
 

 

 

 

  

Abstract— Distance running related injuries are common, and 

many ailments have been associated with faulty posture. 

Conventional measurement of running kinematics requires 

sophisticated motion capture system in laboratory. In this study, 

we developed a wearable solution to accurately predict lower 

limb running kinematics using a single inertial measurement unit 

placed on the left lower leg. The running data collected from 

participants was used to train a model using long short-term 

memory (LSTM) neural networks with an inter-subject 

approach that predicted lower limb kinematics with an average 

accuracy of 80.2%, 85.8%, and 69.4% for sagittal hip, knee and 

ankle joint angles respectively for the ipsilateral limb. A 

comparable accuracy range was observed for the contralateral 

limb. The average RMSE (root mean squared error) of sagittal 

hip, knee and ankle were 8.76o, 13.13o, and 9.67o respectively for 

the ipsilateral limb. Analysis of contralateral limb kinematics was 

performed. The model established in this study can be used as a 

monitoring device to track essential running kinematics in 

natural running environments. Besides, the wearable solution 

can be an integral part of a real-time gait retraining biofeedback 

system for injury prevention and rehabilitation.  

I. INTRODUCTION 

Distance running is a popular form of exercise but running 

related injuries are very common. Up to 79% of regular 

runners incur an injury annually, and these injuries may be 

related to faulty running kinematics. For example, 

patellofemoral pain, a common musculoskeletal condition in 

distance runners, has been associated with excessive hip 

adduction, overstride (i.e., knee hyperextension upon landing) 

and a rearfoot strike pattern [1]. Analysis of lower limb 

kinematics can be useful for injury prevention and 

rehabilitation by identifying faulty running kinematics and gait 

retraining, which has been reported to be an effective method 

to correct running biomechanics and improve symptoms 

related to running [2]. Traditionally, measurement of running 

kinematics requires motion capture (MoCap) system, which is 

expensive and impractical to use in outdoor environment. With 

the recent advancements in sensor technology, inertial 

measurement units (IMUs) have become viable tools for gait 

analysis in natural running environments. 

 

 Previous studies have used IMU sensors to develop various 

machine learning models to study distance running. A model 

proposed in one of these studies can classify performance 

levels of runners and concurrent prediction of biomechanical 

parameters using convolutional neural network (CNN) and 

multilayer perceptron (MLP) model architectures [3]. In 

another study, data from three IMU sensors were used to train 
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an artificial neural network (ANN) that could predict knee 

kinematics and vertical ground reaction force (GRF) [4]. CNN 

model trained on acceleration data from five IMUs has been 

used to estimate anteroposterior and vertical GRFs [5]. To 

enhance user friendliness, recent studies attempted to 

minimize the number of IMU. For example, the feasibility of 

ipsilateral limb prediction has been demonstrated with an 

LSTM model for multi-joint angle estimation with a single 

IMU sensor (i.e., two sensors are required for bilateral limb 

kinematics tracking) [6]. There are a few studies that have 

proposed models capable of predicting lower limb kinematics 

for the contralateral limb (cross-leg kinematics) with an 

acceptable accuracy and minimal error. For instance, cross-leg 

kinematics estimation with a CNN model using an IMU placed 

on the right tibia, exhibited an accuracy ranging from 78.4% 

to 93.6% [7]. 

 

 In the present study, we aim to develop a solution to predict 

lower limb running kinematics using a single IMU placed on 

the left lower leg (inferior to the tibial tuberosity) with a deep 

learning model based on LSTM architecture for both 

ipsilateral and contralateral limbs. 

II. METHODOLOGY 

A. Participants 

19 healthy recreational runners (ten male and ten female 

participants; age: 30.4 ± 7.1 years; height: 1.74 ± 0.10 m; 

weight: 77.5kg ± 16.0 kg) were recruited in this study. 

Participants were recreational runners with a weekly mileage 

greater than 12 km. Those who had reported any running 

related injury in the past 6 months or had any previous lower 

limb surgeries were excluded. The experimental procedures 

were reviewed and approved by the Human Research Ethics 

Committee, Western Sydney University (Reference number: 

H14164). Each participant provided written consent prior to 

the tests [8]. 

B. Instrumentations 

One OPAL sensor (APDM Wearable Technologies Inc., 

Portland, United States of America) was placed at the inferior 

to the tibial tuberosity of the participants. Using this sensor, 

data was captured, including acceleration and anatomical 

angles of the lower limb, at a sampling rate of 128 Hz. The 

sensor contained an accelerometer with a measurement range 

of ± 16 g, a gyroscope with a measuring range of ± 2,000 

degree/s and a magnetometer with a measuring range of ± 

0.0008 Tesla. The data collected by the accelerometer and the 

Daniel H.K. Chow is with the Department of Health and Physical 

Education (HPE), The Education University of Hong Kong (e-mail: 

danielchow@eduhk.hk). 
Ben Fuller is with the School of Health Sciences, Western Sydney 

University, Australia (e-mail: 15107943@student.westernsydney.edu.au). 

Roy T. H. Cheung is with the School of Health Sciences, Western Sydney 
University, Australia (e-mail: roy.cheung@westernsydney.edu.au). 

Tracking Bilateral Lower Limb Kinematics of Distance Runners on 

Treadmill Using a Single Inertial Measurement Unit 

Yuvraj Patra, Qi Liu, Rosa H. M. Chan, Daniel Thomson, Daniel H.K. Chow, Ben Fuller,  

Roy T.H. Cheung 

This is the pre-published version.



 

 

 

 

gyroscope were further used for data processing. Additionally, 

a markerless MoCap system (Vicon, Oxford, United Kingdom; 

Theia Markerless, Ontario, Canada) was used in this study. The 

system contained 8 video cameras sampling at 100 Hz. It has 

been reported to be a reliable and valid method to accurately 

measure similar gait kinematics in comparison to marker-based 

motion capture methods i.e., current gold-standard [9]. For this 

study, the focus was to estimate the lower limb kinematics 

using a single IMU positioned on the left lower leg (inferior to 

the tibial tuberosity)(optimal placement position as per 

previous studies) [10] and compare them against measurements 

made by the MoCap system to evaluate our predictions. 

C. Experimental procedures 

 Prior to running on the treadmill, participants completed a 

short warm-up which included two sets of 10 repetitions of 

standing calf raises, air squats, forwards and sideway leg 

swings. Each of them then went through a static calibration 

process by standing still for 5 seconds, and the foot placement 

was standardized using an APDM plastic marker on the 

motionless treadmill. This became a point of reference for the 

static posture of the participants. The participants started the 

treadmill, accelerated to a set speed, and ran at that speed for a 

duration of 30 seconds before stopping. They repeated this 

process twice at 4 different speeds of 9, 10, 11 and 12 km per 

hour, with the order of the speeds being random. To maximize 

the variability of data, participants data was collected from 

both MoCap and IMU at each speed, resulting in eight 

separately recorded blocks having static, accelerating, and 

known speed data for each participant [8]. 

 

D.  Data Processing 

 There were 6 types of data used from the data collected by 

the IMU sensor. These include data collected for each 

coordinate axis (x, y and z) for the accelerometer and the 

gyroscope. The data collected by the MoCap sensor (30 

seconds of running data before stopping) was resampled from 

100 Hz to 128 Hz (higher frequency of IMU sensor) using 

interpolation, to match the size of the data collected by the 

IMU. This helped create consistent and well-mapped datasets. 

Data collected from all the participants at all speeds was 

aggregated and saved in distinct repositories to allow each 

joint plane angle to be trained individually with the proposed 

deep learning model.  

 

E. Deep Learning Model 

The IMU sensor collects timeseries data which is sequential 

in nature. This study proposes a deep learning model using 

LSTM (Long short-term memory) neural networks (a type of 

RNN), owing to its ability of remembering long-term 

dependencies [11]. The proposed model consists of an input 

layer (for 6 IMU input features), 1 hidden LSTM layer (using 

tanh activation function), followed by 1 hidden Dense layer 

and finally, 1 output Dense layer (both with a linear 

activation). It uses mean squared error (MSE) metric as the 

loss function and the standard Adam optimizer for model 

compilation. Min-Max normalization method was applied to 

the input features to improve training, ensure faster 

convergence of the model, and prevent the model from 

overfitting. The IMU data was normalized and used as input 

features for the model to make predictions of the joint angles 

for ipsilateral and contralateral lower limbs. As shown in 

Figure 1, the joint angle output at time t was used for predicting 

the output at time t+1, in addition to the normalized IMU input 

features entering the LSTM at time t+1. 

  

Figure 1 Schematic diagram of the experimental setup showing data collected from IMU sensor processed by LSTM Model for joint angle prediction. 6 input 
features (acceleration (x, y, z) and gyroscope (x, y, z)) are used for joint angle prediction. The notation xt and yt denotes the preprocessed IMU input data and 

joint angle prediction output at time t respectively. The figure shows how output at time t affects the result at time t+1 since it is used as an input to the LSTM 

in the subsequent step. 
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TABLE I.  RMSE, NRMSE, AND R-SQUARED VALUES OF EACH JOINT ANGLE FROM INTER-SUBJECT ANALYSIS 

F. Model Evaluation 

This study used root mean squared error (RMSE), 

normalized root mean squared error (NRMSE), and R-

squared (R2), to quantitatively measure and compare the 

prediction of joint angles for ipsilateral and contralateral 

lower limbs. RMSE quantifies the error and R-squared 

measures the goodness of fit in the prediction of lower limb 

kinematics. For inter-subject analysis, the model was trained 

separately for each joint angle plane using the preprocessed 

datasets. Data were split into 80% training and 20% testing, 

and the training data were further split into 80% training and 

20% validation for 5-fold cross-validation (model fitted 5 

times). Subjects were separately selected for training and 

testing. Hyperparameter optimization was performed using 

Grid Search 5-fold (k-fold) cross-validation method and 

scored using the root mean squared error to identify the 

optimal hyperparameters for the model. The hyperparameters 

tuned included the number of neurons in each layer (units), the 

learning rate of the model, and the dropout. 

 

The hyperparameters and their respective search spaces 

were as follows: 

• Units: [32, 64, 128] 

• Learning Rate: [0.0001, 0.00001, 0.000001] 

• Dropout: [0.0, 0.1, 0.2] 

 

Besides these model hyperparameters, different lengths of 

sequence history (or timesteps) of IMU data were tested to 

check the effect on model performance during cross-

validation. The range of timesteps tested was 16 to 64 

timesteps in steps of 16. Since all the data was resampled to 

128 Hz, this translated into a time sequence history ranging 

from 125 milliseconds to 500 milliseconds in steps of 125 

milliseconds (4 possible values). The optimal model 

hyperparameters and the optimal sequence history length were 

identified and used to evaluate the model on the testing dataset 

for each joint angle plane. This method of model evaluation 

helped reduce bias and make the model robust.  

 

III. RESULTS 

Using data from the IMU sensor at left lower leg, the LSTM 

model was able to predict lower limb kinematics for both 

ipsilateral and contralateral limbs. The joint angles predicted 

by the proposed model were compared against the ground truth 

kinematics obtained from the MoCap system.  

This study focusses on the prediction of sagittal plane 

kinematics for hip, knee, and ankle joints. Although attempts 

were made to predict frontal and transverse plane kinematics, 

the placement of the left lower leg was insufficient since the 

model did not yield convincing results. For the sagittal plane 

kinematics prediction, 30-second running data was taken 

before stopping across all 4 speeds from all subjects for each 

joint angle plane and a 5-fold Grid Search cross-validation 

method of evaluation was adopted. Optimal model 

hyperparameters and sequence length were identified for each 

joint angle plane. The best estimator was then used to make 

predictions on the testing data, and the evaluation metrics were 

calculated and tabulated in Table 1. As shown Table 1, the 

average RMSE values of sagittal hip, knee and ankle were 

8.76º, 13.13º, and 9.67º respectively for the ipsilateral limb and 

8.75º, 18.14º, and 9.21º respectively for the contralateral limb. 

 

IV. DISCUSSION 

     Injuries related to faulty running kinematics can have 

detrimental effects on the health and ability of runners. They 

are evidence to why the study of running kinematics is of 

importance. This study aimed at predicting lower limb 

kinematics bilaterally using data from a single IMU sensor 

placed on the left lower leg. This was achieved using an LSTM 

model. The model was able to make predictions of sagittal 

joint angles with an average accuracy of 80.2%, 85.8%, and 

69.4% for hip, knee and ankle joints respectively for the 

ipsilateral limb, with a similar range of accuracy for the 

contralateral limb. Comparable models have achieved a 

similar accuracy [6][7]; however, this study was a novel 

attempt at predicting lower limb kinematics of both ipsilateral 

and contralateral limbs (bilateral) with a single IMU sensor. 

 

Major biomechanical difference between novice and 

experienced runners is focused on kinetics (e.g., joint 

moment), rather than kinematics parameters, which is 

supported by both cross-sectional [12] and longitudinal 

studies [13]. Therefore, our solution can be translated to track 

running kinematics in untrained users. However, there are 

distinctive running kinematic features among elite runners 

[14], which is a possible limitation to our solution. Since there 

is an association between running kinematics and age [15], 

the model may not be generalized for older runners either. 

Therefore, in future studies, a larger participant group with a 

wider variety of demographic features needs to be recruited 

for the study.  

 

With the help of our model, lower limb kinematics can be 

monitored by running coaches in real-time, prevent injuries 

by monitoring the joint angles and make sure that runners do 

not exceed specified thresholds that can lead to injuries, 

 

Joint Angle 

Ipsilateral limb Contralateral limb 

RMSE( o) NRMSE(%) R-squared RMSE( o) NRMSE(%) R-squared 

Sagittal Hip 8.76 12.53 0.802  8.75 15.60 0.805  

Sagittal Knee 13.13 12.35 0.858 18.14 18.97 0.704 

Sagittal Ankle 9.67 16.12 0.694 9.21 23.01 0.663 
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through gait retraining. This study could help develop a 

biofeedback device that can alert runners in real-time during 

infield training and become an essential technology for 

modifying an athlete’s biomechanics. 

V. CONCLUSION 

     This study proposed a novel method of bilateral lower limb 

kinematics prediction with an LSTM model using a single 

IMU sensor data from the left lower leg, with an average 

accuracy of 80.2%, 85.8%, and 69.4% for sagittal hip, knee 

and ankle joint angles respectively for the ipsilateral limb, and 

a similar accuracy range for the contralateral limb. The 

average RMSE values of hip, knee and ankle were 8.76º, 

13.13º, and 9.67º respectively for the ipsilateral limb, and 

8.75º, 18.14º, and 9.21º respectively for the contralateral limb. 

These results show that the proposed model can predict lower 

limb kinematics bilaterally.  Therefore, this model can be 

employed as a monitoring device to track essential running 

kinematics in natural running environments and even become 

an integral part of real-time gait retraining biofeedback 

system for injury prevention and rehabilitation. 
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