional periods, and students worked individually using a 

device. The study instruction for all sessions was embedded in the assignments, therefore, 

teachers only needed to provide students the link and allocate time for students to complete the 

assignments. All students followed the same study protocol presented to them on their browsers. 

In FH2T, students could request hints to solve each problem; therefore, they could progress 

through the game without being stuck.       
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We used the mouse- and keyboard-action data recorded within FH2T and the pretest 

measures of algebraic knowledge, mathematics self-efficacy, and mathematics anxiety to address 

our research questions. The procedure of the RCT and results on the intervention effects are 

reported in Chan et al. (2021); thus, we only describe tasks relevant to the current study. 

2.3 From Here to There! (FH2T) 

In each problem of FH2T, students saw a starting expression and a mathematically 

equivalent goal. The objective was to transform the starting expression into the specified goal 

using gesture-actions, tapping or dragging that transforms expressions from one state to another. 

Students were encouraged to use efficient strategies by taking the fewest steps possible. They 

were not instructed to solve problems quickly or to take their time, providing an opportunity to 

examine individual differences in pause time and its relation with strategy efficiency.  

Figure 2 illustrates a FH2T problem with a series of steps—gesture-actions that lead to 

valid transformation—to reach the goal. In this example, students were to transform the starting 

expression, 7+2+10+8, to match the goal, 5+2+5+15 (Figure 2a). The student first added 7 to 8 

by dragging 7 on top of 8 (Figure 2b). Next, they decomposed 10 into 5 and 5 by using the 

keypad (Figure 2c). After, they commuted 5 by dragging it to the left of the expression (Figure 

2d). In this example, the student took three steps to reach the goal (Figure 2e): 1) dragging to add 

(2+10+15), 2) keypad to decompose (2+5+5+15), and 3) dragging to commute (5+2+5+15). 

They received a reward of three clovers for completing the problem using the minimum number 

of steps required to reach the goal (Figure 2f). On all problems, students could reset the 

expression and retry the problem multiple times; however, they were encouraged to use efficient 

strategies. Specifically, students could earn more clovers (i.e., a maximum of three) when they 
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use more efficient strategies; further the step count (in the bottom right next to the goal; Figure 

2) turns red when students’ steps exceed the minimum number required for the problem.  

 

 
Figure 2. A sample problem in From Here to There! (a) and a potential transformation process 

involving three steps (b, c, d) to reach the goal state (e, f).  

 

Because all student actions and the corresponding transformations of expressions were 

timestamped and recorded, we could systematically and quantitatively examine students’ 

problem-solving processes in ways not accessible in answer-based learning systems or paper-

and-pencil tasks. Furthermore, the problems in FH2T do not merely ask students to transform 

expressions into the simplest form. Instead, noticing the structures of the starting expression and 

the goal may help students efficiently reach the goal. Students could take any series of 

mathematically valid steps that link the starting expression and the goal (Figure 3). FH2T thus 

provided an ideal context for examining variation in strategy and process during algebraic 

problem-solving. 
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Figure 3. An illustration of three different series of steps between a starting expression 

(7+2+10+8) and its goal (5+2+5+15).  Each column shows a chain of mathematically equivalent 

states produced serially by each gesture-action. (a) An efficient equation-transformation strategy 

with three solution steps. (b) An inefficient equation-transformation strategy with five solution 

steps. (c) A strategy with a reset and six solution steps. 

 

FH2T was developed based on the Common Core State Standards for middle-school 

mathematics (2010) to improve students’ algebraic understanding. Topics, such as arithmetic 

operations, fractions, factoring, and distribution, were organized into a series of worlds, each 

containing 18 problems. Students started from simple topics and built up their knowledge and 

skills throughout the game. Prior work has demonstrated positive effects of playing FH2T on 
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elementary students’ mathematical performance (Hulse et al., 2019) as well as middle-schoolers’ 

equation-solving performance (Ottmar et al., 2015) and understanding of equivalence (Chan et 

al., 2021). 

In this study, all students started from addition, and worked their way through the 

arithmetic operations, and inverse operations. To help students learn the gesture-actions in 

FH2T, we interspersed training problems to provide just-in-time instruction on the gesture-

actions for arithmetic operations and mathematical properties. These training problems included 

videos demonstrating the gesture-actions and required only one or two steps to complete. In 

order to accurately measure students’ problem-solving strategies, our analyses focused on the 

non-training problems—the problems that did not include the demonstration videos and required 

three or more steps to complete. Students worked through FH2T at their own pace, and they 

completed an average of 35 non-training problems (SD = 18) across the four intervention 

sessions.  

To compare the strategy efficiency across students, we focused our analyses on the first 

20 non-training problems that were completed by 75% of the analytic sample (Table 1). The 

remaining 25% of the students completed at least 10 of these problems, providing some data to 

estimate the association between pause time and strategy efficiency. Instead of excluding 25% of 

the sample, we included all students in the analyses and used the number of non-training 

problems students completed as a covariate to account for the variation in students’ FH2T 

progress.  

 

Table 1.  

The starting expression and the goal of the 20 problems included in the analyses, and 

minimum number of steps required to transform the starting expression into the goal.  
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Problem Starting Expression Goal Min. Steps 

1 0 + 1 + 2 + 3 3 + 2 + 1 + 0 3 

2 7 + 6 + b + 10 12 + 11 + b 3 

3 3 + 3 + 3 + 3 4 + 4 + 4 5 

4 9 · 4 3 · 6 · 2 3 

5 6 · 10 2 · 15 · 2 3 

6 3 · 7 + 7 + 3 31 3 

7 8 + 4 · 4 · 8 136 3 

8 2 · 3 + 3 · 2 12 3 

9 5 + 2 + 2 · 5 17 3 

10 4 + 1 · 1 + 4 9 3 

11 1 · 6 · 6 + 1 37 3 

12 8 + 2  + 3 · 5c 15c + 10 3 

13 2 · a + 2 · b a + b + a + b 3 

14 120 5 · 12+12 · 5 3 

15 −14 + (−5) − (−18) −5 + 4 4 

16 6 − 2 + 7 11 · 1 3 

17 4 + 6 − 3 − 7 + 0 −10 + 0 + 10 3 

18 −14 + 16 −7 + 1 + 8 3 

19 15 − 25 + 8 + 2 10 − 10 3 

20 27 + 65 + 3 − 25 + 75 − 65  5 + 0 + 75 3 

Note: Min. Steps = the minimum number of steps required to transform the starting 

expression into the goal. 

 

2.4 Measures 

2.4.1 Focal Measures in From Here to There! 

FH2T logged all student actions in the game. The following four variables were recorded 

for FH2T problems. For each variable, we averaged the values across the completed problems to 

obtain the student-level data for analyses.     
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2.4.1.1 Pause Time (in Percent) 

We first computed the number of seconds students spent before taking their first step on 

each problem. This was the amount of time from when the problem first appeared on the screen 

to when students made their first expression transformation. Because the pause time varied 

across students and problems depending on problem complexities and we were interested in the 

amount of pause time relative to the total time on the problems, we followed Li and colleagues’ 

(2015) procedure to compute the percent pause time (i.e., pause time ÷ total time). As an 

example, the percent pause time in Figure 3a is 59.4% (20.551sec ÷ 34.583 sec). We used the 

percent pause time, hereafter pause time, across completed problems as a predictor in our 

analyses.  

2.4.1.2 Solution Steps  

The solution steps comprised the sum of all the steps students took to reach the goal on a 

problem. As an example, the students in Figures 3a, 3b, and 3c took three, five, and six steps, 

respectively. We used the average number of solution steps across the completed problems as the 

dependent variable for RQ1.  

 2.4.1.3 Initial Completion Rate  

 Students could transform and reset their expressions using the “restart” button as many 

times as they wanted prior to completing the problem. On each problem, we recorded whether 

students successfully transformed the starting expression into the goal on their initial attempt 

(i.e., without resetting the problem). As an example, the students in Figure 3a and 3b completed 

the problem on their initial attempt, whereas the student in Figure 3c reset and did not complete 

the problem on their initial attempt. We computed the proportion of problems students completed 

on their initial attempt and used it as the dependent variable for RQ2.   
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 2.4.1.4 Reset 

 Because students can reset the expressions as many times as needed during problem-

solving, we also computed the number of times students reset the expression on each problem. 

For example, the students in Figure 3a and 3b did not reset the expression, whereas the student in 

Figure 3c reset the expression once. We used the average number of resets across completed 

problems as the dependent variable for RQ3.   

         2.4.2 Pretest Measures 

Three pretest measures were included as predictors of strategy efficiency in FH2T.  

2.4.2.1 Algebraic Knowledge 

         Students’ algebraic knowledge was assessed with 11 items adapted from two validated 

measures (Rittle-Johnson, et al., 2011; Star et al., 2014). All problems were directly taken from 

the two measures. We edited the instructional texts of four items to improve the clarity of the 

instruction within the online platform. For example, the original instruction for an item (e.g., 

8+___=8+6+4) from Rittle-Johnson et al. (2011) was, “Find the number that goes in each box.” 

We edited the text to “Enter the number that goes in the box” so students know to input the 

answer into the textbox using their keyboard. The assessment measured various aspects of 

students’ algebraic knowledge, including balancing equations (e.g., 898+13 = 896 +___.), 

solving for a variable (e.g., 5(y−2) = 3(y−2)+8), and evaluating equation-solving strategies (e.g., 

Which would be the best way to start the problem 3(x+2) = 14? A. distribute first, B. divide by 3 

on both sides first, C. multiply by 3 on both sides first, or D. subtract 14 from both sides first). 

Each item was scored as correct (1) or incorrect (0), and the reliability of the items was fair, KR-

20 = .68. The average score on the assessment was included as a predictor in the analyses. 

2.4.2.2 Mathematics Self-efficacy 
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Students’ mathematics self-efficacy was measured with five items adapted from the 

Academic Efficacy subscale of the Patterns of Adaptive Learning Scales (Midgley et al., 2000). 

The original items were designed to measure students’ general academic efficacy (e.g., “I can do 

even the hardest work in this class if I try”). We adapted the items to focus on mathematics (e.g., 

“I can do even the hardest work in my math class if I try”). Students rated how often they felt 

like the way described in the statements from never (0), very rarely (1), rarely (2), often (3), very 

often (4), to always (5). The reliability of the items was α = .86, comparable to that reported by 

Midgley and colleagues (α = .82). The average rating was included as a predictor in the analyses. 

2.4.2.3 Mathematics Anxiety 

Students’ mathematics anxiety was measured with 13 items from the Math Anxiety Scale 

for Young Children–Revised (Ganley & McGraw, 2016). The items were designed to measure 

student perceptions of their own anxieties towards mathematics. A sample item was “I get 

worried before I take a math test.” Students rated how much they felt like the way described in 

the statements from No (0), Not really (1), Kind of (2), to Yes (3). The reliability of the items was 

α = .88, comparable to that reported in Ganley and McGraw (α = .87). The average rating was 

included as a predictor in the analyses. 

2.5 Analysis Plan 

Prior to addressing our research questions, we conducted descriptive and correlation 

analyses to examine the distribution of, and relations between, each variable at the student-level. 

To examine the effects of pause time, algebraic knowledge, mathematics self-efficacy, and 

mathematics anxiety on students’ solution steps (RQ1), we conducted an OLS regression model 

with pause time, algebraic knowledge, mathematics self-efficacy, and mathematics anxiety as the 

predictors, solution steps as the dependent variable, and completed problems as the covariate. To 
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further investigate these effects on students’ strategy efficiency, we repeated the regression 

model with students’ initial completion rate (RQ2) and reset frequency (RQ3) as the dependent 

variable in each model, respectively (Figure 1). All analyses were conducted with the lme4 

package (Bates et al., 2015) in R (R Core Team, 2020). 

3 Results 

3.1 Descriptive and Correlation Analysis 

 The descriptive analysis revealed that the values for all measures were widely distributed, 

indicating a wide range of performance levels in the sample (Table 2). The skewness and 

Kurtosis for each variable were well within the normality cutoffs, i.e., ±2 for skewness and ±7 

for Kurtosis (Byrne, 2010). On average, students paused for 26% (SD = 10%) of their total 

problem-solving time prior to taking their first steps; this is an average of 16 seconds (SD = 12) 

of pause time within 63 seconds (SD = 35) of total problem-solving time. The correlation 

analysis demonstrated that students’ algebraic knowledge was significantly correlated with all 

three aspects of their strategy efficiency—solution steps (p < .001), initial completion rate (p 

< .001), and reset (p < .001). These correlations were somewhat weaker but still significant after 

partialling out the number of FH2T problems students completed, ps < .001. Similarly, students’ 

mathematics anxiety was weakly correlated with solution steps (p = .046) and initial completion 

rate (p = .030), but these correlations were not significant when controlling for completed 

problems. Pause time was moderately correlated with the three aspects of strategy efficiency (ps 

< .001), and these correlations remained after controlling the number of completed problems (ps 

< .001).  
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Table 2. 

Descriptive statistics and correlations between measures at the student level (N = 285) 

Variable 1 2 3 4 5 6 7 8 

1. Completed Problems - - - - - - - - 

2. Pause Time (Percent)  .13* - -.53***  .31*** -.45***  .34***  .06 -.16** 

3. Solution Steps -.11 -.54*** - -.45*** .75*** -.26*** -.03  .10 

4. Initial Completion Rate  .67***  .32*** -.41*** - -.67*** .23***  .02  -.05 

5. Resets  -.15* -.46***  .76*** -.59*** - -.28*** -.08  .06 

6. Algebraic Knowledge  .28***  .36*** -.28*** .35*** -.31*** - .27*** -.36*** 

7. Math Self-Efficacy  .12*  .08 -.04  .09 -.10  .29*** - -.53*** 

8. Math Anxiety -.14* -.17**  .12* -.13*  .08 -.38*** -.54*** - 

Mean 18.73 26% 5.41 0.70 0.60 0.57 3.71 1.22 

Standard Deviation 2.41 10% 1.46 0.14 0.41 0.22 0.87 0.61 

Minimum  10.00 5% 3.00 0.30 0.00 0.09 1.00 0.00 

Maximum 20.00 74% 11.83 1.00 3.00 1.00 5.00 3.00 

Skewness -1.63 0.89 1.68 -0.33 1.82 0.07 -0.41 0.39 

Kurtosis 1.34 2.02 3.69 -0.17 5.78 -0.95 -0.41 -0.52 

Note: The values in the lower triangle represent the zero-order correlations. The values in the upper triangle represent 

the partial correlations controlling for completed problems. * p < .05; ** p < .01; *** p < .001 
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Table 3. 

 

Regression models predicting students’ solution steps, initial completion rate, and reset in FH2T. 

  Solution Steps Initial Completion Rate  Resets 

Predictors 𝛽 (SE) 95%CI 𝛽 (SE) 95%CI 𝛽 (SE) 95%CI 

  Completed Problems -.02 (.05) [-.13, .08]  .62 (.04)*** [.53, .70] -.06 (.05) [-.16, .05] 

  Pause Time -.50 (.05)*** [-.61, -.39]  .20 (.05)*** [.11, .28] -.40 (.06)*** [-.51, -.29] 

  Algebraic Knowledge -.10 (.06) [-.22, .02]  .13 (.05) * [.03, .22] -.17 (.06) ** [-.29, -.05] 

  Math Self-Efficacy .03 (.06) [-.09, .15] -.02 (.05) [-.12, .08] -.06 (.06) [-.18, .07] 

  Math Anxiety .01 (.06)  [-.11, .13] .03 (.05) [-.07, .13] -.09 (.06) [-.21, .04] 

  R2 .299 .515 .245 

* p < .05; ** p < .01; *** p < .001 
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3.2 Longer Pause Time was Associated with Fewer Solution Steps  

An OLS regression revealed that students with longer pause time completed problems 

with more efficient strategies that involved fewer solution steps, p < .001 (Table 3). In particular, 

a one standard deviation increase in pause time was associated with 0.50 standard deviation 

decrease in solution steps, 95%CI: [-0.61, -0.39]. Students’ algebraic knowledge (p = .092), 

mathematics self-efficacy (p = .586), and mathematics anxiety (p = .865) were not significantly 

associated with their solution steps. The model accounted for 29.9% of the variance in students’ 

solution steps.  

We checked the model assumptions by examining plots for linearity of the residuals 

versus fitted values, normality of residuals, homogeneity of the residual variance, and potential 

influential cases. A visual inspection of the plots suggested that the first three assumptions might 

not be satisfied; therefore, we log-transformed solution steps and repeated the analyses. Because 

the pattern of results remained after the transformation (i.e., only pause time significantly 

predicted solution steps), we reported the non-transformed results above to aid the interpretation.  

3.3 Longer Pause Time was Associated with Higher Initial Completion Rate 

An OLS regression revealed that students with longer pause time had a higher completion 

rate on their initial attempt, p < .001 (Table 3). A one standard deviation increase in pause time 

was associated with 0.20 standard deviation increase in initial completion rate, 95%CI: [0.11, 

0.28]. Students’ algebraic knowledge was positively associated with their initial completion rate 

(β = 0.13, 95%CI: [0.03, 0.22], p = .011), whereas students’ mathematics self-efficacy (p = .740) 

and mathematics anxiety (p = .606) were not. The model accounted for 51.5% of the variance in 

students’ initial completion rate. An examination of the model assumptions suggested that the 

model met the assumptions.  
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3.4 Longer Pause Time was Associated with Fewer Resets  

An OLS regression revealed that students with longer pause time reset problems less 

frequently, p < .001 (Table 3). In particular, a one standard deviation increase in pause time was 

associated with 0.40 standard deviation decrease in resets, 95%CI: [-0.51, -0.29]. Students’ 

algebraic knowledge was negatively associated with students’ reset frequency (β = -0.17, 95%CI: 

[-0.05, -0.29], p = .006), whereas students’ mathematics self-efficacy (p = .362) and mathematics 

anxiety (p = .176) were not. The model accounted for 24.5% of the variance in students’ reset 

frequency. An examination of the model assumptions suggested that the normality of residuals 

and homogeneity of residuals variance might not be satisfied; thus we log-transformed students’ 

reset frequency and repeated the analyses. Because the pattern of results remained after the 

transformation (i.e., both pause time and algebraic knowledge significantly predicted students’ 

reset frequency), we reported the non-transformed results above to aid the interpretation.  

4 Discussion   

  We set out to investigate the relations between students’ pause time as a proxy indicator 

of thinking before problem-solving and strategy efficiency in an algebra learning system. We 

found that longer pause time was associated with more efficient strategy use as indicated by 

fewer solution steps, higher initial completion rate, and fewer resets. Students’ algebraic 

knowledge was only weakly associated with higher initial completion rate and fewer resets; 

students’ mathematics self-efficacy, and mathematics anxiety were not significantly associated 

with their strategy efficiency above and beyond pause time and algebraic knowledge. The 

findings suggest that the relation between pause time and strategy efficiency may be robust and 

independent of factors previously identified in the literature. 

4.1 Pause Time is Associated with Strategy Efficiency in Problem-Solving 
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The current findings add to the literature by demonstrating that pause time is associated 

with strategy efficiency above and beyond knowledge and affective factors. In prior work, 

researchers have used pause time as a proxy indicator of thinking and planning (Gobert et al., 

2015; Paquette et al., 2014), and it significantly predicted strategy efficiency in problem-solving 

(Li et al., 2015). However, it remained unclear whether pause time was a unique and independent 

predictor of strategy efficiency or whether this association was influenced by students’ 

knowledge or affective dispositions. By testing the effects of pause time, algebraic knowledge, 

mathematics self-efficacy, and mathematics anxiety simultaneously, we found that students’ 

pause time was the only consistent predictor of strategy efficiency. Specifically, longer pause 

time was associated with fewer solution steps, higher initial completion rate, and fewer resets. 

The standardized beta coefficients and confidence intervals further revealed that these effects of 

pause time on strategy efficiency were moderate (Table 3), suggesting its potential importance in 

students’ problem-solving processes.   

    Extending previous studies (e.g., Hoffman, 2010; Newton et al., 2020; Passolunghi et al., 

2016; Ramirez et al., 2016), we found that students’ algebraic knowledge was only weakly 

associated with their initial completion rate and reset frequency, whereas students’ mathematics 

self-efficacy, and mathematics anxiety were not associated with the three measures of strategy 

efficiency in FH2T. Students’ algebraic knowledge was moderately correlated with the three 

aspects of strategy efficiency, and mathematics anxiety was weakly correlated with solution 

steps and initial completion rate (Table 2); however, when all the predictors were included in the 

models, these relations were attenuated. One potential explanation is that students’ knowledge 

and affective factors are moderately correlated with each other and they may have some shared 

variance in students’ strategy efficiency, leading to the non-significant results when they are 

This is the pre-published version published in Learning and Individual Differences, 
available online at: https://doi.org/10.1016/j.lindif.2021.102109



PAUSE TIME AND STRATEGY EFFICIENCY                          26 

tested simultaneously in one model. Further, these factors may potentially influence students’ 

strategy efficiency through pause time as students with higher algebraic knowledge or lower 

mathematics anxiety tend to pause longer prior to solving. The current data do not allow us to 

explore the potential pathways through which students’ knowledge, affects, and pause time 

influence strategy efficiency; however, they do demonstrate the importance of considering these 

factors simultaneously in one study.      

Overall, our results extend prior research in two important ways. First, above and beyond 

students’ knowledge and affective dispositions, pause time is significantly associated with 

strategy efficiency in mathematics problem-solving. The relation between pause time and 

strategy efficiency may be partly driven by the fact that both variables were measured in the 

same task context—FH2T. However, context alone cannot fully explain this relation as we also 

included the total number of completed FH2T problems in the analyses yet pause time remained 

a significant predictor of strategy efficiency. Second, even after accounting for the potential 

effects of student knowledge and affective dispositions, pause time is still moderately associated 

with aspects of students’ strategy efficiency, indicating its potential significance in students’ 

mathematics problem-solving. Together, the findings suggest that the relation between pause 

time and strategy efficiency may be meaningful and has implications for research and practices. 

4.2 Plausible Mechanisms for Pause Time and Strategy Efficiency 

         While the correlational findings do not allow causal inferences, they do suggest a link 

between longer pause times and more efficient strategies. Several plausible cognitive, 

metacognitive, and affective mechanisms could be at play (Cleary & Chen, 2009; Dinsmore et 

al., 2008; Montague et al., 2011). For instance, pause time may provide a window of opportunity 

for students to carefully read, understand, and identify the type of problem, and together these 
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behaviors may contribute to devising more viable strategies, and consequently increase students’ 

strategy efficiency. This hypothesis aligns with the findings that interventions on metacognitive 

skills improve students’ mathematics performance (Perels et al., 2005; Vula et al., 2017), 

providing students with opportunities to process and reflect on the problems improves their 

conceptual knowledge (González-Cabañes, et al., 2020), and adults report planning during pause 

time which leads to higher efficiency in problem-solving (Welsh et al., 1995). Our analyses also 

align with other researchers’ approach of using pause time as a proxy indicator of thinking and 

planning in online learning environments (Gobert et al., 2015; Li et al., 2015; Paquette et al., 

2014). 

Under this hypothesis, pause time may be a proxy of students’ metacognitive skills, and 

the variation in pause time may indicate individual differences in students’ thinking of their 

strategies, behaviors, and learning processes. Solving problems with efficient strategies requires 

students to monitor their knowledge and regulate their behavior (Caviola et al., 2017), and 

previous studies have reported consistent correlations between metacognitive skills and 

mathematics performance (e.g., García et al., 2019; Losenno et al., 2020). Further, prior research 

with a diverse sample of participants between the age of 10 and 30 indicated that participants’ 

age positively predicted their performance on the Tower of London (a variation of the Tower of 

Hanoi task), and the age-related gains were associated with maturational improvement on 

participants ability to control their impulses (Albert & Steinberg, 2011). If pause time reflects 

metacognitive skills, it may serve as a potential behavioral mechanism through which these skills 

influence mathematics problem-solving.  

Alternatively, pause time may not be an indicator of students’ metacognitive skills, but 

instead, it may reflect the influences of cognitive (e.g., knowledge, distractedness) and/or 
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affective (e.g., self-efficacy, anxiety) factors. For instance, students with higher algebraic 

knowledge may take their first step quickly, whereas students with higher mathematics anxiety 

may freeze up when they see the problem. Although possible, the data provided little support for 

these accounts. Specifically, students with higher algebraic knowledge or lower math anxiety 

tended to have longer pause time, and these correlations were weak to moderate (Table 2). These 

findings suggest that pause time may reflect skills or constructs other than those measured in the 

current study. Further, students’ average pause time was 16 seconds, which was longer than that 

of guessing or careless responding (Kong et al., 2007; Meade & Craig, 2012; Wise et al., 2009) 

yet shorter than that if students left their seat for breaks. Although the results suggest that 

students may be using pause time to understand the problem and plan their solutions instead of 

being distracted, we cannot rule out the possibility that students’ minds wandered briefly during 

pause time. However, if students were daydreaming or mind-wandering during pause time, we 

would potentially see a negative or no relation between pause time and strategy efficiency 

instead of a positive relation as reported in our study.    

The current study has implications for research and practices in mathematics teaching and 

learning. Our findings suggest that pause time may support uses of efficient strategies, and 

contribute to the efforts in delineating the relation between metacognitive skills and mathematics 

problem-solving. Future studies can incorporate assessments of metacognitive skills to directly 

measure their association with pause time. Providing explicit instructions that minimize mind-

wandering, video-recording students’ behaviors during the study sessions, and including talk-

aloud protocols that ask students to explain their problem-solving processes may reveal the 

extent to which students plan for, think about, and engage with the problems during pause time. 

Further, examining students’ expression transformation processes more deeply by coding the 
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types of steps taken and the mathematical properties applied may reveal potential pathways 

between pause time and strategy efficiency.  

4.3 Limitation and Future Directions 

This study had several limitations. First, the analyses focused on a subset of students 

within a larger RCT and a subset of FH2T problems that required three or more steps. Although 

only 20 problems were included in the analyses, they covered a range of difficulties and were 

designed to prompt variations in students’ strategy efficiency. Further, due to the specific 

teachers who responded to our recruitment and dedicated instructional periods for the study, the 

sample comprised a higher number of Asian students and students in advanced math classes. In 

fact, students who made little progress in FH2T and thus were excluded from the analyses have 

descriptively lower algebraic knowledge and mathematics self-efficacy, and higher mathematics 

anxiety compared to the analytic sample. Therefore, the final analytic sample might not be 

representative of other students in the district or the populations in the State or the U.S. Still, 

among our relatively high-performing and homogenous sample, we observed large variations in 

students’ behaviors in FH2T, algebraic knowledge, mathematics self-efficacy, and mathematics 

anxiety, and found significant associations between these measures. Future work should replicate 

these findings in other learning platforms, and with more problems, additional covariates (e.g., 

processing speed, general reasoning ability), and more diverse samples. 

Next, since the RCT was conducted in the classroom, the fidelity of implementation of 

the students relied on teachers allocating classroom time for the study. However, because the 

study took place between October and December of 2019 (right before the holiday break), 

several teachers did not provide adequate class time for students to complete all the sessions. 

This resulted in a portion of students who did not engage with the game for very much time, 
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contributing to variation in student progress within FH2T. To account for this variation, we 

included the number of completed problems as a covariate in all analyses. Although the sample 

size was constrained by the fidelity of implementation, the analytic sample comprised 82% of the 

larger sample and had adequate power to detect effects. Further, the study was conducted in a 

more ecologically valid context, providing some evidence for the association between pause time 

and strategy efficiency in a classroom setting.  

The results presented here, although significant, may not generalize to problem-solving in 

other contexts and do not provide insights into how longer pause time related to higher strategy 

efficiency. Future directions include replicating these findings with other platforms, and 

implementing other research methods, such as observations and talk-aloud protocols, to delineate 

plausible mechanisms underlying this association. The log data within FH2T also provides 

opportunities to explore the relations between students’ pause time and other aspects of their 

problem-solving behaviors. For example, one potential mechanism through which pause time 

impacts strategy efficiency is through students’ first step of problem-solving. Specifically, longer 

pause time may be associated with a more productive first step that leads students closer to the 

goal, and a productive first step may set students up for using a more efficient strategy.  

Finally, another future direction is to experimentally test the effects of enforcing pause 

time by prompting students to plan out their strategy and think about their solutions before 

problem-solving. If the experimental findings align with the current results, it may be beneficial 

to encourage students to pause and think before solving problems. Teachers may also consider 

encouraging students to take time planning out their strategy to improve strategy efficiency. 

4.4 Conclusion 
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An identified challenge in mathematical cognition research is how to adequately measure 

students’ thinking process and behaviors during problem-solving (García, Betts, et al., 2016). As 

Wilson et al. (1993) wrote, “Technology can be used to enhance or make possible exploration of 

conceptual or problem situations.” Technologies like FH2T allow students to explore 

mathematics problem-solving and researchers to examine students’ strategy efficiency. 

Implications for research and practice are to move beyond the correctness of student answers, 

and leverage data within technologies to examine and promote the flexibility and efficiency in 

students’ problem-solving. The current study is our step towards investigating students’ problem-

solving process beyond correctness.  

This study contributes to research on the individual differences of learning dispositions 

and behavioral processes as well as how these differences influence mathematics problem-

solving strategies. If pause time predicts strategy efficiency, it warrants further investigation to 

identify the underlying mechanisms of this relation. Educators and developers of instructional 

materials would benefit from a deeper understanding of the effect of pause time on students’ 

thinking, learning, and performance. The findings from the current study suggest that longer 

pause time before solving problems is related to the use of more efficient strategies, providing 

some validity to the paradox that sometimes it is better to “slow down to speed up.”  
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