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Abstract

This study aims to develop a robust image completion method with enhanced structure-

preservation ability and an in-depth understanding of the contents of images. Current patch-

based image completion methods transfer information from the known region into the hole.

This study enhanced the transfer process with a system that can capture multiscale structures

and expand the information sources with an object database and an efficient retrieval method.

The technique developed in this study can be applied to other image editing tasks that required

the transfer of image information. This study has three main contributions.

This study started with improving the structure information transfer in the repair process.

The first contribution focuses on the reconstruction of structures in the process of repairing

damaged images. We designed a Dynamic Patch System (DPS) for implicit enhancement of

the structure preservation ability of the patch-based image completion framework. It enables

the use of adjustable patches to capture various scale structures in images. In addition, this

DPS attempted to balance the computational workload in various image pyramid levels. Our

approach and previous methods are applied to damaged images with complex structures. The

results show that our approach can repair images with decent and connected structures with

better run-time performance.

The image completion is essentially a process of information transfer. Image editing tasks

that can be abstracted as an information transfer process can be converted into an image com-

pletion task. The second contribution is the adoption of the image completion approach with

the DPS to the task of shadow removal. We propose a new perspective on the task of shadow

removal in which shadowed images are impaired in their illumination fields. Based on this per-

spective, the task of shadow removal can be converted to a task of image completion. We first

decomposed the shadowed images into their illumination and reflectance, which are processed

separately to avoid interference. The illumination is repaired with a patch-based “search and

lighten” iteration to transfer light information from the lit region to the shadow region. The

reflectance is optimized with our image completion approach using the DPS. The repaired il-

lumination and optimized reflectance are then combined to generate shadow-free images. The

results generated with this approach display better color consistency than those generated with
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previous methods and are considered more visually pleasing in a user study.

Previous image completion methods assume that information transfer within the image is

sufficient to repair the damaged region. But this assumption may be violated when unique

structures exist, such as object contours that cannot be duplicated in many situations. The

third contribution of this study is the introduction of a novel shape descriptor called Directed

Chords Pattern (DCP) to repair object contours by referring to an external shape database. Our

DCP shape descriptor uses the chord distribution at each sampling point to extract a shape’s

features and provides a similarity metric between shapes. Our shape matching method with

DCP achieves an accuracy of 88.67% in benchmark testing with the MPEG-7 dataset and is

competitive with previous methods while allowing a more flexible computational workload.

We provide examples in which we repair horses in images. Equipped with the Weizmann

horse database, our approach can generate reasonable structures for damaged horse contours

according to the estimated transformation based on the DCP, which is challenging with existing

completion methods.

The image-repair technique presented in this study has enhanced structure-preservation

ability implicitly with DPS and explicitly with DCP. The application scene of DPS is extended

to the task of shadow removal. The DPS may be adapted to arbitrary patches other than square.

The DCP shape descriptor proposed in this study can be further improved and applied to other

tasks in the future. For example, it can be applied to the task of gesture recognition.

Keywords: Visual Completion, Image Completion, Structure Preservation, Dynamic Patch

System, Directed Chords Pattern, Shadow Removal, Color Consistency.
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1 Introduction

The visual system is one of the most important parts of the central nervous system. Visual

perception is thought to be an advancing function in biological evolution. Reflected light is

captured by optical structures (such as the eyes and retina), and organisms receive visual infor-

mation by processing these optical signals into electrical signals. Organisms can use this visual

information to accomplish various kinds of complex tasks in physical environments, such as

sensing the surroundings and objects, estimating the distance between viewed objects and guid-

ing body motions. The human brain processes visual information efficiently for learning and

recognition, and it can reason based on visual information and make interpretations based on

visual perception. Although our knowledge of the mechanism of the human brain and Hu-

man Vision System (HVS) is incomplete, research shows that the process of visual perception

includes the reconstruction of objects. One of the clearest and most convincing pieces of evi-

dence lies in the visual completion, which refers to the perceptual filling of the occluded parts

of objects. Figure 1 provides several examples of this phenomenon. Figure 1(a) is the famous

Kanizsa triangle. Two triangles are perceived, although only line segments and incomplete

circles are explicitly shown in the visible region.

Figure 1: Examples of the visual completion ability of the human vision system. (a) Kanizsa

triangle. (b) Ehrenstein illusion of a bright disc. (c) A square can be viewed in the center. (d)

Two cylinders can be recognized even though one of them is occluded.

The visual completion ability of our vision system plays an important role in object recog-

nition. The light reflected from objects is partially captured by our eyes because we are only

able to perceive an object from a single view, which suggests that only part of an object’s in-

formation is obtained. However, given only partial information of the object (for example, the
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silhouette or only part of it), human beings can easily perceive objects as a complete whole.

Because visual completion is critical in the process of recognition, computer scientists have

devoted considerable effort to simulate this function in computer vision systems to pursue high

intelligence. Many studies in the field of computer vision are conducted on the topic of repair-

ing damaged images. Figure 2(b) is a typical example of image completion. Given an image

with a damaged area, the completion task is to repair the cavity based on the information that

remains in the image. Most current systems formulate the image completion problem into a

numerical inference using low-level visual cues. Some studies describe the image with Par-

tial Differential Equation (PDE) and fill in the damaged area by allowing the propagation of

pixel values into the hole. Others try to repair the hole by copying and pasting patches from

the existing region to reproduce the cavity’s contents. However, most of these techniques rely

heavily on the consistency between patches or pixel values without a deeper understanding of

the scenes and objects. In fact, when conducting completion, understanding the objects and

structures in the image is of vital importance. Figure 2 presents an attempt to repair the back

of a rabbit. One can hardly determine the type of the curve for repair without recognizing it

as part of a rabbit. We should go further by recognizing objects and capturing structures in the

repair process. Such a ”repair after recognition” in fact follows a similar idea with the figural

familiarity theory (Palmer, 1999), which is an explanation for the phenomenon of visual com-

pletion. The figural familiarity theory suggests that people complete partly occluded figures

according to the most frequently encountered shape that is compatible with the visible stimulus

information. It suggests that when human brain handling partly occlude objects, they use extra

knowledge outside the visible information (such as past experience) in the recognition process.

In this thesis, we aim to address two challenges in image completion: (1) capturing the

structural information in the image and (2) recognizing the object contours in the damaged

image and using them to facilitate the repair process. We first present our observations of the

existing image completion technique using PDE-based or patch-based methods and highlight

the importance of structure in the process of completion. We then note that further improvement

based on the present image completion framework will require the efficient use of mid-level vi-

sion cues especially structures. We suggest proper repair of structures within an image requires
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Figure 2: How do we determine the contents that should appear in a cavity? Given a damaged

image (b) (obtained by deleting an area from (a)), our task is to infer the contents within the

cavity with the remaining information in the source region. (c)-(e) present various types of

curves that could be used to repair the contours of the rabbit. However, current methods can

hardly generate reasonable structures, and the repair is conducted without recognition of the

objects.

object information to connect the broken lines in the image. Finally, we present our image

completion system with both implicit and explicit structure reconstruction functions. We also

apply our image completion approach to the task of shadow removal.

1.1 Review of the existing approach

The first issue in image completion is properly capturing the structures within the image. Given

a hole surrounded by the pixel values, we can begin to deduce the contents of the hole from

any point on the boundary. However, both perceptual experiments and previous image repair

techniques have suggested that image repair should begin with structure completion. Percep-

tual experiments have shown that human vision is sensitive to structures. Nill and Bouzas

(1992) noted that human vision is accustomed to neglecting large uniform areas and focusing

on structural regions. Kanizsa found out that the human vision system will attempt to detect

T-junctions when perceiving missing areas in an image (Kanizsa, 1985; Pessoa, Thompson, &

Noe, 1998). Once the T-junctions are detected, the human brain also detects the incomplete

structure. Bertalmio, Sapiro, Caselles, and Ballester (2002) noted that structures have a higher

priority within the repairing order in his image inpainting techniques. To properly reconstruct

the structure within the image, we must first identify the structures in the image. One difficulty
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Figure 3: Structure and scale. (i) We capture a leaf vein ab with different patch sizes. (ii) Line

ab can be regarded as the main structure in a small patch. (iii) When line ab is observed on a

larger scale, it is usually considered a component of the leaf texture.

in identifying structures is that they vary in scale. In general, we define a structure within an

image as “the lines that separate different regions”. However, whether a line is a structural line

or just part of a texture region largely depends on our scales of observation. This issue is illus-

trated in Figure 3, in which we present an identical leaf vein in patches of different scales. In

Figure 3(ii), the line ab is regarded as a structure line that partitions the patch into two regions,

but in Figure 3(iii), the leaf vein ab is usually considered as a component of the leaf texture

when the line is observed in a larger patch. We suggest that a robust image completion system

should be able to capture structures at various scales.

The second issue is how to repair the structures in an image. Although some existing im-

age completion methods have addressed the importance of reconstructing structures within the

image, reconstruction of a structure heavily relies on local geometric properties (such as gra-

dients). Structure lines are connected via interpolation or curve-fitting, which takes advantage

of the connectivity of curves. In PDE-based methods, structured lines are connected via prop-

agation guiding by the designed equation. Previous methods repaired structures with the edge

information that is near the damaged area. Nevertheless, local geometric properties are not suf-

ficient cues to complete more complicated structures. Figure 4 provides an example of structure
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Figure 4: Structure completion using object information. Previous methods of contour comple-

tion use local geometric features only. For example, when trying to repair the ear of the rabbit

in the Figure, only part of the structures near the cavity is considered (such as the line segment

in (a) and (b)). It is difficult to recover the ear of the rabbit because it is difficult to estimate the

structure of the ear according to the local geometric features (such as curvature and smooth-

ness). Part (c) includes the remaining contour of the rabbit. Given the partial object contours,

it is easier to realize that the missing ear structure should be presented in the cavity.

completion. When considering two fragments that are near the gap, one reasonable completion

is to fit the curves by ensuring the smoothness of the connection. However, observation of the

gap on a larger scale and consideration of more edges reveals that the line fragments combine

to form the shape of a rabbit. The reconstructed structures in the gap should represent the rab-

bit’s long ears. This reconstruction cannot be achieved through guarantee smoothness only, and

additional object information is needed to infer the absent structures.

In short, our objective is to develop an image completion technique that can capture struc-

tures and take advantage of the object information that remains in the image. There are two

difficulties with this goal: (1) structures are on multiple scales and are easily confused with

textural patterns, and (2) generation of reasonable structures requires prior knowledge of the

object.

1.2 Outline of the study

Here we give a brief overview of the remainder of this thesis (also shown in Figure 5). In

Chapter 2, we review the literature of visual completion in the field of computer vision, most
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of which is under the topic of image completion or image inpainting. We include a brief review

of previous methods and analyze the difficulties encountered, and their solutions. Based on the

review of previous techniques, we developed our approach based on the patch-based framework

and made further improvements in structure preservation.

1.2.1 Image completion with implicit structure preservation

Our study begins with improving the structure-preservation ability based on the patch-based

image completion framework (Chapter 3). We present a novel structure-preserving image com-

pletion approach equipped with dynamic patches. We formulate the image completion problem

into an energy minimization framework that simultaneously accounts for coherence within the

hole and global coherence. The completion of the hole is achieved through iterative opti-

mizations combined with a multi-scale solution. To avoid abnormal structures and disordered

texture, a Dynamic Patch System (DPS) is developed to achieve efficient structure restoration.

Our DPS functions in both horizontal and vertical directions of the image pyramid. In the hor-

izontal direction, we conduct a parallel search for multi-size patches at each pyramid level and

design a competitive mechanism to select the most suitable patch. In the vertical direction,

we use large patches at a higher pyramid level to maximize structure restoration and use small

patches at a lower pyramid level to reduce computational workload.

1.2.2 Color-consistent shadow removal from an image completion prospective

Our enhanced patch-based image completion technique is applied to the task of shadow re-

moval based on the view that the shadow image can be regarded as an image with a damaged

illumination field (Chapter 4). A novel patch-based shadow removal approach was developed

that maintains the color consistency between the shadow removed region and the lit region. By

conducting intrinsic image decomposition, we are able to directly remove the shadow from the

illumination of the image without the interference of color difference. Unlike previous meth-

ods that conduct color correction after removing shadows, our approach first optimizes the

reflectance of the image and generates a guided map. The optimized reflectance not only guar-

antees the color consistency of the final result, it provides guidance for illumination recovery
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Figure 5: An overview of the thesis
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as well. Based on the insight that a shadow image is an image with impaired illumination, we

formulate the illumination recovery into an image completion framework. We recover the il-

lumination by minimizing an energy function that simultaneously accounts for luminance, tex-

ture, and neighbor coherence. The minimization of the function is achieved through a “Search

and Lighten” iterative optimization. The shadow-free images, generated by combing optimized

reflectance and repaired illumination, preserve the texture well and are consistent with the lit

region in color.

1.2.3 Explicit structure completion via partial shape matching

Our image completion with implicit enhancement of structure preservation can handle copyable

structures properly, but repair of non-copyable structures (such as a unique object contour)

requires extra information outside the image and explicit repair of the structure is needed to

ensure reasonable results. Object contour is often a salient structure in the image, and we

attempt to complete the contour via partial shape matching (Chapter 5). The repair of the

contour is an inferential task. The task is actually an attempt to infer the original shape given

only fragments extracted from the shape. This task requires two items: 1) an object contour

database as an extra information sources and 2) an efficient contour retrieval method from the

database. The difficulties lie in the latter. A shape descriptor named DCP was designed to

match the damaged contour in the image and the shape templates. The DCP uses the spatial

relationship between a sample point and the chords in its neighbor to describe the feature at

that point. Based on the correspondence of DCP, we can repair the damaged contour via the

estimated transformation of the shape template.

1.3 Contributions of this study

There are three main contributions in our study:

1. Dynamic Patch System (DPS). This system allows the program to use patches of vari-

ous sizes in the repairing process. It is specially developed for the patch-based image

completion framework.



9

2. Shadow removal using image completion technique. We formulate the task of shadow re-

moval into the task of image completion. We developed a model that can unify these two

tasks and successfully adapt the technique of image completion for the task of shadow

removal.

3. Directed Chords Pattern (DCP). It is a novel shape descriptor proposed in this study. It

uses the point-chords position to extract shape features and is designed for partial shape

matching
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2 Literature Review and the Research Questions of the Study

2.1 Image repair

Many frameworks and algorithms have been developed to perform the task of image repair and

have achieved sound results. The techniques can be classified into two main categories: pixel-

based methods and patch-based methods. In recent years, with the impact of the deep learning

techniques, learning-based methods for image completion have also become popular.

2.1.1 Diffusion-based inpainting

Image inpainting applies undetectable modifications to a picture (Bertalmio et al., 2002; Brendt,

2011) by filling the selected area along the isophote line with automatic detection of source in-

formation. It operates at the pixel level and can handle small gaps and minor structures. The

information in the known region propagates according to Navier-Stokes equations. The tech-

nical framework of inpainting can be improved with various diffusion mechanisms. Weickert

(1996) proposed edge enhancing diffusion, which features decreasing diffusivity and increasing

contrast in the direction perpendicular to the edges. Weickert (1999) proposed coherence en-

hancing diffusion, which enhances the diffusivity along the coherent direction. Chan and Shen

(2001) took Euler’s elastica into consideration to handle curve structures. Tschumperle (2006)

used a trace-based PDE model to regularize images with multiple color channels. Later studies

based on inpainting also attempted to improve the executive speed. Telea (2004) described

a fast matching technique using the weighted average of the calculated pixels. The method’s

advantages include lower time consumption and easy implementation.

The image inpainting problem can also be formulated into a variational framework. The

variational formulation is initially applied to a discollusion problem, in which an image is re-

constructed according to a set of level lines (Masnou & Morel, 1998). These level lines are

defined by bounded variational functions. Ballester, Bertalmio, Caselles, Sapiro, and Verdera

(2001) modified the inpainting problem into a variational framework. The input image is re-

garded as a function of bounded variation. The variational approach for image repair is based

on joint interpolation of both gray levels and the isophotes direction. The interpolation is
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conducted by solving a series of coupled second-order PDEs. The Total Variation (TV) im-

age model, which is initially used for denoising and the deblurring problem (Rudin, Osher,

& Fatemi, 1992), has also been applied to the inpainting problem. The model’s energy func-

tion is in a TV norm. Chan and Shen (2001) used a new Curvature Drive Diffusion (CDD)

model to improve the diffusion mechanism. The CDD model was derived from TV inpaint-

ing and aims at realizing the connectivity principle. The conductivity coefficient is determined

by the curvature of the isophotes. Levin, Zomet, and Weiss (2003) modeled an exponential

family distribution over the image according to the histograms of the local features. The hole

is then inpainted using a variational framework with the specific distribution. Although most

inpainting techniques perform excellently with small gaps and holes, the inpainted results may

generate unnatural blocks when applied to large cavities or textured regions.

2.1.2 Texture synthesis and exemplar-based approaches

Exemplar-based methods perform better in texture acquisition than the pixel-based method.

They work at the patch level using texture synthesis techniques (Efros & Freeman, 2001; Kopf

et al., 2007). In fact, the task of texture synthesis can be regarded as an extreme situation in

which the cavity occupies most of the image. Efros and Leung (1999) proposed a valuable

non-parametric method for texture synthesis, in which sample patches are acquired from a

textured example and embedded into the target area. Further improvement can be achieved by

modifying the sampling approaches and search mechanism. Liang, Liu, Xu, Guo, and Shum

(2001) presented a real-time texture synthesis algorithm that generates a high-quality texture.

The algorithm avoided mismatching features on the patch boundaries with the use of sample

patches according to a nonparametric estimation of the Markov Random Field (MRF) density

function. Kwatra, Schödl, Essa, Turk, and Bobick (2003) used the graph cut technique to

determine the optimal patch region between the input and output textures. Unlike techniques

that use dynamic programming to combine patches, this method can optimize seams in any

direction. Lefebvre and Hoppe (2005) generated textures with a deterministic search process

using a model derived from MRF. The synthesis process is accelerated with tree-structured

vector quantization.
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Exemplar-based methods for image repair operate on the image patch level. The patches are

placed to fill in the unknown area under specific automatic guidance, which can either deter-

mine the fill-in ordering or provide extra information on gradient or structures. Drori, Cohenor,

and Yeshurun (2003) presented a method for completion of missing parts caused by extrac-

tion of foreground or background objects from an image. Their method automatically embeds

adaptive image fragments into the image according to a confidence map. Criminisi, Perez,

and Toyama (2003) combined the texture synthesis technique with the inpainting method. The

combined method takes advantage of inpainting to propagate one-dimensional elements in the

image, such as lines and object contours. The texture synthesis method is used to generate

large textural regions. Bertalmio, Vese, Sapiro, and Osher (2003) had a similar idea of using

different techniques to repair structure and texture respectively. Jia and Tang (2003) used ten-

sor voting to automatically infer missing information from an impaired image. Their method

translated image color and texture information into an adaptive N -dimensions tensor, and the

optimal values in the N -dimensions texture space are determined by a voting process. J. Shen,

Jin, Zhou, and Wang (2007) used a gradient-based model to determine the filling order. The

damaged image is repaired by solving the Poisson equation with an image gradient map.

Darabi, Shechtman, Barnes, Goldman, and Sen (2012) developed an image melding frame-

work that combines inconsistent images using patch-based synthesis. This powerful frame-

work enables users to complete the task with larger patches. However, the cost of using larger

patches is a longer executive time and higher requirements for hardware. In fact, the size of

the patch is a crucial parameter in most patch-based methods. The executive time differences

can reach 90% between an application of 5 × 5 and 10 × 10 patches if the other experimental

conditions remain the same. Because the use of larger patches for repair requires more com-

putation in each iteration. PatchMatch (Barnes, Shechtman, Finkelstein, & Goldman, 2009) is

a powerful tool for fast iterations and rapid calculation of the distance between patches. This

patch-based method is a randomized structural algorithm for image editing. It first fills the hole

with randomly selected patches and then searches for a better match in the concentric neighbor-

hood randomly accompany with good match propagation. Barnes, Shechtman, Goldman, and

Finkelstein (2010) later developed PatchMatch into a generalized correspondence algorithm
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that can find k nearest neighbors and search across scales, rotations, and translations. Another

valuable framework is to formulate the task of completion as a global optimization problem

(Wexler, Shechtman, & Irani, 2007). The optimal result is achieved by reaching the greatest

coherence of the image or video. The optimization problem is usually solved with a greedy

algorithm. This framework has become a popular approach for texture synthesis and image

completion (Kopf et al., 2007; Arias, Facciolo, Caselles, & Sapiro, 2011; Kwok, Sheung, &

Wang, 2010).

2.1.3 Learning-based methods with deep architecture

Learning-based methods with deep architecture have achieved great success in many visual

perception tasks such as image classification, object recognition, and face detection. Besides

the breakthrough of in high-level vision tasks, attempts have been made to handle low-level

vision tasks with deep architecture. Xie, Xu, and Chen (2012) proposed a technique which

combined sparse coding with neural networks. Their network is pre-trained with denoising

auto-encoder. Their technique can conduct blind inpainting tasks in which the location of the

corrupted pixels is not provided. Ren, Xu, Yan, and Sun (2015) used Shepard interpolation

to disclose the limitation of convolution neural network for handling image processing tasks

that required translation variant interpolation. Early learning-based methods are developed for

handling small gaps or holes and the inpainting task is regarded as a variant of the denoising

problem. They may suffer from similar problems as the diffusion-based methods when han-

dling large holes. In addition, the deep neural networks’ ability to extract high-level visual

features is not fully maximized.

In 2016, Pathak, Krahenbuhl, Donahue, Darrell, and Efros (2016) proposed an unsuper-

vised visual feature learning algorithm driven by context-based pixel. Similar from Xie et al.

(2012) which used the denoising auto-encoder, they proposed the Context Encoder that is a

convolutional neural network that captures not just appearance but also the semantics of vi-

sual structures. Their network architecture is a simple encoder-decoder pipeline in which the

encoder and decoder are connected through a channel-wise fully-connected layer. Although

this algorithm can only handle fixed size images with low resolution, it provides a new way
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to handle the task of image completion with neural networks. Later studies made further im-

provements on their network structure. One category of the latter studies is to improve the

visual quality of the output results. Iizuka, Simo-Serra, and Ishikawa (2017) added a global

discriminator network and local discriminator network after the completion network. The three

networks are trained in an adversarial style. The completion network is trained to fool both

discriminator networks. C. Yang et al. (2017) developed a joint optimization framework with

texture and image content constraints and used a multi-scale neural patch synthesis algorithm

for repairing high-resolution image. Their framework contains two networks: a content net-

work which is similar to the encoder-decoder structure in the previous study, and a texture

network which is trained to guarantee the generated contents are similar to the existing con-

tents. Yeh et al. (2017) used the Generative Adversarial Network (GAN) to find the optimal

encoder. The optimal encoder is then passed to the generative model to infer the missing con-

tents. Their approach does not require masks for training and can infer on holes of arbitrary

shape. Yu et al. (2018) introduced a contextual attention layer into the completion network to

explicitly utilize the texture information with the image. A coarse-to-fine architecture is also

used to improve the output quality.

In addition to improving the visual effect of the repaired image, some studies attempted

to develop completion network for specific kind of contents, for example, face images. Y. Li,

Liu, Yang, and Yang (2017) developed a network for face completion, which is also a combi-

nation of GAN and encoder-decoder structure similar to the approach by Iizuka et al. (2017).

Q. Sun et al. (2018) developed a two-stage inpainting framework for identity obfuscation. It

first obtains facial landmark in images then use the GAN to generate contents of the head for

the human object. Dolhansky and Canton Ferrer (2018) designed a type of conditional GAN,

called ExGAN, which uses examplar information to generate high-quality inpainting results. It

has a successful application on the close-to-open eye inpainting tasks.

Although learning-based methods with deep architecture are able to generate plausible re-

sults and even generate contents that do not exists with the damaged image, they are still limited

by the time-consuming training and massive data requirements. Most of the deep learning based

methods are trained on powerful hardware but it still takes several days or weeks to finish the
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training. This may cause difficulties in actual application. For example, if one would like to

expand the ability of a completion network, he not only need to expand the training dataset but

also retrain the network. In addition, specific training data are required to enable the completion

network to repair specific contents. It is unlikely that a completion network that trained with

face images can repair any arbitrary object or scene in the image. Current learning based meth-

ods with deep architecture rely heavily on the knowledge extracted from the training dataset.

But in some situation, massive training data of specific contents may not be available.

2.1.4 Image blending

The last vital step in most of the exemplar-based methods is to arrange the retrieved patches

and combine them to form visually pleasing content. If the retrieved patches are not stitched to-

gether properly, the formed content may be not consistent in terms of texture, color or contrast

and may have structural fractures and unconnected edges. In addition, the transition between

the hole and the known region plays an important role in the overall effect. A sound completed

result usually has imperceptible edges that seamlessly connects the cavity and the known re-

gion. Many image blending techniques have been developed to achieve a seamless connection

between the hole and the known region. Burt and Adelson (1983) introduced the seminal image

stitching technique, which combines images via pyramidal image decomposition. Sunkavalli,

Johnson, Matusik, and Pfister (2010) applied similar multi-scale techniques with a prelimi-

nary treatment called image harmonization that transfers the appearance of an image. Gracias,

Mahoor, Negahdaripour, and Gleason (2009) developed a fast method to combine a set of regis-

tered images into a mosaic with the use of watershed segmentation and graph cut optimization.

Chen, Cheng, Tan, Shamir, and Hu (2009) developed a system that can automatically select

suitable images from the Internet and generate high-quality combined pictures with blending

boundary optimization. Whitaker (2000) proposed an image blending technique via level set

comparison.
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2.2 Shadowed image processing

Adapting solutions or techniques from one image-processing tasks to another may unexpect-

edly create better solutions. However, such adaptation cannot be generated by random com-

bination and without understanding of the similarities between tasks. As we mentioned in the

review of the previous methods of image repair, the current patch-based technique originated

from texture synthesis techniques. This successful adaptation can be attributed to the observa-

tion that the task of texture synthesis can be regarded an extreme situation in image completion.

Inspired by this adaptation, we sought to adapt the techniques of image completion to the task

of shadow removal. We now discuss the previous methods for removal of shadows and examine

the similarities between these two tasks.

2.2.1 Shadow detection

The first step in removing shadows in images is to detect the shadow regions. Many methods

have been proposed to locate shadow regions in images. Previous shadow detection methods

can be classified as interactive shadow detection or automatic shadow detection. Interactive

methods require user assistance to specify shadow samples. L. Zhang, Zhang, and Xiao (2015)

used specified shadow samples and lit samples to construct a trimap to mat the shadow region.

Shor and Lischinski (2008) generated three different types of shadow masks by calculating the

distance between pixels and the user-indicated shadow seeds. The method described by F. Liu

and Gleicher (2008) requires users to mark an approximate shadow boundary with a brush tool

and can precisely locate the penumbra area based on the user-specified boundary.

Unlike interactive methods, automatic shadow detection aims to locate the shadow with

minimal user operation; however, automatic shadow detection is an extremely difficult task.

Given local information only, a dark pixel can be caused either by shadow or by the reflectance

at the corresponding scene point. Thus, the design of an automatic shadow detection method

requires a deeper understanding of the scenes in the images. Finlayson, Hordley, Lu, and

Drew (2006) located the shadow region by comparing the edges in the original RGB image

and those in an illuminant-invariant image. This method can precisely locate the shadow in
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high-resolution images generated by calibrated sensors (Lalonde, Efros, & Narasimhan, 2010).

The core of this method lies in the illuminant-invariant image, which may not be available

for web-quality consumer photographs. Some researchers have attempted to detect shadows

with empirical and data-driven methods that take advantage of the machine learning technique.

Zhu, Samuel, Masood, and Tappen (2010) classified regions according to both shadow variant

features (such as intensity difference and smoothness) and shadow invariant features (such as

texture and gradient), and developed a binary conditional random field to label the shadow

region. Panagopoulos, Wang, Samaras, and Paragios (2011) proposed a higher-order MRF

illumination model that takes advantage of both the low-level shadow evidence and the high-

level prior knowledge to estimate the cast shadow and illumination environment. R. Guo, Dai,

and Hoiem (2013) proposed a shadow detection method based on pair wise region relationship

classification. Qu, Tian, He, Tang, and Lau (2017) tackled the shadow detection problem with

a deep neural network called DeshadowNet, which is a multi-context architecture.

2.2.2 Shadow removal

The shadow removal described here refers to manipulation to recover the illumination of the

dark pixels. Previous methods conducted the shadow removal operations in various ways based

on their formulation of the shadow removal problems. Finlayson and his colleagues (Finlayson

et al., 2006; Finlayson, Drew, & Lu, 2004) treated the shadow removal task as a reintegra-

tion problem in the gradient domain. Their method generates shadow-free images by nullify-

ing the gradients on the shadow boundaries. This method relies heavily on accurate shadow

boundary detection, so some researchers have attempted to make improvements in locating the

shadow boundary. Mohan, Tumblin, and Choudhury (2007) used a gradient-domain shadow-

edge model to describe the shadow region. The proposed model can simulate various lighting

conditions. F. Liu and Gleicher (2008) constructed a shadow-free field and a texture-consistent

gradient field separately to ensure texture consistency in the shadow-removal task.

Another category of shadow removal is the relighting method. These methods are mainly

based on the observation that the pixels in shadow regions and those in corresponding lit re-

gions mainly have differences in intensity, which are measured by a scale factor. The core
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idea of these methods is to estimate the scale factor and use it to enhance the lightness of the

shadow pixels. Fredembach and Finlayson (2006) simplified the reintegration operation to an

optimization method that attempts to find the additive constant in each color channel in each

shadow region. The constant is estimated according to the pixel values on both sides of the

shadow boundary. Arbel and Hel-Or (2007) noted that a fixed scale factor may not be suit-

able to handle the shadows in penumbra areas and curved surfaces. They applied directional

smoothing to correct the scale factors to eliminate abrupt variation.

Some researchers formulated the shadow removal problem into a color transfer task in

which the statistical color features of one image are transferred to another. When the color

transfer technique is applied to shadow removal tasks, the goal is to transfer illumination in

the lit region to the shadow region. Based on this idea, a series of color transfer methods for

shadow removal have been proposed. Shor and Lischinski (2008) proposed a linear mapping

model to describe the affine relationship between the shadow and non-shadow regions. Xiao,

She, Xiao, and Ma (2013) proposed an adaptive illumination transfer technique that varies the

transformation according to the material reflectance. Both techniques use global illumination

transfer operators. Xiao, Xiao, Zhang, and Chen (2013) improved their methods by using

multiple illumination transfer operators between matched subregions. L. Zhang et al. (2015)

used optimized illumination-recovering operators to lighten the patches in the shadow area.

2.2.3 Intrinsic image decomposition

Intrinsic image decomposition usually refers to the separation of illumination and reflectance

components from an input photograph. Barrow and Tenenbaum (1978) first introduced the

term “intrinsic image” which refers to a view-dependent mid level description of a scene. Any

observed image is a product of two images: an illumination image and a reflectance image.

This concept proposed by Barrow and Tenenbaum is extremely useful for visual inferences

even though that it does not make explicit all the physical causes of image features. How-

ever, obtaining intrinsic images are difficult because the problem is highly ill-posed. The first

solution to this problem was the Retinex algorithm developed by Land and McCann (1971).

Tappen, Freeman, and Adelson (2003) designed an algorithm in which color information and
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gray scale pattern classifiers are used to recover intrinsic images. Some researchers have at-

tempted to handle these ill-posed tasks with additional constraints. Weiss (2001) simplified

the ill-posed problem to the task of recovering intrinsic images according to a series of im-

ages taken in different lighting conditions. Although the simplified problem is still ill-posed, a

maximum-likelihood solution was provided. L. Shen, Tan, and Lin (2008) took advantage of

the texture information to obtain constraints on reflectance. Their method is based on the ob-

servation that different points with the same intensity-normalized texture configuration usually

share the same reflectance value. Interactive methods used to obtain constraints on reflectance

are also practical. Bousseau, Paris, and Durand (2009) developed a method that allows users to

guide an optimization that has a closed-form solution using linear least-squares. J. Shen, Yang,

Li, and Jia (2013) took user scribbles to specify local constraint cues that can further enhance

the recovery results. Yue, Yang, Sun, Wu, and Hou (2017) developed a contrast-enhancement

method based on constrained intrinsic image decomposition models.

2.3 Shape description and matching techniques

The object contour provides important object information. Human beings can easily recognize

objects by their contours. When a damaged image contains damaged contours, repair is often

difficult. Because the object contours may contain some unique features that cannot be dupli-

cated or easily inferred from the remaining segment. Because the remaining information within

the images is not sufficient for repair, we must turn to extra information outside the damaged

images. An intuitive solution is to use a shape database to aid the repair. However, the best use

of the damaged object contours to retrieve a proper shape template from the database and com-

plete the contour remains unclear. Here, we come to the task of shape description and shape

matching.

2.3.1 Curvature and integral invariants

For feature-based shape matching methods, shape descriptors are the foundation of the similar-

ity measures between two shapes. The main function of a shape descriptor is to extract features

from a shape. Previous researchers have devoted considerable effort to develop smart shape
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descriptors. One intuitive method for processing shape is to use the boundaries of silhouette

images. Regardless of the contents within the shape (such as holes or internal markings), the

associated boundaries are essentially two-dimensional closed curves, and so traditional geomet-

ric parameters of curves can be applied for description. Techniques based on one-dimensional

function derived from boundary coordinates are often called Shape Signature. Tangent Angle is

a kind of shape signature (D. Zhang & Lu, 2001) that defined by the angle forms by the tangent

line at each sample point and the horizontal axis. Another shape signature Complex Coordi-

nates function uses the complex number generated from the coordinates of boundary points to

describe the shape. One of the most reliable and important shape signatures is the Contour Cur-

vature, which has salient perceptual characteristics and benign invariant features (Mokhtarian

& Mackworth, 1992; Jalba, Wilkinson, & Roerdink, 2006). The curvature is invariant against

translation, rotation, and scale.

Although curvature has significant discriminating power, the result of direct comparison

using curvature may fail expectations. For one thing, digital images have a discrete nature and

cause quantization in the calculation of curvature. For another, the computation of curvature

requires second-order derivatives, which are not always available in the digitized boundary

functions. To overcome these two difficulties, some researchers have used auxilliary techniques

in the curvature computation. H.-C. Liu and Srinath (1990) applied chain code representation of

the boundary before computing the contour curvature and used distance transformation before

shape matching. Some researchers have attempted to find similar geometric features that have

a strong correlation to curvature. Han and Poston (2001) developed a method of calculating

chord-to-point distance accumulation, which can be regarded as discrete curvature. Lin, Dou,

and Wang (1992) defined an Arch Height Function (AHF) for contour feature extraction. Their

function has local maxima at the corner points, which are often the points with high curvature.

Other researchers have sought an equivalent definition of the curvature in integral geometry,

and new curvature-based descriptors have been developed. H. Liu, Latecki, and Liu (2008)

proposed a unified definition of curvature for regular, polygonal, and digital planar curves.

Their curvature definition is based on the statistics of the extreme points of the height functions

and yields a stable curvature estimation of digitized curves. Based on this definition, Wang,
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Bai, You, Liu, and Latecki (2012) developed a shape matching method by using tangent lines

to calculate height functions. Manay, Cremers, Hong, Jr Yezzi, and Soatto (2006) defined

curvature from a view of integral geometry and proposed a normalized area integral invariant.

C. Xu, Liu, and Tang (2009) implemented this definition and proposed a matching technique

based on a descriptor called Contour Flexibility.

2.3.2 2D shape descriptors

The features directly extracted from the boundary points are limited because they rely mainly

on geometric features at the local point. In addition, some shape signatures discard part of the

global geometric information and cannot properly reflect the relationship between points. Thus,

researchers have attempted to design rich descriptions of shapes in higher dimensions. Except

for geometric features at local points, spatial interrelation features can also be extracted from

regions or chords in the shape. Broadly speaking, descriptors based on spatial interrelation

features can be classified into region-based and chord-based descriptors. Region-based shape

descriptors usually treat a shape as the bounded interior of simple closed (Jordan) curves and

describe the shapes by dividing subregions within the shapes or constructing geometric mea-

sures inside the interiors. Chakrabarti, Ortega-Binderberger, Porkaew, and Mehrotra (2000)

used a technique called adaptive grid resolution to represent 2D shapes using a series of grid

cells whose resolution varies according to the portion of the content. With this technique,

a shape can be easily expressed with quad-tree decomposition (Shusterman & Feder, 1994).

Bounding box (Bauckhage & Tsotsos, 2005) is another similar shape descriptor that divides a

shape of arbitrary topologies into a series of 2D lattices. Along with region-based descriptors,

moments are frequently introduced for shape analysis. Shape descriptors based on moments

take advantage of both the region and the contours of a shape. Different types of moments

have been explored, and they mainly vary in the moment weighting kernel. Invariant moment

(M. Hu, 1962) is one of the simplest moments using multiplication of the coordinates as the

basis set. The Zernike moment (Celebi & Aslandogan, 2005) originated from the orthogonal

Zernike polynomials, and the moments are expressed in the complex plane. Radical Chel-

byshev moment (Mukundan, 2004) applies scaled orthogonal Chebyshev polynomials as the
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basis set and is rotational invariance. Region-based shape descriptors, in general, have good

invariance but may show poor performance when occlusions exist.

Unlike the region-based shape descriptors, which directly construct a similarity measure

based on the region, chord-based shape descriptors develop similarity metrics with chords in

the shape. Chord-based shape descriptors construct chords by connecting sampled points on

the shape contours and recognize the shape using the statistics of the chords feature (length

or radical position). Although many chord-based shape descriptors do not explicitly construct

chords within the shape, the pairwise distances between boundary points are essentially the

chord length. Smith and Jain (1982) accounted for all chords within the shape and generated a

chord distribution for shape matching. The chord distribution is composed of two histograms:

a chord lengths histogram and a chord angles histogram. These two histograms are essentially

statistics on the spatial position of the chords; however, it is obvious that taking all chords

into consideration for shape description may not be necessary and efficient. A better way is

to classify the chords according to specific criteria and to discard useless chords. M. Yang,

Kidiyo, and Ronsin (2008) discarded chords that were too short and classified the remaining

chords according to their orientation. A more popular way is to construct the chords according

to certain rules. Shape Context (SC) (Belongie, Malik, & Puzicha, 2002) is a powerful tool for

the shape object recognition task. It encodes each sample point on the contours using the chords

that begin at that point and present the local chord distribution using a log-polar histogram. Its

improved version, the Inner Distance Shape Context (IDSC) (Ling & Jacobs, 2007) enhances

the performance of SC by limiting the chords within the interior of the shape. The Beam Angle

Statistic (BAS) (Arica & Vural, 2003) uses the angles formed by chords that originate from a

boundary point and connects the rest of the points on the boundary. The BAS is scale invariant

and has been successfully applied in partial shape matching (Donoser, Riemenschneider, &

Bischof, 2009; Michel, Oikonomidis, & Argyros, 2011). R.-X. Hu, Jia, Ling, Zhao, and Gui

(2014) developed a similar shape descriptor based on angles. They appended neighboring

angular patterns at each point using a scheme similar to Local Binary Pattern (LBP).
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2.3.3 Shape matching

In this section, we review the matching techniques developed based on Local Shape Descriptor

(LSD). For most shape matching methods based on LSD, the matching procedure is as follows.

The first step is to apply the LSD to each sample point and extract feature vectors. The second

step is to estimate the correspondence between points according to the feature vectors, and

the final step is to use the correspondence between point sets to find the transformation. The

reliability of the correspondence depends on the design of the shape descriptors. Whether a

correspondence can be found efficiently relies on the matching techniques.

Usually, two shapes are matched by minimizing the sum of the matching cost, which is usu-

ally defined by distance of the feature vectors extracted by LSD at each sample point. The task

is actually to find an assignment between two point sets; thus, it can be solved with the Hun-

garian algorithm (Munkres, 1957) or dynamic programming (Bellman, 1966). However, these

matching methods do not ensure the preservation of global geometric information. Previous

researchers have attempted to enhance the matching techniques by appending extra constraints.

Scott and Nowak (2006) used the order of points on the contour as a constraint in the corre-

spondence assignment. Schmidt, Farin, and Cremers (2007) formulated the shape matching

task into the shortest circle problem on a torus and proposed a rapid algorithm that can fin-

ish the matching task in sub-cubic run time. Yang and his colleagues used graph transduction

to improve the performance of shape retrieval (X. Yang, Bai, Latecki, & Tu, 2008; X. Yang,

Koknar-Tezel, & Latecki, 2009), and Egozi, Keller, and Guterman (2010) developed a matching

scheme that accounts for meta similarities and can be compatible with various LSDs.

2.4 Relations to our work and research questions

Our research interest begins from the patch-based image completion problem. After reviewing

previous methods, we realized the importance of structure preservation in generating satisfying

results. The patch-based image completion approach achieves structure preservation via spa-

tial coherence between patches. We noticed that previous methods prefer large patches in the

completion and that the size of the patches is usually fixed during repair. Here we propose the
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first research question:

• Research Question 1: Are larger patches better for image completion?

We address this question in Chapter 3 and find that large patches is not always the best choice.

We make improvements based on the previous patch-based image completion framework by

including a Dynamic Patch System (DPS). We then move from our improved approach in two

directions: 1) to adapt the image completion technique to other tasks; and 2) to include prior

knowledge in the repair.

The patch-based image completion methods originated from the texture synthesis tech-

niques. Successful adaptation of texture synthesis techniques to image completion tasks can be

attributed to the essential similarities between the tasks. The task of texture synthesis can be re-

garded as an extreme situation in which the damaged area occupies most of the image. Inspired

by this adaptation, we suggest that potential exists for applying our improved image completion

technique to other image processing tasks. We then target the task of shadow removal. Because

the shadow area in an image is an area with insufficient lighting information, we suggest that

the absence of lighting information can be considered as a special kind of damage. Realizing

the similarity between the image completion task and shadow removal task, we proposed the

second research question:

• Research Question 2: Is it possible to formulate the task of shadow removal into the

task of image completion?

Our answer is positive, and we propose a novel shadow removal model from the view of image

completion in Chapter 4.

The core of the patch-based image completion method is to use the coherence between

patches to generate the contents within the damaged area. When the source of the patches is

limited within the known region of the images, the generated contents can be regarded as a

copy of the information from the known region. Previous patch-based methods can properly

repair a copyable structure, but when handling non-copyable or unique structures (such as

object contours), the repaired result is often disappointing. This failure can be attributed to two
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aspects. On one hand, the information source is limited to within the damaged image. In many

situations, the known region in a damaged image does not provide a ready-made structure for

repair. On the other hand, repairing images relying only on the coherence between patches is

essentially making inference using low-level vision cues without realization of the objects it is

repairing. We attempt to address these two limitations in the case of repairing object contours.

The limitation of information sources can be solved easily. To expand the information

sources for repair, we need only prepare an extra database of shape templates as prior knowl-

edge. However, the main difficulty lies in matching the shape templates and the damaged

contours in the image. Matching between shapes is essentially making inference using mid-

level vision cues. Here, we come to the problem of partial shape matching and proposed the

following research question:

• Research Question 3: How can a damaged contour be matched with massive shape

templates?

We propose our solution in Chapter 5, in which we develop a novel shape descriptor and the

corresponding shape matching schemes.
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3 Image Completion with Implicit Structure Preservation

3.1 Introduction

Image completion is a challenging image editing task that plays an important role in repairing

old photos, removing unwanted objects and disocclusion in image-based rendering. The goal

of image completion is to fill the hole in a damaged image with contents that keep the overall

visual effect realistic and harmonic. Two difficulties in the completion task, structure recon-

struction and texture representation, are both essential to generate visually pleasing results.

The basic idea of image completion is to propagate the information in the known region into

the hole based on the assumption that the known region contains the necessary information.

The propagation can be described as a diffusion using PDE. Bertalmio et al. (2002) proposed

an image inpainting technique to repair small cracks at the pixel level by propagating image

Laplacians in the isophote direction. Most diffusion-based methods work at the pixel level

and show excellent performance in reserving the local structure in small gaps. However, in

situations that include repairing large cavities, artifacts or strange structure may occur.

Patch-based methods outperform diffusion-based techniques that operate at the pixel level

in situations with large holes. Patch-based completion methods originate from the seminal work

by Efros and Leung (1999), which was initially designed for texture synthesis. The adaptation

of the texture synthesis technique is based on the fact that the task of texture synthesis can

be regarded as an extreme situation in image completion in which the hole takes up most of

the image. Based on this fact, studies such as those by Criminisi et al. (2003) and Efros and

Freeman (2001) amplified the technique for texture synthesis and successfully reproduced nice

textures in the hole to complete the image.

An essential criterion for evaluation of the completion result is whether structural lines are

reconstructed smoothly within the hole, because the human visual system is sensitive to the

structural region (Nill & Bouzas, 1992) and any artifact on a structure makes the completed

image visually unpleasant. In most patch-based methods, structure restoration is conducted

implicitly by pursuing global coherence. These methods complete the hole with patches from

the known region. By maximizing the coherence between patches, they hope that the struc-
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Figure 6: (a) Original image (399× 533). (b) Hole is masked (magenta). (c) Result generated

with state-of-the-art ImageMelding (Darabi et al., 2012). (d) Our approach.

tures are also properly restored. However, distorted structures may still appear when complex

structures are required to repair the hole. As shown in Figure 6(c), even the completed image

generated by a previous advanced technique (Darabi et al., 2012) may present structural distor-

tions in the hole. Figure 6(d) presents the image after repair with the approach we describe in

this chapter. As shown in the figure, the hole is filled with nice textures, and a realistic structure

is reconstructed.

Previous patch-based methods tended to use large patches in general. The purpose is to

capture as much information as possible. However, large patches may not be suitable for re-

pairing structures because structural lines usually appear on various scales. As shown in Figure

9(a), large patches may absorb more irrelevant information and distort structure within the hole.

Also, the application of large patches creates an extra burden on hardware and leads to greater

time consumption.

In this chapter, we introduce a new approach that accounts for the coherence between global

and local to generate a realistic repaired image that preserves nice structure and texture. We

formulate image completion into an energy minimization task that considers global and local

coherence simultaneously. We develop a Dynamic Patch System (DPS) for efficient structure

preservation. Our DPS functions from two perspectives in the repair process. First, it enables

a parallel search for patches of multiple sizes. Patches of various sizes are selected to fill the

hole with a competitive mechanism. Second, the size of the patches varies in the multi-scale
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solution. Large patches are used at a lower resolution scale to maximize the information gain.

Small patches are applied at a higher resolution scale to reduce the computational workload. In

sum, the approach we present in this chapter makes the following contributions:

-Efficient Structure Restoration Mixed use of patches of various sizes can efficiently cap-

ture structure in various scales, and can avoid absorption of irrelevant information and distortion

in structures.

-Balanced Computational Workload A multiscale solution with dynamic patches makes

the computational workload adjustable in the repair process. It accelerates the repair process

and reduces the computation needed for a lower image pyramid level without sacrificing the

quality of the repaired image.

-Competitive Mechanism A parallel search for patches of various sizes is conducted with

acceleration using GPU. A competitive mechanism is introduced to select suitable patches for

completion.

3.2 Approach overview

Images are more than a collection of pixels. They all follow certain patterns that contain textu-

ral and structural information. Our Human Vision System (HVS) is sensitive to these patterns

and thus image completion cannot be conducted with a simple copy-paste of the existing pixels.

We formulate the task into an energy minimization framework to generate visually pleasing pat-

terns in the hole. We aim to fill the hole with patches that are coherent with other patches within

the hole and with the global picture. The challenge lies in discovering existing patterns in the

known region and capturing various scale structures at the same time and avoiding interfer-

ence from irrelevant information. Our approach optimizes an objective function that considers

coherence within the hole and global coherence. That is, our objective function includes two

terms: an external term and an internal term. The objective function is minimized via an iter-

ative optimization, which contains two phases: a search phase and a vote phase. In the search

phase, we conduct a parallel search to retrieve patches of various sizes. A competitive mecha-

nism is designed to select the most suitable patch. In the vote phase, all patches are blended to

form the contents within the hole. A minimum cost boundary between overlapped patches is
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Figure 7: Overview of our approach. (a) An image with a hole marked in magenta. (b) Defi-

nition of our energy function which considers external and internal coherence simultaneously.

(c) Optimum of our energy function is achieved by “search & vote” iterative optimization.

(e) Search phase. Parallel search is conducted in this phase to retrieve multiple size patches.

The retrieved patch candidates compete to enter the vote phase. (f) Vote phase. Patches are

combined through calculating the optimal seam with graph cuts. (d) Result with our approach.

calculated to ensure that the patches are seamlessly connected and avoid artifacts in structure

and texture. The overall repair process is accelerated with a multiple-scale solution. Unlike the

previous methods that fixed the patch sizes, we use large patches at a lower resolution scale to

maximize the information gain and provide a sound foundation for the next scale.

3.3 Energy minimization

Given a color image I with a hole C, we begin with the assumption that the source region

S = I − C contains sufficient information to generate the contents within the hole. We repair

the image by minimizing the following objective function:

E(C|S) =
∑
q∈C

min
p∈S

[w1E1(Q(q), P (p)) + w2E2(Q(q))], (1)

where E1 is the energy term for external coherence, and E2 is the term for internal coherence.

Detailed descriptions of these two terms are given in the following paragraphs. w1 and w2 are
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the weighting factors that determine a preference between internal and external coherence. In

our experiments, w1 + w2 = 1. Q = N (q) is an h × h patch in the hole with the target pixel

q at its center. The target pixel q is set as the origin Q0,0, and other pixels in the patch are

denoted as Qi,j . P = f(N (p)) is an h× h patch in the known region after transformation f . p

is its anchor pixel in the center. The image is assumed to be in L ∗ a ∗ b space, and the pixels

each have five channels that contain three color channels (L, a, b) and two luminance gradient

channels (∇xL,∇yL).

Mixed Similarity Measure- Metric selection plays an important role in the energy function

definition. Previous patch-based methods use the Sum of Squared Difference (SSD) to measure

the similarities between the two patches. However, SSD tends to give preference to uniform

regions (Bugeau, Bertalmio, Caselles, & Sapiro, 2010) and may cause disordered texture and

distorted structure in the repaired image. Thus, we combine the simple SSD with the Bhat-

tacharyya weighted distance function in the study by Bugeau et al. (2010). We define the

distance between two patches A = N (a) and B = N (b) as follow:

Dm(A,B) = DSSD(A,B) ·DBC(A,B), (2)

where

DSSD(A,B) =
h∑

i,j=1

||Ai,j −Bi,j||2, (3)

DBC(A,B) =


1 ρA = ρB,√

1−
∑h

i=1

√
ρA(i) · ρB(i) else.

(4)

ρA and ρB are the histograms of the patches. The distance function is defined as the multi-

plication of the simple SSD and Bhattacharyya metrics. Unlike the distance function defined

by Bugeau et al. (2010), the Bhattacharyya metric is embedded into a piecewise function in

our definition. Our definition can avoid the null measure in situations in which two patches

share the exact same distribution. In these situations, our distance function will automatically

degrade into a simple SSD.



31

E1 constrains the similarity between the patches within the hole and those in the source

region. As shown in Figure 7(b), our approach searches suitable patches in the source region

and calculates the distance between the target patch and the source patches. The optimum patch

minimizes the following energy term:

E1(Q,P ) = Dm(Q,P ). (5)

Note that the distance between two patches is calculated in both the luminance channels and

the color channels.

E2 encodes the coherence between the patches and its neighboring patches within the hole.

Given a patch in the hole Q, its adjoining patches Q′ share common pixels with Q. As shown

in Figure 7(b), the overlapped region between the patches are considered when calculating E2.

The energy term that measures the patch differences in the overlapped regions is:

E2(Q) =
∑
Q′∈C

Dm(Q,Q′), Q ∩Q′ 6= ∅. (6)

The weighted factors w1 and w2 balance the influence of internal and external coherence in

the objective function. These factors are adjustable for users to tune the final repaired results.

In general, it is recommended that w1 is set larger than w2 to avoid trivial solution. Noted that

patches may repeat too many times in the hole when w2 is set much larger than w1.

3.4 Iterative optimization with dynamic patches

Directly achieving the global optimum of the objective function (Equation 1) is intractable be-

cause of the massive solution space and time-consuming energy term evaluation. The objective

function is non-convex with many local minima. A practical choice is to obtain approximate

solutions with iterative optimization scheme. The basic idea of this scheme is to initialize ev-

ery iteration with the result from the previous iteration and constrain the objective function

from increasing in each iteration. Wexler et al. (2007) developed a “search & vote” iterative

scheme for image completion. Our approach also uses a “search & vote” scheme with dynamic

patches. In the search phase, a parallel search with a competitive mechanism is conducted to

find suitable patches. In the vote phase, the graph cuts technique (Kwatra et al., 2003) is used to
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Figure 8: Overview of the dynamic patch system. Our dynamic patches system takes effect

in two directions of the image pyramid. In the horizontal direction, we conduct a parallel

search for various size patches at each pyramid level. In the vertical direction, we constrain

the algorithm to apply large patches at the higher pyramid level and small patches at the lower

pyramid level.
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pursue a seamless connection between patches. The pseudo code of our iterative optimization

is shown in Algorithm 1.

3.4.1 Parallel search with competitive mechanism

Parallel Search- PatchMatch is a randomized correspondence algorithm for effective patch

searching and image editing. It begins with a random filling of the hole in the image and then

rapidly seeks approximate nearest-neighbor matches between source patches. In this process,

good matches are propagated, and a random search is executed to discover potential matches.

To search for patches of multiple sizes, we make several modifications based on the Patch-

Match algorithm. We enhance the algorithm with a parallel search for various size patches

within the known region. The number of the patch sizes v is user-defined. It is obvious that

the more different sizes of patches searched, the higher the computational cost; thus requiring

more computing power and more memory to store patches. In our approach, Graphics Pro-

cessing Unit (GPU) is used for computation. GPU is a multi-thread, highly parallel processor

developed to process massive amount of data. The stream of GPU processing conducts the

multi-size patch search in the form of parallel acceleration. A parallel programming model

with shared memory is used to search for various size patches while taking advantage of the

General-Purpose computing on Graphics Processing Unit (GPGPU) ability emerged in Com-

pute Unified Device Architecture (CUDA). Various size patches found in this phase are stored

as candidates for the competition in the next stage

Competitive Mechanism- Candidate patches must compete against each other to be the most

suitable patch for a certain location. The competition proceeds by calculating the unit energy

term Uhi of every hi × hi patch:

Uhi =
Dm(Phi×hi , Qhi×hi)

h2
i

. (7)

The patch with the lowest Uhi is selected to enter the voting phases. Supposed that v candidates

attend the competition, the winner satisfies:

Pwin = arg min{Uhi}, i = 1, 2 . . . v. (8)
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In our experiments, v is set to three, which means that patches of three different sizes are

searched at the same time at every pyramid level, and the one with the lowest unit energy is

the most suitable. After the winning patches are selected at each location of the hole, they are

blended to generate the contents of the hole.

The parallel search and competitive mechanism is part of our DPS and enables the use

of patches of multiple sizes to repair damaged images. The use of patches of multiple sizes

enables us to capture structures and textures on various scales. Previous methods prefer large

patches with a fixed size, which easily absorb irrelevant background information in structure

restoration. As shown in Figure 9, the branch of a tree is captured with a series of 10 × 10

patches, and much irrelevant information (such as the background and the part of the bird) is

included. The problem with containing irrelevant information is significantly alleviated by the

mixed use of three different sizes of patches. Besides, the use of patches of multiple sizes

can lower the computational cost, because smaller patches contain fewer pixels and reduce the

calculation required for energy evaluation.

Figure 9: Multiple size patches for structure preservation. Large patches are not always the

best choice for structure preservation. (a) We attempt to capture the structure of the branches

with 10× 10 patches. Part of the bird’s body and the leaves are absorbed into the patches. (b)

We attempt to capture the same structure with a series of patches in different sizes (2×2, 3×3,

and 5× 5). The intake of irrelevant information is significantly reduced.
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3.4.2 Vote phase with graph cuts

The contents of the hole are generated by combining all the winning patches retrieved from the

search phase. In the method of Wexler et al. (2007), the color of the pixel is decided by the

median of all votes in a weighted voting scheme. This scheme works well when using patches

of a fixed size. Nevertheless, it could not solve the problem of discontinuity when patches of

various sizes are combined. If the overlapping areas of patches of various sizes are not handled

properly, textural disorder or structural fracture may occur. Thus, we apply the technique of

graph cuts (Kwatra et al., 2003) to connect partly overlapped patches seamlessly in the voting

phases. Suppose that two patches, Q1 and Q2, overlap along their vertical edges (Figure 7(f));

let s and t be the adjacent pixel positions in the overlap region and Q1(·) and Q2(·) be the

corresponding pixel value at the specific position. Note that the two patches only partially

overlap, which meansQ1−Q2 6= ∅. The following adaptive matching quality costM proposed

by Kwatra et al. (2003) is minimized to cut the overlap region that makes two patches match

best:

M(s, t, Q1, Q2) =
||Q1(s)−Q2(s)||+ ||Q1(t)−Q2(t)||

||∇d
Q1

(s)||+ ||∇d
Q1

(t)||+ ||∇d
Q2

(s)||+ ||∇d
Q2

(t)||
. (9)

Here d is the direction of the gradient and is the same as the edge direction between s and t. ∇d
Q1

and∇d
Q2

are the gradients in the patches along direction d. This adapting matching quality cost

penalizes less on seams that cross high-frequency regions than those that cross low-frequency

regions. The optimum seam with minimum cost M can be obtained by solving the path-finding

problem using graph cuts. Assume that we would like to find a minimum cost patch through the

3× 3 overlap region in the graph shown in Figure 7(f). All adjacent pixel nodes are connected

with arcs that are labeled with the adaptive matching quality cost M(s, t, Q1, Q2). Two extra

nodes are included to represent patches Q1 and Q2 and are connected to the adjacent nodes

with constraint arcs. The cut of the minimum cost in the graph is found by separating node Q1

and node Q2. This is a min-cut problem (Ford Jr & Fulkerson, 2015) that is a classical graph

cut problem, which has efficient solutions and easy implementation.
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Figure 10: The use of large patches at a higher pyramid level can preserve more structure

information than at a lower pyramid level. (a) A 5× 5 patch on a bridge picture at 660× 440

resolution. (b) Same patch is applied to the same picture at 2200× 1464 resolution.
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3.5 Multiscale solution with dynamic patches

Similar to previous image editing methods, our approach is also implemented in a coarse-to-

fine fashion to accelerate convergence and strengthen global consistency. In our approach, the

input image is resized into L different resolutions to form an image pyramid. The “search &

vote” iterations are conducted at each pyramid level from top to bottom. The patch size is

scalable in the “search & vote” process. Additional constraints on the sizes of the patches at

each pyramid level are introduced to capture structural and textural information efficiently. As

shown in Figure 8, the sizes of patch vary along the vertical direction of the pyramid and adapt

automatically to the coarse level of the pyramid.

The constraints we set at each pyramid level limit the max/min size of the patches. Let

hmax be a user-defined parameter that determines the maximum size of patches allowed in all

L pyramid levels. The hmax is adjustable according to hardware and application. We use a

discrete function K(·) to determine the size of the patches with a given pyramid level li. In our

approach, K(·) is defined as:

K(li) = b hmax − v
1 + e−li×β

c, (10)

where β is a parameter that controls the intervals of different values, and b·c is the floor operator.

Given that hi is the size of the ith patch, the size of the patches applied in pyramid level li

satisfy: 
Min(h1, h2, · · · , hv)li ≥ K(li), for li > L/2;

Max(h1, h2, · · · , hv)li ≤ K(li), for li < L/2.
(11)

Equation 11 constrains the size of the patches that can be applied in coarse level li. Large

patches are guaranteed to be applied at a higher pyramid level (which means in an image with

a low resolution), and small patches must be used at a lower pyramid level (which means in an

image with a high resolution).

The form of K(·) can be modified according to real-world applications. Equation 10 is just

one of the optional forms. When designing K(·) into different forms, one should consider the

monotonicity of K(·). The K(·) we used implies that patch sizes shrink along the pyramid

level falls. That is, when K(·) is monotonically increasing, a series of shrinking patches are
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applied along the vertical direction of the pyramid. In contrast, when K(·) is monotonically

decreasing, a series of enlarging patches are applied at each pyramid level from top to bottom.

In this situation, large patches are used at lower pyramid levels.

Our approach limits the patch sizes at each pyramid level with a monotonically increas-

ing K(·). In other words, large patches are applied at higher pyramid levels, because large

patches are more effective in capturing structures in coarse images. We compare the struc-

tural information captured in two pyramid levels with identical patches, which are represented

by the grids in Figure 10. An identical 5 × 5 patch is applied to the same image at two dif-

ferent scales, 660 × 440 and 2200 × 1464. As shown in the figure, a 5 × 5 patch is able to

capture the major structures of the bridge on the image with a lower resolution but the same

patch can only include the minor local structure of the bridge in the 2200 × 1464 image. This

example suggests that large patches can capture more information at a higher level than that

at a lower pyramid level. Reducing the use of large patches at a lower pyramid level is more

economical when considering the computational workload, because the use of large patches at

a lower pyramid level has limited enhancement on the structure reconstruction but consumes

more computational resources than the use of small patches.

3.6 Evaluations

We verify the performance of our approach by repairing images that contain various types of

textures and structures. Our approach is compared with some well-known methods, including

ImageMelding (Darabi et al., 2012), and the methods of Wexler et al. (2007) and of Criminisi

et al. (2003) and of Iizuka et al. (2017). The program in our experiments is a collection of

C++ and Matlab functions, which is run on an Intel Xeon E5-2470 V2 2.40 GHz computer

with 8G RAM and an AMD R9 280 graphics card. In the following subsections, the visual

effectiveness and run-time performance of our approach are discussed. Besides, two parameter

analyses are presented. One discusses the internal and external coherence balanced by w1 and

w2, and other analyzes the influences of the patch sizes in the vertical direction controlled by

K(·). In addition to the subjective visual comparison, a user study is conducted to evaluate the

repaired image generated with our approach.
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Algorithm 1 Dynamic Patch-based Image Completion
Input: Image I , cavity C, source S = I − C, Number of different size patches v, Pyramid

level L

Output: Final Image F

1: Initialize F by filling patches randomly

2: Compute image pyramid Ili ,Cli ,K(li), li = L,L− 1, . . . , 0

3: for each pyramid level li do

4: Define the patch sizes with Equation 11

5: repeat

6: for All q ∈ C do

7: Parallel Search for v different size patches

8: Retrieve the patch P that satisfies Equation 8

9: end for

10: Calculate the minimum cost boundary

11: Combine all patches

12: until convergence

13: Propagate solution to the next level

14: end for
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3.6.1 Effectiveness

Figure 11 presents the repaired results by testing our approach to images that contain complex

structures and textures. Our approach is also applied to the task of object removal, and the re-

sults are shown in Figure 12. The results show the importance of proper restoration of structures

and texture in the overall effect of the repair images. The results generated by the compared

methods fail due to the artifacts in the textures and distortions in the structures. When repairing

complex structures in the images, even the state-of-the-art ImageMelding (Darabi et al., 2012)

fails to generate reasonable structures inside the hole. As shown in Figure 11(d), apparent

fractures in the body of the architecture makes the repaired contents unacceptable. Unlike the

results of previous methods, our approach successfully preserves structures smoothly with the

aid of DPS. As seen in Figure 11(e), the structural information is well captured and properly

reproduced. When compared to the deep learning based methods by Iizuka et al. (2017), our

results have advantages in image details.

The distance function used in our approach is a combination of the Bhattacharyya distance

and the simple SSD. The combined distance and the use of various size patches is helpful to

maintain sufficient internal coherence within the hole. Our repaired results remarkably avoid

the interfering information in the repair process. The images of the church in Figure 11 are

examples. The textured region of the church contains some elements that are easily absorbed

into the hole and cause an artifact. These irrelevant information easily interfere the contents of

the hole generated by previous methods, and generates unpleasant textures, as shown in Figure

11(d). Our approach successfully avoids the disturbing information and generates images that

preserves great coherence with the known region (as shown in Figure 11(f)).

3.6.2 Efficiency and time complexity analysis

Vision problems are commonly formulated into an energy minimization problems, in which

the global optimum of the objective function is often difficult or impractical to find. In our

approach, the objective function is ensured not to increase in each iteration of the “search &

vote” scheme. The energy statistics throughout the iterations of the repair process are presented
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Figure 11: (a) Original image. (b) Masked image to complete. (c) Results generated with

the method of Criminisi et al. (2003). (d) Results generated with the method of Wexler et al.

(2007). (e) are the results generated with ImageMelding by Darabi et al. (2012). (f) are the

results generated with the method of Iizuka et al. (2017). (g) Results with our approach.
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Figure 12: Our approach performs well on object removal tasks. Images in the left column are

the ground truth, and those in the right column are our results. Images in the middle column

are masked images.
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Table 1: Run-time performance of completing the images in Figure 11. With the GPU acceler-

ation, our approach consumes less time than previous methods in general.

Church Engine Crystal Net Heart Bridge

Image size (pixels) 800× 450 800× 600 480× 480 2000× 1333 400× 400 730× 548

Time Cost (s):

Criminisi et al. (2003) 2408.69 5001.221 3419.57 19931.94 1151.11 3505.27

Wexler et al. (2007) 1852.84 3847.093 2630.44 15332.26 885.46 2696.36

ImageMelding (Darabi et al., 2012) 822.663 1923.546 1122.996 7118.54 411.110 1251.882

Iizuka et al. (2017) 1.25 2.25 1.75 3.75 1.45 2.33

Ours (without acceleration) 1245.112 2676.238 1699.669 9199.356 531.281 1617.816

Ours (with GPU acceleration) 741.138 1672.649 1011.708 5475.807 316.239 962.986

in Figure 13. Although there are energy inflations in the initialization at each pyramid level, the

line chart shows that the energy decreases continuously in each iteration and becomes stable

after finite iterations. Although such an approximate scheme cannot guarantee that the objective

function arrives at the global optimum, our experimental results are visually pleasing.

The time complexity of our approach depends on various factors such as image size, patch

sizes and the number of sizes. We are not able to provide an accurate general conclusion on

time complexity. But we can still discuss the time complexity of our approach under a given

condition. The two algorithms we used in the two-phases optimization have different time

complexities. Here we analyzed the time complexities of approach phase by phase. Supposed

that a damaged image contains M pixels, the patch contains h×h pixels. The time complexity

in search phases is O(h2M logM) in search phases with PatchMatch algorithm. Since our

approach allows the search of v different size of patches, thus the time complexity of search

phases increases to O(vh2M logM) . In the vote phases, the graph cut techniques are used and

its time complexity depends on the overlap region between patches. For a graph of n nodes, the

graph cut has a worst-case computational complexity of O(n2) and an average of O(n log n).

From the time complexity analysis, we can see that our approach may have higher time

consumption due to the search of various size patches. In our experiment, we programmed our

approach that run on CPU only to conduct a fair comparison with other methods. The statistics
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Figure 13: Energy evaluation. Energy variation of the objective function on a picture of a

church is presented. Note that when the result generated by the previous pyramid level propa-

gates to the next pyramid level, the energy inflates. This inflation is caused by the increase in

the number of pixels when the resolution increases. The tendency of the energy also provides

cues of convergence. When the energy stops decreasing, it suggests that image is complete and

has reached to the optimum.

are presented in Table 1. Our approach is much faster than the method of Wexler et al. (2007)

and that of Criminisi et al. (2003). But our approach is slower than the patch-based method of

Darabi et al. (2012) due to high computational cost caused by the search for patches of various

sizes. Thus, we provide another version of our approach that is implemented with parallel

programming techniques. With the acceleration of the GPU, our approach saves approximately

68% of the time cost. Note that our approach can be further accelerated if programmed to

maximize the hardware capacity. Also, from Table 1, we can see that the deep learning based

method by Iizuka et al. (2017) outperform all the other traditional completion methods and has

achieved nearly real-time performance. However, such excellent performance is based on time-

consuming training. According to the information reported in the paper (Iizuka et al., 2017), it

takes approximately 2 months to train the network.
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Figure 14: Results generated by different configurations of w1 and w2. We use the Twenty-

Eighty Law as a criterion to control the ratio between w1 and w2. Notice that, when w1 = 0.8,

w2 = 0.2, fracture occurs in the petal of the ice crystal. With the configuration of w1 = 0.2,

w2 = 0.8, the structure is blurred and an artifact occurs.
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3.6.3 External coherence vs internal coherence

The weight factors w1 and w2 control the balance between internal and external coherence.

Both user-defined coefficients and are adjustable according to the pictures. Figure 14 presents

the results generated under various configurations of these weight factors. An objective func-

tion with a higher w1 gives more preference to external coherence, but when w1 is weighted

much larger thanw2, distorted structures and disordered texture may appear, as shown in Figure

14. A larger w2 gives the objective function a greater emphasis on internal coherence. How-

ever, an oversize w2 may blur contents in the repaired image slightly. Because some patches

are reused for too many times. A possible criterion for setting these two weight factors may

be the Twenty-Eighty Law. However, a balanced configuration (w1 = w2 = 0.5) of the weight

factors is recommended. As shown in Figure 14, the results generated with this configuration

are realistic and has sharp structures.

3.6.4 Enlarging patches vs shrinking patches

An experiment was conducted in which enlarging patches were used in the vertical direction

of the image pyramid. The repair results are compared with those generated with our approach

using shrinking patches. To use a series of enlarging patches in the vertical direction of the

image pyramid, K(·) is set to be a monotonically decreasing function. As illustrated in Fig-

ure 15, the repaired contents in the hole are blurred when enlarging patches are used. Some

of the textural information is lost, which causes an obvious discontinuity in the structure. In

terms of efficiency, the time consumption of the image completion with enlarging patches is

22.82% greater than that with shrinking patches (Enlarging patches, 1783.612 seconds; shrink-

ing patches, 1452.207 seconds). The difference in time performance can be explained with the

use of larger patches in low-resolution scales, in which patch searching and filling are much

faster. Thus, the use of large patches is more economical at a higher image pyramid level. In

addition, the use of large patches to capture more information in the coarse image can provide

a sound foundation for completion at the next pyramid level. The intermediate outcomes from

two pyramid levels are shown in Figure 15, and it is easy to see a significant difference in visual
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Figure 15: Comparison of the effect of using enlarging patches and shrinking patches. Pic-

tures on the left are results generated using a series of shrinking patches. Large patches are

utilized at a high level of the image pyramid. As shown, most structures are captured at level

5, and provide a sound foundation for the iteration in lower level. The results on the right

are generated using a series of enlarging patches. The size of the patches increases along the

vertical direction of the image pyramid. Fracture of the structure occurs, and the loss cannot

be compensated with the use of large patches at a lower pyramid level.
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effect. The use of large patches at a lower pyramid level cannot compensate for the poor results

by the previous iterations and costs extra computational resources. In sum, the use of shrinking

patches along the vertical direction of the pyramid is a better choice.

Table 2: User Study Statistics. The scores difference between our approach and other previous

methods are presented in the third column of the table. Note that the lower and upper bounds

of the estimated differences do not contain zero.

Methods Mean Standard Mean Difference 95% Confidence Interval

Deviation with our approach Lower Bound Upper Bound

Our approach with DPS 7.983 0.829 - - -

ImageMelding (Darabi et al., 2012) 6.941 0.812 1.041 0.711 1.372

Wexler et al. (2007) 5.500 0.502 2.483 2.153 2.813

Criminisi et al. (2003) 5.230 1.459 2.750 2.419 3.080

3.6.5 User study

To verify whether our approach generates better repaired images than previous methods from

the user point of view, a user study was included in our experiments. Thirty subjects were

required to rate the texture and structure of the repaired image in a 9-point scale (with nine

as the best). Again, we compared our approach with ImageMelding (Darabi et al., 2012), the

method of Criminisi et al. (2003), and the method of Wexler et al. (2007). Each repaired image

was presented to the subjects, and the rating was conducted without knowledge of the exact

technique applied. Our questionnaire contains four sets of test images (16 images in total), and

we collected four hundred eighty data samples for analysis. The descriptive statistics of the

collected data are shown in Table 2.

From Table 2, ImageMelding (Darabi et al., 2012), the method of Wexler et al. (2007), the

method of Criminisi et al. (2003) and our approach are 6.94, 5.50, 5.23 and 7.98 respectively.

An ANalysis Of VAriance (ANOVA) is conducted to verify the presences of a statistically

significant difference between the means. The result among these four groups is F (3, 476) =

213.142, p < 0.001, in which the F value is the test statistic that reflects the significance. It

suggests that a significant difference exists between the means of these four groups. Then in
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the post hoc test, the Mean Difference (MD) between our approach and ImageMelding (MD =

1.042, p < 0.001), the method of Wexler et al. (2007) (MD = 2.48, p < 0.001), the method

of Criminisi et al. (2003). (MD = 2.78, p < 0.001) are calculated. The results are significant

and greater than zero, which suggests that our approach obtains higher scores. From the 95%

confidence interval, the result of statistical analysis concludes that the images repaired with our

approach are more perceptually pleasing than those with other methods.

3.7 Discussion

In this chapter, we present a patch-based approach for image completion with efficient struc-

ture preservation using DPS. Unlike previous methods with fixed-size patches, our approach

equipped a DPS, which allows patch sizes to change in both the horizontal and vertical di-

rection of the image pyramid. The introduction of DPS enables the patch-based completion

framework to capture structures and textures in various scales economically. The repaired

images with our approach do not suffer from structure distortion and texture disorder. Experi-

mental results and user study reflects that our approach outperforms previous methods and that

the repaired image is more visually appealing. In the future, we plan to apply our approach to

other image-processing tasks, such as satellite image processing and image cloning, which can

be formulated into an image completion framework. Our approach may also be improved by

optimizing the match propagation path in the patch search process.
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4 Color-Consistent Shadow Removal From an Image Completion Prospective

4.1 Introduction

Shadow is a common phenomenon in natural scenes. Shadows usually form on the surface of

objects when the light source is occluded. In addition to the illumination cues, shadows can

provide valuable information for human perceptions, such as the object shape and the spatial

relationship with the ground. However, shadows in images and videos cause extra difficulties

in most computer vision tasks such as visual tracking (Cucchiara, Grana, Piccardi, & Prati,

2003), object recognition (Swain & Ballard, 1991), and image segmentation (Klinker, Shafer,

& Kanade, 1990). Removal of shadows from images is usually included as a pre-processing

step in many computer vision tasks to pursue robustness.

Many methods have been proposed to accomplish the shadow removal task. Previous

shadow removal methods can be classified into relighting methods, reintegration methods, and

color transfer methods. Relighting methods (Arbel & Hel-Or, 2007; Du, Lin, & Bao, 2005;

R. Guo et al., 2013; He, Zhen, Yan, & Ge, 2017) remove shadows by adding a constant factor

to the shadow pixels in the log domain. In relighting methods, estimation of the constant factor

plays an important role in the final visual effect. Such estimation can be difficult when process-

ing surfaces with irregular texture and non-uniform shadow (e.g., Figure 16(b)). Reintegration

methods (Finlayson, Hordley, & Drew, 2002; Finlayson et al., 2006; Finlayson & Fredembach,

2004; M. Xu et al., 2017) generate shadow-free images by nullifying the derivative of the pixels

and integrating. These methods depend on accurate shadow edge detection. A wide penum-

bra area of the shadow and complex color pattern may seriously affect the visual effect of the

shadow-free images, as shown in Figure 16(c). Color transfer methods (Shor & Lischinski,

2008; Wu & Tang, 2005; Wu, Tang, Brown, & Shum, 2007) handle the shadow removal task

as a color-correction problem. The shadow-free images are achieved by directly transferring a

similar color from a lit region to the shadow region. Usually, the color transfer operation was

conducted separately in different color channels, assuming that the channels are independent.

Nevertheless, in situations in which this assumption is violated, inconsistency in color and un-

natural texture may appear, as shown in Figure 16(d). Figure 16(e) shows the shadow-free
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Figure 16: (a) Original image. Its resolution is 840 × 640. (b) Result with shadow removed

with the method of R. R. Guo et al. (2013). Complex color pattern and irregular texture make

it difficult to find a fixed factor for shadow removal. (c) Result by Gong and Cosker (2017).

Some unnoticeable penumbra regions may seriously affect the results. (d) Result by L. Zhang et

al. (2015). Although the shadow region is lightened, the deviation in color makes the lit region

visually incompatible with the original part. (e) Our approach. (f) Ground truth.

image generated by our novel framework proposed in this chapter. The generated result in the

shadow region is consistent in both color and illumination, and is completely merged with the

lit region.

4.2 Method overview

We consider the shadow on an image as an impairment in the illumination field. Based on

this insight, we adapted the shadow removal task as an image completion framework. We

first decomposed an image into an illumination field and a reflectance field. To guarantee

the color consistency of the shadow-free images, we optimized the reflectance by propagating

the color in the lit region to the shadow region while preserving the salient structure. We

generated a guiding map for the following patch search phases according to the optimized

reflectance field to maximize the use of color information. The guiding map indicates the

location of the possible suitable patches. We then developed a patch-based optimization to
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repair the illumination of the images. To achieve a consistent illumination effect in the image,

we consider both spatial and textural information when recovering the luminance of the target

patches. The search for suitable patches is conducted under the guidance of the optimized

reflectance field. That is, the search for the suitable patches for a sub-shadowed region will be

constrained in a sub-lit region with the same color. After illumination recovery was finished, we

recombined the recovered illumination and optimized reflectance to generate the shadow-free

image. Figure 17 provides an overview of our approach.

4.3 Shadow information model

According to the image formation equation proposed by Barrow and Tenenbaum (1978), an

image I(x, y) can be expressed as a pixel-wise multiplication of an illumination field L(x, y)

and a reflectance field R(x, y) as follows:

I(x, y) = L(x, y) ·R(x, y). (12)

Shadow is formed on an image because less light reaches the object surface than the non-

shadow area. Thus, we can consider a shadow image as an image with an impaired illumination

field. Unlike previous studies (Shor & Lischinski, 2008; Xiao, She, et al., 2013; L. Zhang et

al., 2015) that decomposed the illumination field into a sum of direct and indirect illumination,

we divided the illumination field into a source area s and a target area t:

L(x, y) = Ls
(x,y)∈s

(x, y) + Lt
(x,y)∈t

(x, y). (13)

The source area Ls(x, y) contains pixels that are not occluded in primary light sources. The

target area Lt(x, y) is the shadow area of interest. Note that the target area Lt(x, y) can be

defined according to a specific application (for example, it may only contain pixels in cast

shadow). The partition of Ls(x, y) and Lt(x, y) depends on the shadow detection method. With

the partition of the illumination field, we can formulate the shadow removal task into an image

completion problem, that is, to repair the target region Lt(x, y) based on the source region

Ls(x, y). To properly complete the impaired illumination region Lt(x, y), we designed a patch-

based illumination completion optimization that can use the spatial and textural information in
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Figure 17: Overview of our approach. (a) An input image is decomposed into its illumination

and reflectance. These two fields will be processed in different workflows. (b) In the illumina-

tion workflow, shadow is detected based on its illumination and a shadow mask is generated.

The decomposed illumination is then repaired with an energy minimization framework. (c) The

definition of our energy function. Our energy function considers illumination similarity, texture

similarity, and neighbor coherence simultaneously. (d) In the reflectance workflow, the color

information in the lit regions propagates to the connected shadow region. (e) The reflectance is

optimized before recovering the illumination to provide a reflectance-guided map for the patch

search phases. The search for optimal patches is conducted only in each sub-source region

only. (f) The optimum result of our energy function is achieved by “Search and Lighten” it-

erative optimization. (g) The repaired illumination and optimized reflectance are combined to

generate the shadow-free image.
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Figure 18: (a) Original shadow image. The shadow region is divided into a series of subregions

by some salient structures. (b) Illumination of shadow image. Most of the texture details are

preserved. (c) The reflectance of the shadow image. The mark of the shadow remains, but the

image is mainly composed of three color regions. (d) The color propagates from the lit region

to the connected shadow region. (e) The result of the optimized reflectance.

the image.

A precondition to achieve a successful shadow removal result based on this idea is proper

intrinsic image decomposition. However, intrinsic image decomposition itself is also a chal-

lenging task. Our approach uses the automatic intrinsic image decomposition method described

by J. Shen et al. (2013). The decomposition results are high-quality in most situations. How-

ever, some cases remain in which that the reflectance is not completely separated from the

illumination. The influence of the shadow still exists in the image’s reflectance field. A

structure-preserving image completion technique is used to eliminate the mark of shadows

in the reflectance field.

4.4 Shadow detection

The goal of shadow detection is to label the pixels in the shadow region. Shadow detection is

also a challenging task, because various types of shadows may appear in the same scene. The

shadow on a surface is a complex interaction of illumination, albedo, and geometry. According

to the formation, shadows can be classified into self-shadow and cast shadow. For example,

both a cast shadow and a self shadow appear in the image in Figure 19. Self-shadow refers

to the shadow cast by the object on itself, and cast shadow is formed by occlusion of the light

source by other objects. Even in the cast shadow, the umbra region and penumbra region have

different properties. In the umbra regions, the intensity of the shadow is usually uniform, and

the texture and color information of the underlying surface may be seriously attenuated in the
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umbra region. In the penumbra region, shadow intensity is often non-uniform. To fully explore

the information provided in the image, we used the automatic shadow detection network de-

veloped by Khan, Bennamoun, Sohel, and Togneri (2016). The designed neural network can

automatically learn various features in the image for shadow detection. More specifically, the

shadow binary mask M is achieved by a conditional distribution according to:

P(M |I;w) =
1

Z(w)
· e−E(M,I;w), (14)

where w is the weight vector of the shadow-detection model, and Z(w) is a partition function.

The energy function E(M, I;w) is a combination of a unary potential and a pairwise potential.

The unary potential estimates the shadow properties both at the regions and at the boundaries,

and the pairwise potential estimates the class and spatial transition.

Khan et al. (2016) proved that estimating the probability of Equation 14 via Maximum a

Posteriori (MAP) is equivalent to minimizing the following energy function using the “margin

rescaled algorithm” (Szummer, Kohli, & Hoiem, 2008):

Mopt = argmax P(M |I;w) = argmin E(M, I;w). (15)

With the minimization of the energy function (Equation 15), we can easily identify the

shadow regions in input images. Specifically, the shadow mask we generated with the network

is a binary map. Let (x, y) be the pixel locations in the image, and we define the shadow mask

as:

M(x, y) =


1, Shadow Region;

0, Lit Area.
(16)

Let η(x, y) be the attenuate factor that accounts for the attenuation of the illumination by

the occluder within the shadowed area. Equation 13 can be rewritten as:

L(x, y) = Ls
(x,y)∈s

(x, y) + Lre(x, y) ·M(x, y) · η(x, y), (17)

where Lre is the repaired illumination field achieved via our patch-based recovery method.

4.5 Structure preserving reflectance optimization

The separation of illumination and reflectance fields provides great convenience for shadow

removal, because our direct operation in the illumination field can be free from the interfer-
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Figure 19: Different types of shadow. There are two main types of shadow: self-shadow and

cast shadow. Within the region of cast shadow, the shadow intensity also has different features.

The line chart above shows the shadow intensity changes along the red lines. The intensity is

more stable in the umbra region than in the penumbra region. The penumbra region is usually

located on the edge near the lit region. Thus, boundary processing is necessary to generate

visually pleasing shadow images.

ence of color difference. However, in some cases that the reflectance field is not completely

separated from the illumination field. As shown in Figure 18, although the illumination of the

image is properly calculated, some marks remain in the reflectance field. This phenomenon is

caused by remaining shadow influence on the reflectance. To develop a general method that

can conduct intrinsic image decomposition under any lighting condition and camera setting is

difficult. Thus, we prepare color optimization method to handle these marks.

Figure 18(b) shows that most of the texture details are preserved in the illumination field

and that the reflectance is actually composed of a series of color segments. The color difference

between the shadow region and the lit region still exists. If we directly combined the original
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reflectance with the repaired illumination, the final result will have inconsistent color. Thus, the

reflectance can also be regarded as a damaged image. However, repairing reflectance is much

easier than repairing illumination, because the texture details are preserved in the illumination

field, the remaining color information is useless for repair and the shadow region can be consid-

ered an empty hole. In fact, the repair of the reflectance is similar to color filling. Our approach

first extracts the structure map of the reflectance using Canny operators and divides the shadow

region into a series of subregions according to the structure. We then propagate the color in the

lit region to the connected sub-shadow region. In the cases in which that any closed region is

isolated within the shadow area, the users can assign a reference region or a specific color. To

ensure that the structure is well preserved, the completion method of B. Liu, Li, Sheng, Nie,

and Wu (2019) is used for reflectance optimization. It uses patches of multiple sizes to capture

the structure accurately. The structure-preserving color optimization of the reflectance field is

conducted before illumination recovery and provides guidance for the patch searching process.

4.6 Patch-based illumination recovery

Based on the shadow information model we proposed, we formulate the shadow removal pro-

cess into a completion task in an illumination field. Given the source region in illumination field

s and the shadow region t, our object is to complete shadow region t based on the textural and

geometric information contained in the image. We pose this task as a patch-based optimization

task by minimizing the following energy function:

E(Lt, Ls) =
∑
Q∈t

min
P∈s

(λ1E1(Q,P ) + λ2E2(Q,P ) +λ3E3(Q,Q′)), (18)

where E1, E2, and E3 are energy terms for luminance, textures, and local coherence, respec-

tively. These terms are defined in the following paragraphs. λ1, λ2, and λ3 are weight fac-

tors that control the influence of the energy terms. In our experiments, λ1 + λ2 + λ3 = 1.

Q = N (xq, yq) is an h × h patch from the target region with an anchor pixel Q(xq, yq) in its

center, and P = f(N (xp, yp)) is an h × h patch from the source region with transformation

f applied. The center of the source patch P is defined as P (xp, yp). All patches are extracted

from the illumination field.
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E1 encodes the illumination similarities between the patches from the source region and

those from the target regions, as shown in Figure 17(c). We use a Distance Weighted Sum

of Squared Difference (DW-SSD) to measure the similarities in illumination. Let us denote

Q(i, j) and P (i, j) as the corresponding pixel in patch Q and P , respectively. The energy term

can then be expressed as:

E1(Q,P ) =

∑h
1 ||Q(i, j)− P (i, j)||2

||xp − xq||2 + ||yp − yq||2
, (19)

where (xq, yq) are the coordinates of the anchor pixel of patch Q, and (xp, yp) are the coordi-

nates for the anchor pixel of patch P . According to our observation, patches that are closed

to each other usually share similar light conditions. Source patches that are near the target

patches usually provide important cues for shadow removal. Thus, with our DW-SSD metric,

preference is given to the patches that are closer to the target region if more than one suitable

patch exists.

E2 constrains the texture similarities between patches. Textural information is the most

important cues for finding suitable patches in the source region. To compare the textural differ-

ences, we apply the LBP operator (Z. Guo, Zhang, & Zhang, 2010) to both the target patches

and the source patches as it is shown in Figure 17(c). Given a pixel (x, y) with patch A that is

central in (xa, ya), its LBP code of the pixel is obtained through:

LBP (A) =
h∑

i=1,j=1

ψ(A(i, j)− A(xa, ya))2
i, (20)

where

ψ(u) =


1, if u ≥ 0;

0, if u < 0.

(21)

Note that we apply the LBP operator directly on patches extracted from the illumination field.

Because the LBP operator is not influenced by any monotonic gray-scale transformation, our

approach requires no pre-processing with a Laplacian of Gaussian (LoG) operator as Ng, Chen,

and Liao (2013), and our descriptor is free from the interference of color difference. We encode

every pixel in both the source and target patches using the LBP operator in Equation 20. The

texture similarities between patches can then be measured using their differences in LBP value.

Thus, the energy term E2 is defined with:
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E2(Q,P ) = LBP (Q)− LBP (P ). (22)

E3 constrains the consistency in illumination between adjacent patches. Given a target

patch Q, its adjacent patch Q′ shares common pixels with Q. This energy term is defined as

simple SSD between their overlapped region, as shown in Figure 17(c). LetQ(i, j) andQ′(i, j)

be the corresponding pixels in patches Q and Q′, respectively. The energy term can be written

as:

E3(Q,Q′) =
1∑
h

||Q(i, j)−Q′(i, j)||2. (23)

The introduction of this energy term aims to avoid unnatural artifacts when combining various

patches.

4.7 Iterative solution with reflectance-guided patch search

Directly optimization of the energy function (Equation 18) is impractical due to the massive so-

lution space and time-consuming energy term calculation. The energy function is non-convex

with lots of local minimum. An iterative solution scheme is usually applied to obtain approxi-

mate results. The basic idea of the iterative solution scheme is to initialize each iteration with

the results generated with the previous iteration. The energy of the objective function is con-

strained not to increase in each iteration. Via finite iterations, the energy function can reach a

stable status. In our approach, we developed a “Search and Lighten” iterative solution for the

shadow removal tasks based on the frameworks of Wexler, Shechtman, and Irani (2004). The

iterative solution attempts to reduce the energy of the objective function by repeating operations

in two phases: the search phase and the lightening phase. In the search phase, we introduce a

reflectance-guided patch search to efficiently locate the suitable patch. In the lightening phase,

a local illumination operator is used to transfer the illumination information between matched

patches. The shadow-free patches are then blended to reconstruct the target region. Algorithm

2 shows the pseudo-code of our iterative optimization.
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Algorithm 2 Patch-based Illumination Recovery

Input: Source region in the illumination Ls , Shadow region in the illumination Lt which con-

tains n subregions Lt1, L
t
2, · · ·Ltn, Reflectance guided map R′ which contains m subregions

R′1, R
′
2, · · ·R′m.

Output: Recovered illumination Lre

1: Initialize Lt through filling patches randomly

2: for each sub shadowed region Lti do

3: Locate the subregion R′j which satisfy Lti ⊂ R′j

4: repeat

5: for All (x, y) ∈ Lti do

6: Parallel Search for patches within the region {P |P (xp, yp) ∈ Ls ∩R′j}

7: Retrieve the optimal patch P ∗ ∈ Ls

8: end for

9: Conducted illumination transfer using Equation 24

10: Combined all the patches

11: until convergence

12: end for
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4.7.1 Reflectance-guided patch search

An effective method to search for corresponding patches is the PatchMatch (Barnes et al., 2009,

2010), which is a tool for structural image editing using a randomized algorithm. The algorithm

begins the search with random matching and continues to seek better approximate nearest-

neighbor matches. In the search process, good matches will propagate, and a random search is

conducted to avoid being trapped in a local optimum. To adapt the PatchMatch to our task of

shadow removal, we develop a reflectance guide patch search based on the PatchMatch. In our

task of shadow removal, the original patches in the target area are preserved in the first iteration

instead of being replaced by random patches. Using the original patches for initialization can

preserve the textural information contained in the target region. Also, the initial matching in

the first iteration only considers texture similarities. In addition, to narrow the search space, we

take advantage of the reflectance map to guide the search process. In fact, the color information

contained in the reflectance is helpful in the search for similar patch. As illustrated in Figure

17(e), the target region can be contained in a monocolour region or divided by several color

regions. We assume that patches with similar textures also share similar colors. Thus, the

patch search should be conducted in these color regions with higher priority. In the original

PatchMatch, the search is conducted in the neighbor of the patch from the previous match and

a random location. In our approach, the search is restricted to the same color region with the

highest priority (Figure 17(e)).

4.7.2 Lighten phase through local illumination transfer

After finding the corresponding patches in the source region, we must transfer the illumination

information from the source patches to the target patches. We employ the local illumination

transfer operator designed by L. Zhang et al. (2015). Suppose that source patch P ∗ is a corre-

sponding suitable patch of the target patch Q. The recovered patch Q∗ is obtained with:

Q∗ =
β + 1

αβ + 1
P ∗, (24)



62

where

β =
P ∗ − θ(Q)

αθ(Q)− P ∗
,

θ(Q) = α + γQ,

α = µ(P ∗)− γµ(Q),

γ =
σ(P ∗)

σ(Q)
,

(25)

where µ(·) is the mean value of the pixels in the patches, and σ(·) is the variance of the pixel

value. The illumination recovering operator (Equation 24) is based on the assumption that little

variation in illumination exists in a local patch. By applying this operator, the shadow in the

target patches can be efficiently removed with the value from the patches with a similar texture.

After the target patches are recovered with the local illumination operator, the recovered

patches are combined to form the contents of the target region. Each pixel in the target region

may be overlapped by various patches. The recovered pixel value is determined by averaging

the overlapping pixels from various patches.

4.8 Shadow boundary processing

The transition between the shadow area and the lit area is critical to generate a successful

shadow-free image. An unnatural connection on the shadow boundary will leave traces on the

shadow-free images and lead to failure of the task, as shown in Figure 20. Our approach can

effectively recover the illumination on the shadow boundary in general. When recovering the

pixels on the shadow boundary, the energy term E1 accounts for the spatial distance, which

suggests that matched patches usually intersect with the lit pixels on the boundary. However,

in situations with complex and sharp shadow boundaries, or with heavy loss of the texture in-

formation, artifacts may appear on the shadow boundaries after the shadow-removal operation.

Thus, to achieve seamless connections on the shadow boundary, we use the image quilting

technique to generate an optimal seam.

Patch Qsb on the shadow boundary has its anchor pixel within the shadow area; and patch

Plb near the shadow boundary has its anchor pixel in the lit area, and these patches overlap

along their vertical edges (Figure 20). Note that the two patches are only partially overlap,

which means Qsb − Plb 6= ∅. The overlapping regions are Qov and P ov. To cut the overlap
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Figure 20: Shadow boundary processing. (a) Original shadow image. (b) Shadow removed

from image without boundary processing. Penumbra region is near the edge of the shadow

region and is easily over-lightened. (c) Shadow removed from image by our approach with

boundary processing. (d) In our approach, we combine the lightened shadow regions with the

original image by calculating the optimal seam with minimum error.

region to make the two patches match well to each other, we attempt to reduce the overlap error

surface e = ||P ov −Qov||2. This can easily be accomplished using dynamic programming. Let

Eij be the cumulative minimum error for all paths; we traverse eij to find the minimal vertical

cut in the surface:

Eij = eij + min (Ei−1,j−1, Ei−1,j, Ei−1,j+1). (26)

In the end, the minimum value E in the last row will indicate the end of the programming.

The optimal path that goes through the overlap error surface can be found by tracing back

(Figure 20(d)). The patches that overlap along their horizontal edges can be handled in a similar

manner. In situations in which both vertical and horizontal overlaps exist between regions, the

minimum paths connect in the middle and hence reduce the overall error.

4.9 Evaluations

To verify the effectiveness of our shadow removal approach, we applied it to pictures that

contain various kinds of cast shadow on various scenes and objects. Comparisons between the

results with our approach and those with previous methods are presented. The program used in



64

our experiments is a collection of C++ and Matlab functions run on an Intel i5-4590 3.3 GHz

computer with 8G Ram and an AMD R9 280 graphics card. In the following subsections, we

discuss the shadow-removal effect of our approach and its run-time performance. A parameter

analysis is presented to discuss the influence of each energy term weighted by λ1, λ2, and λ3. In

addition to visual comparison, objective evaluation such as Rooted Mean Square Error (RMSE)

and a user study are also presented.

4.9.1 Visual comparison

To validate our approach, the test pictures used in our experiments contain various color pat-

terns and complex textures. Figures 21 and 22 are the shadow-free results generated with our

approach. The original shadowed images contain complex color patterns. From the results,

we can see that color consistency is of vital importance in shadow removal tasks. As for the

results generated by L. Zhang et al. (2015) (Figure 21(d)), the inconsistent color that appears in

the shadow removed area causes visually unpleasing effects and leads to failure of the removal

tasks. The cause of the inconsistent color can be attributed to a failure to properly transfer the

illumination between different types of textures. The method of R. Guo et al. (2013) and that

of Gong and Cosker (2017) also have similar problems with color consistency. Neither can

properly remove the shadow when various types of texture or material appear in the shadow

region. Unlike those methods, our approach can preserve the texture information and properly

represent color in the shadow area, as shown in Figure 21(e). Most of the textural information

is preserved in the illumination field via the intrinsic image decomposition. With independent

optimization of reflectance and direct transfer operation on illumination, our results are free

from color inconsistency and abnormal texture.

In some challenging cases, multicolor patterns (Figure 21 [the planter]) and irregular texture

(Figure 21 [the grass and the sand]) appear in the target region. The difficulty in removing a

shadow that contains multicolor patterns with color transfer technique lies in properly matching

the color sources and the target regions. If a mismatch appears, the patterns in the shadow re-

gion may be contaminated with incorrect colors (Figure 21(d)). Our approach takes advantage

of the color connectivity between the lit region and the shadow region to effectively avoid this
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Figure 21: Visual comparison: (a) Original shadow images. All images have a resolution of

692×992. (b) Results generated with the method of R. Guo et al. (2013). (c) Results generated

with the method of Gong and Cosker (2017). (d) Results generated with the method of L. Zhang

et al. (2015). (e) Results of our approach.
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problem. The challenge in removing shadow that contains irregular texture lies in processing

the transitions. The transition in irregular textures may not be properly recognized by methods

that depend on accurate shadow edge detection (Finlayson et al., 2006; Gong & Cosker, 2017)

as shown in Figure 21(c). With our approach, the adaptive illumination transfer operators al-

lows the removal of non-uniform shadows on each patch independently. The lightened patches

are combined to reform the contents in the shadow region by averaging the pixel values. The

averaging operation can effectively avoid inconsistency in illumination when handling shadows

that contain irregular textures.

Another critical point to accomplish shadow-removal tasks is shadow boundary processing.

A successful shadow-free image requires a seamless connection between the shadow region

and the lit region. As shown in Figure 22(b), the blurred boundary leaves a trace of the shadow.

Also, an abrupt transition in illumination or inconsistent texture on the shadow boundary can

also lead to an unpleasant visual effect. By applying the image quilting technique, our results

connect the shadow region and the lit region seamlessly (Figure 22(c)).

Our approach can also be applied to remove shadows in aerial remote-sensing images, as

shown in Figure 23. Aerial remote-sensing images differ slightly from common pictures taken

with consumer-grade equipment. High-resolution aerial remote-sensing images usually contain

large amounts of noise, which makes the linear shadow-free method invalid. In addition, build-

ings and landscapes in the images can be regarded as a complex texture on a surface. As shown

in Figure 23, our approach can also handle the complex shadow patterns without distorting the

landscape information on the images.

4.9.2 Comparison with the ground truth

One method of quantitative evaluation of the shadow-free image generated with our approach

is to compare the shadow-free image with the ground truth. To conduct a fair comparison with

other methods, the quantitative comparison is based on the dataset by R. Guo et al. (2013)

which contains 156 images photographed in the same scene; once with cast shadow and once

without any occlusion in the light sources. Except for the difference in light occlusion, all other

conditions, such as camera settings, are the same. We applied our approach to the shadowed
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Figure 22: (a) Original shadow image. (b) Shadow removed from image without boundary

processing. Penumbra region is near the edge of the shadow region and is easily over-lightened.

(c) Shadow removed from image with our approach with boundary processing. Our approach

combines the lightened shadow regions with the original image by calculating the optimal seam

with minimum error.

images and computed the RMSE between the ground truth and the shadow-free images. Figure

24 is a visualization of the RMSE calculation. The RMSE of the previous methods are also

computed for comparison. As illustrated in Table 3, our approach generates results with a

lower RMSE than previous methods. In other words, the results generated with our approach

are closer to the ground truth. It is important to note, however, that a lower RMSE does not

generally guarantee a better perceptual effect. The quantitative comparison is included here

for completeness. In fact, comparison with the ground truth may not be practical in some

applications, in which the ground truth is not available. Our approach focuses mainly on the

pursuit of imperceptible shadow-free images.
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Figure 23: Shadow removed results of aerial remote-sensing photos. The buildings and objects

in aerial images can be treated as complex texture, and our approach can properly remove the

shadow without distortion and color inconsistency.

Figure 24: Calculation of the RMSE. (a) Original shadowed image. (b) Shadow-removed im-

age generated by our approach. (c) Ground-truth shadow-free image. (d) Squared difference

between images (c) and (b). Noted that the difference is multiplied three times for presentation.

4.9.3 Efficiency

For most shadow removal methods, the required time varies according to the scale of the

shadow region. The larger the shadow region, the more pixels that need to be lightened. The

time needed for our approach is also related to the size of the whole image. A larger image

suggests a larger search space of suitable patches. Our reflectance-guided patch search and

parallel programming techniques are designed to handle this problem. As shown in Table 4,

the patch-searching phases take up most of the time in the shadow removal process. The patch

searching methods for other patch-based shadow removal methods (Gryka, Terry, & Brostow,

2015; L. Zhang et al., 2015) are based mainly on the original PatchMatch (Barnes et al., 2009).

As shown in Table 4, our approach has advantages in time consumption, which can be attributed

to the informative guidance obtained from the reflectance. As accelerated with the GPU, our
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Table 3: RMSE Between Results of Various Shadow Removal Methods and Ground-Truth

Shadow-Free Images

Methods Mean RMSE

Ours 33.66

R. Guo et al. (2013) 41.30

Gong and Cosker (2017) 35.36

L. Zhang et al. (2015) 37.44

approach has a further enhancement in executive speed and can save approximately 25% of the

executive time compared to the patch-based shadow removal method of L. Zhang et al. (2015).
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4.9.4 Parameter analysis

The influence of the energy terms is controlled by the weights λ1, λ2, and λ3, which are user-

defined parameters. In our experiments, the weighted parameters are set as λ1 = 0.2, λ2 = 0.6,

and λ3 = 0.2. The higher settings of the weight λ2 gives preference to the textural similarity.

Textural information is the most important cue for illumination recovery. In fact, in the first

iteration of the patch search phases, initialization is based mainly on textual similarity because

of the large difference in intensity between the shadow patches and lit patches. If λ1 is set

relatively higher than λ2, the search may be trapped in a region of lower intensity. As shown in

Figure 25(c), the results generated with our approach have a configuration of λ1 = 0.6, λ2 =

0.2, and λ3 = 0.2. The recovered region is relatively darker than our common configurations.

In general, we recommend setting λ1 lower. It should be noted, however, that a low λ1 may

also weaken the propagation of the good match and the ability to handle soft shadow. λ3 is

used to control the consistency in illumination between overlapping patches. A higher λ3 can

effectively alleviate the unnatural jagged patterns. However, an oversized λ3 may also blur the

contents within the shadow region. As shown in Figure 25(d), our shadow removal approach

is applied to the image with a configuration of λ1 = 0.2, λ2 = 0.2, and λ3 = 0.6. The pattern

represented in the shadow region is slightly blurred.
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Figure 25: Results generated with various configurations of λ1, λ2, and λ3. Notice that when

λ1 = 0.6, λ2 = 0.2, and λ3 = 0, 2, the generated result is relatively darker. With the configura-

tion of λ1 = 0.2, λ2 = 0.2, and λ3 = 0, 6, the texture of the generated result is slightly blurred

and over-lightened.

4.9.5 User study

To understand how the results generated with our approach compare to those produced with the

previous methods from a user point of view, we conducted a user study. A set of 108 shadow

images was selected for user evaluation. The selected images were taken from different scenes

and contain various kinds of texture and objects. The selected images are then processed with

the shadow removal methods of R. Guo et al. (2013), Gong and Cosker (2017), L. Zhang et al.

(2015) and with our approach. The shadow-free results are then presented to the participants

without knowledge of the exact shadow removal method applied in the evaluation process. We

deployed our questionnaire on a website and recruited 30 participants (16 female and 14 male)

from a university via email, WeChat, and Facebook. The participants attended our evaluation

online by visiting a link using a desktop computer or tablet. The average age of the participants

was 23.4 years. The participants were required to rate the image on a 9-point scale (1 to 9

with 9 the highest quality). The ground-truth shadow-free images were also presented to the

participant for reference.
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Table 5: User Study Statistics.

Methods Mean Standard Mean Difference 95% Confidence Interval

Deviation with our approach Lower Bound Upper Bound

Our approach 7.522 0.283 - - -

R. Guo et al. (2013) 3.975 0.508 3.546 3.429 3.663

Gong and Cosker (2017) 5.544 0.445 1.978 1.861 2.095

L. Zhang et al. (2015) 4.97 0.483 2.542 2.425 2.660

Table 5 shows the mean scores of our approach (M = 7.522), the method of R. Guo et al.

(2013) (M = 3.975), the method of Gong and Cosker (2017) (M = 5.544), and the method

of L. Zhang et al. (2015) (M = 4.97). Our approach obtained the highest scores among the

four methods. An ANOVA is conducted to verify the statistical significance of the difference

between the scores. The F value calculated from ANOVA indicates the significance of the

difference. The ANOVA result between the four groups is F (3, 428) = 4.171, p < 0.05, which

indicates that a significant difference exits between the means of the four groups. To further

analyze the difference, we calculated the MD and compared our approach with the method

of R. Guo et al. (2013) (MD = 3.546, p < 0.001), the method of Gong and Cosker (2017)

(MD = 1.978, p < 0.001) and the method of L. Zhang et al. (2015) (MD = 2.542, p < 0.001)

in post hoc tests. The results were all significant and suggest that the participants evaluated

the shadow-free images generated with our approach as better than the others. From the 95%

confidence interval, it can be concluded that the results with our approach are more visually

pleasing than those with previous methods.

4.10 Discussion

This chapter presents a novel shadow removal approach based on a patch-based illumination

recovery. Compared to previous shadow removal methods, our approach adapts the shadow

removal task to an image completion framework and accomplish the tasks via direct repair in

the illumination field using a patch-based recovery. Direct recovery in illumination allows us

to maximize the use of textural information and prevent the interference of color differences.

Unlike previous methods that use post-processing color correction, our approach includes in-
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trinsic image decomposition and optimizes the image reflectance at the beginning to avoid

abnormal chromatic differences. The optimized reflectance is used to guide the patch search

process, and the search is accelerated via parallel programming. Supported by experiments

and the user study, our approach outperforms previous methods and generates more visually

pleasing shadow-free results. In the future, we plan to extend our approach to video-editing

tasks such as the removal of pedestrian shadows in surveillance videos and vehicle shadows

from autonomous driving systems. These tasks require extra optimization in efficiency and

robustness. Another possible direction is to adapt our approach to highlight removal tasks in

which the light spots in the images can be regarded as a special type of shadow.
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5 Explicit Structure Completion via Partial Shape Matching

5.1 Introduction

The shape of an object provides vital information in the process of object recognition. Human

beings can easily recognize an object simply according to its shape. In computer vision, an

object-recognition system often includes a module for shape matching. In fact, shape matching

is a critical task with wide applications in computer vision tasks such as character recognition

(You & Tang, 2007), medical image analysis (Heimann & Meinzer, 2009), and robot naviga-

tion (Wolter & Latecki, 2004). However, shape matching is not an easy task. For one thing,

shape instances generated from the same categories may vary in geometric features due to

transformation (such as translation and rotation) or nonlinear deformation (such as noise and

occlusion). The difficulty lies in how to extract stable and reliable features from the shape’s

contours. For another, a matching scheme should be able to preserve the global geometric fea-

tures while matching the local point features. In sum, a reliable matching scheme contains two

components, a smart shape descriptor and an efficient geometric matching method.

Previous studies devoted considerable effort to design smart shape descriptors in an attempt

to extract as much information as possible from a contour. From a simple two-dimensional

closed curve, there are limited one-dimensional boundary features (tangent angles, Euler Num-

bers, and curvatures) can be extracted directly for shape matching. Contour curvature is a

very important boundary feature for measurement of shape similarities. Previous studies have

shown that curvatures provide sufficient discrimination power in shape matching, but there are

two problems with direct matching based on curvature. One is that calculation of the curvature

requires second-order derivatives, but it is often limited by the angular resolution. The calcula-

tion is easily affected by quantization of the curves in digital images. The other problem is that

the curvature is a local shape feature and does not preserve global geometric information. Thus,

extra techniques are required to achieve geometric matching. Previous researchers attempted

to overcome these two problems with more accurate methods of calculating curvatures and de-

riving various shape descriptors based on curvatures such as Curvature Flexibility (C. Xu et al.,

2009; Manay et al., 2006) and Height Function (Wang et al., 2012).
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Figure 26: Example of the Directed Chords Pattern(DCP). The sample point marked with a star

is selected as the center. The directed chords are vectors formed by connecting the neighboring

sample points. The spatial relationships between the center and the directed chords form the

DCP of this point.

To seek more reliable and effective features, some researchers have attempted to construct

shape descriptors based on 2D features. An intrinsic way is to construct chords in the shape. By

connecting points on the contour, a series of chords can be easily achieved for analysis. Smith

and Jain (1982) used all the chords within a shape to generate a chord distribution for matching

shape. However, direct comparison of the global chord distribution may not be efficient, and

not all chords are necessary for comparison. We note that some efficient shape descriptors

essentially analyze a subset of the chords according to a specific criterion. For example, Shape

Context (SC) proposed by Belongie et al. (2002) essentially measures the chord distribution

using each sample point on the contours as the origin. The Inner Distance Shape Context

(IDSC) introduced by Ling and Jacobs (2007) is an extension of the shape contex by limiting

the chords within the shape for statistics. The Beam Angle Statistic (BAS) (Arica & Vural,

2003) records the angles formed by two chords on a connected sequence. Even the traditional

“splitting and fit” algorithm (Duda, Hart, & Stork, 2012) uses a series of chords along the

contours to simulate the actual curves.

Following the idea to describe shapes by constructing chords, we proposed a novel shape
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descriptor called Directed Chords Pattern (DCP) for shape matching. As shown in Figure 26,

our DCP shape descriptor takes advantage of a series of directed chords, which are formed

sequentially in the neighborhood of a sample point to capture the local geometric features.

Our DCP is essentially the spatial relationship between the sample point and the chords in its

neighbor. We develop a bipartite graph matching scheme based on our DCP descriptor. To

pursue geometric matching and take advantage of global geometric information, we develop a

probabilistic model to estimate the transformation between two shapes. We embed probabilities

based on our metric of DCP to the Gaussian Mixture Model (GMM). The final shape distance

is the weighted sum of both local and global matching. In sum, our work makes the following

contributions:

1. Sensitive to Curvature: Our DCP provides a unique pattern at high curvature points to

provide sufficient discriminating power.

2. Flexible Computational Burden: Only chords in the neighbor of a sampled point are used

to form the DCP. The chords needed for statistics are flexible according to the application

and can be reduced significantly.

3. Transformation Estimation with DCP: The probability based on the DCP metric is em-

bedded into a GMM to estimate the transformation between shapes. The DCP metric

probability functions provide extra information for the alignment of two shapes.

The remainder of this chapter is arranged as follows. In Section 5.2, the definition of

our DCP and its features are presented in detail. Based on the proposed DCP descriptor, the

matching scheme that considers both global and local geometric features is presented in Section

5.3. Our shape matching approach based on DCP is tested on benchmark datasets, and the

experimental results are provided in Section 5.4. In addition to the benchmark test, we also

apply our matching scheme to the task of image repair. We conclude this chapter in Section

5.5.
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5.2 Directed chords pattern

Our proposed local shape descriptor is defined on shape silhouettes, the external contour of

each input shape (Arica & Vural, 2003; Ling & Jacobs, 2007). The contour of the shape is

usually a 2D closed curve. Before a shape descriptor is applied to extract its features, the given

silhouette is uniformly sampled and represented as an ordered set of n points:

S = {p1, p2, . . . , pn}. (27)

Note that the points are sampled in an equidistant manner, which means that ∆Si = pi − pi−1

is a constant. The order of points is generated by following the contour in a counter-clockwise

direction. Given a point pi ∈ S, we define a symmetric neighbor with a fixed radius of K as

NK(pi) = N−K (pi) ∪N+
K (pi), (28)

where

N−K (pi) = {pi−K , pi−(K−1), · · · pi−1},

N+
K (pi) = {pi+1, pi+2, · · · pi+K}.

(29)

According to this definition, for every sampled point pi on shape S, a number of 2×K points

are selected symmetrically in its neighborhood to generate its chord pattern. Specifically, K

points are selected on the left side of the pi, and K points are selected on its right side.

By connecting the points from the the left interval N−K (pi) and the right interval N+
K (pi),

a total number of K2 of chords can be generated. However, not all chords are necessary. To

capture the geometric feature at point pi, we define a group of sequenced chords, the DCS, as a

group of chords with the following definition:

Definition 1. For a point pi on a sampled contour S and a given radius K, the Directed Chords

Sequence (DCS) of pi is defined as

DCS(pi) = {−−→pupv|v − u = K + 1},

pu ∈ N−K (pi), pv ∈ N+
K (pi),

(30)

where −−→pupv is a directed chord that starts at point pu and ends at point pv
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Figure 27: Directed Chords Sequence (DCS) of pi is a series of chords constructed by connect-

ing points in set N−K (pi) and N+
K (pi).

Figure 27 visualizes the Directed Chords Sequence (DCS) of a point on a parabolic curve.

The DCS is a series of vectors that begins from points inN−K (pi), and ends in points inN+
K (pi)

with a fixed interval K + 1. The interval is set to be larger than the radius of NK(pi) to ensure

that pi is contained in the arch p̆upv

Equipped with the DCS, the geometric features near the central point pi can be described

with the spacial relationship between the central point and the chords contained in DCS. As

shown in Figure 28, we developed a coordinate system using the central point pi as the origin.

The spacial relationship between pi and the chord−−→pupv can be described with the point-to-chord

distance and the angle formed between the perpendicular line and the horizontal axis. Let the

Euclidean distance between the center point pi and the chord −−→pupv be AHuv(pi). AHuv(pi) is

also called the arch height at point pi. Let the angle generated by the perpendicular lines and

the horizontal axis be θuv(pi). Note that the range of θuv(pi) is limited to [−π, π]. The two-tuple

(AHuv(pi), θuv(pi)) determines the relative position of the chord −−→pupv referring to the origin of

central point pi.

By calculating the relative position between center point pi and all chords in the DCS, we

can obtain a series of two-tuples. With these tuples, we obtain the following definition of the

DCP:

Definition 2. For a point pi on a contour S and the DCS in its symmetric neighbor Npi, the
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Figure 28: Spatial relationship between a sampled point and a directed chord. Using the sam-

ple point as the origin, a Cartesian coordinate system was developed. The position of a directed

chord relative to a sampled point is measured with two parameters: the perpendicular point-

to-chord distance AHuv(pi) and the angle between the perpendicular line and the horizontal

axis θuv(pi). Note that AHuv(pi) is essentially the arch height at point pi.

Directed Chords Pattern (DCP) of pi is defined as:

DCP (pi) = {(AHuv(pi), θuv(pi)) |−−→pupv ∈ DCS(pi)}, (31)

where AHuv(pi) is the arch height component, and the θuv(pi) is the angular component.

If the arch height component AHuv(pi) and the angular component θuv(pi) are separated

from the DCP (pi) independently, we can easily obtain the Arch Height Pattern (AHP) and the

Angular Pattern (AP) of point pi.

Definition 3. For point pi on a contour S and its DCP (pi), its Arch Height Patern(AHP) and

Angular Pattern(AP) are defined as

AHP (pi) = {AHuv(pi) ∈ DCP (pi)},

AP (pi) = {θuv(pi) ∈ DCP (pi)}.
(32)

These two subpatterns derived from the DCP can provide valuable information near the

central point. These two patterns can complement each other in the invariant description of a
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contour. The AHP of a point on the contour is invariant to rotation and scales linearly with the

object size. The AP is invariant to the size of the object but shifts relative to its orientation.

5.2.1 Features and invariance of the DCP

When applying a local descriptor to a shape, one should consider not only whether the descrip-

tor can properly capture the geometric features at local points, but also whether the description

would be stable after certain transformation such as translations, rotation, or a group of affine

transformations. We apply our DCP descriptor to a toy example and analyze its components,

the AHP and the AP, respectively.

Sensitive to curvature As shown in Figure 29, we use a parabola as a toy example. The

parabola is uniformly sampled into 300 points. We select three points on the parabola for

explanation: the vertex point pa and two points that has equal distance from it on either side

(Marked as point pb and point pc in the Figure). We calculate their DCP with a radius of

K = 40, which suggests that 40 chords near the central point are used to describe the feature.

We use the curvature as a baseline for comparison. In fact, the curvature is one of the effective

features used to describe a closed curve on a 2D plane. Many descriptors in previous studies are

based on the curvature, such as Curvature Scale Space (CSS) (Mokhtarian & Suomela, 1998),

Contour Flexibility (C. Xu et al., 2009) and Height Function (Lin et al., 1992). The three points

we selected for discussion have different curvatures.

The DCP of the points is represented by its AHP and AP, respectively. Figure 29(b) shows

the DCP of the vertex pa, which has the highest curvature on the parabola. As shown in the

Figure of AHP, the arch height AH(pa) maximizes at vertex pa with a sharp climax. The

AHP is symmetrically distributed on both sides of vertex pa. The AP of point pa is similar

to a sigmoid function. The θ(pa) jumps significantly at point pa. The DCP of the point with

lower curvature pb and pc shows different features. In terms of the AHP, the AHP (pb) and

AHP (pc) are obviously smoother and more stable. Although they have a similar symmetric

pattern as AHP (pa), the AHP (pa) has a larger kurtosis than AHP (pb) and AHP (pc). In

terms of the AP, the AP (pb) and AP (pc) are more similar to monotonic linear curves. From



82

these observations, we notice that the DCP can effectively capture fluctuations in the contour

curvature.

Invariance To evaluate the invariance of the DCP, its two components AHP and AP should

be considered separately. Invariance to translation is intrinsic to both patterns because both

measurements are taken with respect to points on the object in our definition. In terms of scale

invariance, the AP is intrinsically scale invariant, as shown in Figure 30. To achieve scale

invariance of the AHP, we normalized the arch heights at all points by the average distance

between each two neighboring sample points (Figure 28). In terms of rotation invariance, the

AHP is not influenced by the rotation but the AP will rotate accordingly. One can achieve

a rotation invariant AP though using a relative frame, such as calculating the theta using the

tangent vector at each point. In this way, the obtained AP turns with the tangent angle and

becomes invariant to rotation. It is worth to note that complete rotation may not be necessary for

every application. For one thing, in some cases that reliable or robustly defined relative frame is

not available. For another, complete rotation invariance may decrease the discrimination power

of the descriptor in some recognition tasks. For example, when distinguishing the number “8”

and the infinity sign “∞”, rotation invariance would be inappropriate.

Time complexity The time consumption for calculating DCP of a shape depends on the sam-

ple rates and the size of the symmetric neighbor. For a point set of size n sampled from on

a shape, if a symmetric neighbor of size K is selected, we need to calculate and record nK

point-chord positions in total. Notice that part of the directed chords may be shared by some

sample points that are closed to each other. Thus, in actual implementation, we can construct

the directed chords before we start to record be relative position instead of repeatedly construct-

ing chords in each computation. There are [n/k] directed chords in total in a point set. From

the above analysis, we can see that the time complexity of calculating the DCP of a shape is

O(nK).
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Figure 29: The Directed Chords Pattern of the points on curves. We provide the DCP of

points on curves to demonstrate its discriminating power. (a) A simple parabolic curve y = x2

and its curvature function κ(y). Three points are selected to present their DCP in (b): the

vertex pa (which is also the extreme point on the curvature function) and two points pb and pc

symmetrically on both side with low curvature. The DCP is significantly different at the point

where the curvature changes dramatically. (c) A cubic curves y = x3 and its corresponding

curvature function κ(y). Note that the curvature function is presented in the interval that

contains the greatest fluctuation. Three points are also selected to present the DCP: the extreme

point on curvature function pd where κpd = 0, a point pe near the extreme point, and a point

pf far away from pd. Their DCP is presented in (d). From the DCP (pe), it can be easily seen

that the curvature change at point pd is also captured in the DCP at pe. A comparison of the

DCP (pc) and DCP (pf ) shows the similarity in curvature between pc and pf .
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5.2.2 Distance of the DCP

Consider a point pi on the first shape and a point qj on the second shape. Let dij ≡ dDCP (pi, qj)

denote the DCP distance between these two points. We start by defining the distance of the

subpattern of the DCP. Similar to previous studies, we use the χ2 test statistic to evaluate the

distance of the AHP and AP:

dAHP (pi, qj) =
1

2

K∑
1≤k

[AHi(pk)− AHj(qk)]
2

AHi(pk) + AHj(qk)
,

dAP (pi, qj) =
1

2

K∑
1≤k

[θi(pk)− θj(qk)]2

θi(pk) + θj(qk)
,

(33)

where AHi(pk) and AHj(qk) denote the kth arch height component in their AHP. θi(pk) and

θj(pk) are the kth angular components in their AP. Because the DCP of each point contains

two components, the distance of DCP is defined as the weighted sum of the distance between

each corresponding component:

dDCP (pi, qj) = ω1dAHP (pi, qj) + ω2dAP (pi, qj), (34)

where ω1 and ω2 are the weights that control the confidence between two subpatterns that satisfy

ω1 + ω2 = 1. The weights can be adjusted according to the practical situation. For example,

when scale normalization is not available, the AP could be more reliable than the AHP. In this

situation, ω2 should be set larger than ω1 to achieve better performance. In our experiments, we

set ω1 = ω2 = 0.5.

5.3 Shape matching scheme with directed chords pattern

The DCP describes the geometric features of a point using the chords constructed by its neigh-

boring points. The correspondence between two points can be obtained by calculating the

distance of the DCP at each point. Our shape matching scheme is based on comparing the DCP

of the sample points set from various shapes.
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Figure 30: Invariance of the Directed Chords Pattern. (a) We use the points on circles to

illustrate the invariance of DCP. p1 and p2 are two points on the identical circle (which has

a radius of 2), and p2 can be regarded as a point transformed from p1 by rotation. p3 is a

point on a circle with a radius of 3. p3 and p1 have the same relative angular position relative

to the center of the circle, and p3 can be regarded as a point transformed from p1 by scaling.

(b) Comparison of DCP between p1 and p2. AHP (p1) and AHP (p2) are identical, and the

AP (p2) can be regarded as a translated pattern generated from AP (p1), which suggests that

the AHP is rotation invariant but the AP is influenced by the rotation. (c) Comparison of

DCP between p1 and p3. AP (p1) and AP (p3) are identical. AHP (p1) and AHP (p3) have

a similar pattern but AHP (p3) has higher kurtosis. The comparison suggests that the AP is

scale invariant but the AHP varies according to scales.
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Figure 31: (a) Kangaroo picture from BSDS300 (Martin et al., 2001). (b) Extracted contour

of the kangaroo with high curvature points marked. (c) Kangaroo contour formed by local

segments with high curvature points.

5.3.1 Local features with directed chords pattern

Previous psychological studies (Attneave, 1950; Biederman, 1987) showed that the corners

or parts of an object that show a significant change provide highly valuable features when

human beings recognize the shape of an object. These corners and parts that contain significant

changes are usually those at which contour curvature change significantly. As shown in Figure

31, human beings can still recognize the shape of the kangaroo even though only the segments

of the corners remain. We noted in the previous section that the DCP can properly capture

fluctuations in contour curvature, so it can be applied to measure the similarity between two

shapes.

Given two shape, S1 = {pi|i = 1 · · ·n} and S2 = {qj|j = 1 · · ·m}, that are sampled at an

equal distance along the contour. We calculate their DCP at each sample points with the same

radius. The two shapes are matched by minimizing the following energy function:

ELocal(ψ) =
∑

i≤n,j≤m

dDCP (pi, qψ(j)), (35)

where ψ is a permutation to ensure that the matching is injective.

Note that we do not strictly require that the number of sample points from two shapes be

the same for generality. When comparing closed contours, equal numbers of sampling points

(n = m) will be preferred. When n 6= m, the task becomes a partial shape matching problem.

Minimization of Equation 35 is essentially a Linear Assignment Problem (LAP) that can
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be efficiently solved by the Hungarian algorithm (Munkres, 1957) or dynamic programming

(Bellman, 1966). The optimum can also be solved in a graph cuts discrete optimization scheme

(Schmidt, Toppe, & Cremers, 2009). In the case of partial shape matching, Dynamic Time

Warping (DTW) (Keogh & Ratanamahatana, 2005) is also preferred to achieve an optimum

match (Michel et al., 2011; Latecki, Megalooikonomou, Wang, & Yu, 2007). However, the

selection of optimization techniques does not completely depend on application schemes.

The matching results ψ achieved by direct minimization of Equation 35 ensure that points

are matched to the most similar corresponding points based on a local feature discrepancy

measure. However, ψ cannot guarantee that the inner distance between points in one shape

is preserved in another shape and thus is nongeometric. Figure 32 provides an example in

which the identical shape on the right is matched to two different templates on the left. High

curvature points on the contours are marked with dots. The template on the left in Fig. 32(a)

is a shape constructed by randomly arranging the segments that contain the high curvature

points. With the Hungarian algorithm, the corresponding points are properly matched with

their local feature. However, the cross of the assignments suggests that global geometry has

not been properly restored. The absence of the global geometric information may easily fool

the matching system with some local similarities between shapes. In fact, the shape on the right

is a part of the heart shape. as shown in Figure 32(b).

One method to consider the distance between the points in both sets is to formulate the task

into pairwise matching and often leads to a Quadratic Assignment Problem (QAP) which is

known to be NP-hard. It can currently be solved with linear (Berg, Berg, & Malik, 2005) or

spectral (Leordeanu & Hebert, 2005) relaxations. Another solution is to introduce serialization

constraint in matching (Egozi et al., 2010). Scott and Nowak (2006) formulated the matching

task into a cyclic order-preserving assignment problem. Dynamic Time Warping (DTW), which

is widely applied in speech recognition and partial shape matching, is also an order-preserving

matching technique because it was initially developed for matching time series. It can also be

applied to closed contour matching but requires alignment of two shapes before comparison

(C. Xu et al., 2009). We apply the Fast Dynamic Time Warping (FastDTW) techniques by

Salvador and Chan (2007) for partial shape matching.
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Figure 32: Geometric matching. We attempt to match an identical shape on the right with two

different templates on the left using the selected landmark points. The correspondence between

points is shown with arrows. (a) The template on the left is generated by rearranging the land-

mark points while preserving their local geometric features. The cross of the correspondence

arrows suggests that the match is not geometric. (b) The identical shape is matched with a

“heart” template. Note that the there are no crosses between correspondent arrows, which

suggests a greater affinity between two shapes.

5.3.2 Global matching with directed chords pattern

Local features can provide sufficient discrimination power between shapes in many circum-

stances. However, the methods that rely mainly on local features may easily be misguided by

some local similarities without considering the global geometric structure. Figure 33 provides

difficult pairs of shapes that are easily mismatched. Thus, it is not reliable to completely match

with local features only. Global geometric structures also play an important role in more ac-

curate matching. In this section, we try to discuss the global geometric relationship between

shapes by estimating a plane transformation.

With a set of correspondence between points sampled from two shapes, we can continue

to estimate a plane transformation Ψ : R2 → R2 to map points from one shape to the other.

In this work, we mainly use a GMM similar to the Coherent Point Drift (CPD) algorithm

(Myronenko & Song, 2010) to estimate the transformation. Given two point sets: an anchor

set SY = {py|y = 1 · · ·M}, and a data set SX = {px|x = 1 · · ·N}, we wish to estimate a



89

Figure 33: Three examples that may cause mismatching. These three pairs of shapes are similar

but have significant deformation of contours.

transformation Ψ that minimizes the following energy function:

EGlobal(SX ,Ψ(SY )) =
∑
px∈SX

∑
p′y∈Ψ(SY )

||px − p
′

y||2. (36)

Energy minimization is achieved with a GMM framework. The anchor set SY is treated as

the GMM centroid, and Sx is generated by the GMM. In this work, we consider the Euclidean

space and the DCP space to measure the similarity simultaneously. Given an arbitrary point p,

the GMM probability density function is

η(p) = β · η(p|M + 1) + (1− β)
M∑
y=1

η(y)η(p|y), (37)

where

η(p|M + 1) =
1

N
, (38)

η(y) =
1

M
, (39)

η(p|y) = ηpos × ηDCP , (40)

ηpos =
1

2πσ2
pos

· e
− ||p−py ||

2

2σ2
pos , (41)

ηDCP =
1

(2πσ2
DCP )K

· e
− dDCP (p,py)

2σ2
DCP . (42)

η(p|M+1) is an addition uniform distribution that accounts for noise and extra outliers. η(p|y)

is the probability function of the components in GMM, and each of them is weighted equally

with 1
M

. Note that in Equation 42 the probability is based on the DCP distance dDCP instead

of the Eculidean distance. Although the DCP distance dDCP has a form of χ2 statistics and

dDCP ∼ χ2(K − 1), we choose the Gaussian probability density function to preserve the
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benign properties of the CPD algorithm. WhenK is large enough, (dDCP (p,py)−(K−1))√
2(K−1)

∼ N(0, 1)

follows a standard normal distribution. One can also choose the χ2 distribution when K is

small.

The GMM model can be re-parameterized with a set of parameters (Θ, σpos). Ψ is the

transformation of the point set, and σpos is the standard deviation of the point position. These

parameters are estimated by minimizing the following negative log-likelihood function:

E(Θ, σ) = −
N∑
x=1

log
M+1∑
y=1

η(y)η(px|y). (43)

The correspondence between two points py and px is defined with the posterior probability

η(y|px) of the GMM centroid given the data from the moving set. According to Bayes’ rule,

η(y|px) = η(y)η(px|y)
η(px)

.

We apply the Expectation-Maximization (EM) algorithm to determine the minimum of

Equation 43. The basic idea of the EM algorithm is to estimate the maximum likelihood via

a two-step repetitive iteration: E-steps and M-steps. In E-steps, the algorithm calculates the

expectation of the log likelihood function based on the current parameters. In M-steps, the pa-

rameters for the next E-step is estimated by maximizing the likelihood function. In our cases,

the posterior probability ηold(y|px) is calculated in the E-steps. The new parameters for the

next iteration are obtained by minimizing the complete negative log-likelihood function in the

M-steps:

Q = −
N∑
x=1

M∑
y=1

ηold(y|px)log(ηnew(y)ηnew(px|y)). (44)

The E-steps and M-steps are conducted alternatively until convergence. To explicitly ex-

press the relationship between the transformation Ψ and the aboveQ-function, Equation 44 can

also be rewritten as follows:
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Q(Ψ,Θ) =− 1

2σ2
pos

N∑
x=1

M∑
y=1

ηold(y|px)||px −Ψ(py,Θ)||2

− 1

2σ2
DCP

N∑
x=1

M∑
y=1

ηold(y|px)dDCP (px, py)

+ (
N∑
x=1

M∑
y=1

ηold(y|px)) · log(σ2
pos)

+ (
N∑
x=1

M∑
y=1

ηold(y|px)) · [(K + 1)log(2π) + log(σ2
DCP )]).

(45)

Note that the transformation Ψ is not applied to the DCP distance calculation and that the

parameters of the DCP are not optimized; thus, the term that contains the DCP distance can be

regarded as constant. In fact, the second and fourth terms are independent of Θ and σpos, which

means that they can be ignored. The posterior probability based on the previous estimation in

the M-steps can be calculated as :

ηold(y|px) =
e
− 1

2

||px−Ψ(py,Θ)||2

σoldpos × e−
1
2

dDCP (px,py)

σDCP∑M
y=1 e

− 1
2

||px−Ψ(py,Θ)||2

σoldpos
− 1

2

dDCP (px,py)

σDCP + c

, (46)

where

c = (2πσoldpos)
2(2πσDCP )K

β

1− β
M

N
. (47)

Note that the transformation Ψ is only a Euclidean motion and is applied only to the po-

sition of the point. The DCP matching probability ηDCP uses the distance of DCP with no

transformation. By minimizing the Q function (Equation 45), the negative log-likelihood func-

tion (Equation 43) decreases until it reaches its local minimum. The complete algorithm is

shown in Algorithm 3. Because our approach only enhances the matching probability calcu-

lation with the DCP distance, the general procedure is similar to the original CPD but with a

different probability calculation in the estimation step.

5.3.3 Matching with local and global DCP features

In this section, we define the shape distance that considers both the local and global features

simultaneously. We match two shapes with local DCP features to obtain the correspondence
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Algorithm 3 Global Matching using Coherent Point Drift with Directed Chords Pattern

Input: Anchor point set SY = {py|y = 1 · · ·M} and the set of the DCP of each point

DCPY = {DCP (py)|py ∈ SY }; Data point set SX = {px|x = 1 · · ·N} and the set

of the DCP of each point DCPX = {DCP (px)|px ∈ SX}

Output: The result of alignment T = Ψ(SY ,Φ) = SY +GW; Probability of correspondence

H = {η}

1: Initialization: W = 0 , σ2 = 1
2MN

∑M,N
x,y=1 ||px − py||2

2: Construct kernel matrix G : gij = e
− 1

2ξ2
||pi−pj ||, where i, j ∈ y, and ξ > 0 is a smoothness

parameters

3: Expectation Maximization

4: while not converged do

5: E-step:

6: Compute the probabilities H according to Equation 46

7: M-step:

8: Solve G + λσ2d(H1)−1W = d(H1)−1HSX − SY with the method in (Myronenko

& Song, 2010)

9: end while
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between points and then estimate the transformation as described in Section 5.3.2. After match-

ing, we used a weighted sum of ELocal and EGlobal to measure the shape distance.

Given two shapes that are closed 2D curves, our framework for matching two shapes ac-

counts for both local and global DCP features:

1. Sample the two shapes uniformly at an equal distance along the contour and obtain the

sample points of same size S1 = p1, p2, · · · , pn and S2 = q1, q2, · · · , qn

2. Calculate the DCP at each point in both point sets S1 and S2.

3. Match the two sample point sets with the calculated DCP with dynamic time warping as

described in Section 5.3.1. The correspondence between points is restored.

4. Estimate the transformation Ψ between S1 and S2, as described in Section 5.3.2. The

initialization of the iteration uses the correspondence restored in local matching.

5. The shape distance between two shapes is determined by:

Efinal = ELocal + γEglobal, (48)

where γ is a weighting factor.

5.4 Evaluations

To verify the performance of our proposed approach, we applied our shape-retrieval method

based on the DCP to open benchmark databases. A comparison with some well-known shape-

retrieval solutions based on other shape descriptors is also presented in this section. The pro-

gram used in our shape-retrieval experiments is a combination of Python and C++ functions.

The program is run on an Intel I5-4590 3.3 GHz computer with 8G ram and an AMD R9

280 graphics card. In the following subsections, we present the experimental results with two

benchmark databases. In addition, we apply our DCP descriptor to the task of image repair to

evaluate its performance in the practical application.



94

Table 6: Benchmark test result on MPEG-7. Our approach is competitive with previous meth-

ods.

Methods Scores(%)

Our approach 88.67

Shape Contexts (Belongie et al., 2002) 76.51

Contour Flexibility (C. Xu et al., 2009) 89.31

Height Function (Wang et al., 2012) 89.66

Inner Distance Shape Context (Ling & Jacobs, 2007) 85.4

The Method of Michel et al. (2011) 83.4

5.4.1 Experiments on MPEG-7 dataset

One of the most popular datasets used to test shape matching methods is Part B of the MPEG-

7-Core Experiment CE-Shape-1 data set (Latecki, Lakamper, & Eckhardt, 2000). The data set

contains 1400 binary images of various kinds of objects grouped in 70 categories of 20 images

each. The benchmark test is conducted in a way called the Bullseye test. Each shape image

in the data set is used as a query and the shapes of the 40 highest scores are retrieved from

the dataset to evaluate the retrieval rates. The retrieval rate of the test equals the percentage of

correctly matched images (out of 20× 70× 20 = 28000).

As shown in Table 6, the retrieval rate of our approach is 88.67%. Figure 34 provides

some characteristic results of our full shape matching technique on the MPEG-7 dataset. We

also include five previous methods for comparison: Shape Contexts (Belongie et al., 2002),

Contour Flexibility (C. Xu et al., 2009), Height Function (Wang et al., 2012), Inner Distance

Shape Context (Ling & Jacobs, 2007) and the method of Michel et al. (2011). The comparison

results are presented in Table 6, which shows that our approach outperforms other methods

based on global chord distribution. Although our approach does not achieve the best scores,

our methods have a relatively small distance compared to the other shape descriptor, which

relies on detecting shape curvatures.
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Figure 34: Characteristic results for shape matching on the MPEG-7 dataset. The images in

the first column are used for the query. The rest of each row includes retrieved shapes in order

of decreasing shape distance.

5.4.2 Experiments on gesture dataset

Another benchmark dataset for testing our method is the Gesture dataset by Milios and Petrakis

(2000). This dataset contains 17 classes and 980 different hand gesture samples. The queries

are shown in Figure 35. The benchmark test designed by Milios and Petrakis (2000) uses

human relevance data to evaluate the performance of the shape retrieval. We include four pre-

vious methods for comparison: the two dynamic programming methods by Milios and Petrakis

(2000), the geometric moments (M. Hu, 1962), and sequential moments (Gupta & Srinath,

1987). Figure 36 shows the precision-recall plots. The recall rate is defined as the ratio of

relevant gestures retrieved from the category to which the gesture belongs. The precision rate

is the ratio of corresponding gestures retrieved out of all retrievals.

We follow the same procedure for computing the precision-recall rate as that in the paper

(Milios & Petrakis, 2000). There are 17 queries in the dataset. For each query, we conduct

visual judgment on the retrieve results of our approach. Then for each query, we merged the

answers obtained by all the candidate methods and form a database that contains the relevant

entries. Although such a method does not allow for absolute judgments such as ”method A

overlook 10% of the total similar answers in the database.”, but it is relatively fair to make
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comparison judgment such as ” method A returns 10% fewer correct answers than method B“.

Since visual judgment is used in our experiment, to ensure that we are comparing the methods

instead of individual difference of the human judgment, the precision-recall rate shown in figure

36 is the average of the 17 queries. As shown in Figure 36, our approach returns more correct

answers than other methods.

Figure 35: Queries in the gesture dataset of Milios and Petrakis (2000).

Figure 36: The precision-recall rate for the retrieval on the gesture dataset. The results gener-

ated by our approach outperform those of other methods.

5.4.3 Application on structure completion in image repair

We apply our shape descriptor to the task of image repair to complete broken structures in

images. Digital image repair, also called as image inpainting or image completion in some

references, aims to repair a damaged image according to the information in the remaining
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region. Given an imapired image I with a cavity C, the image repair task is to infer the contents

in the cavity according to the source region S = I − C. The image repair task can be divided

into two sub-tasks: structure completion and texture synthesis. As noted in a previous study

(Bertalmio et al., 2002), the repairing order matters for generation of reasonable contents for the

cavity. Structures within the images should be restored prior to textures. Otherwise, structure

distortion may appear within in the target region. Structure completion is not an easy task.

Previous methods attempted to repair structures either with preset rules or implicit repair. The

method by Bertalmio et al. (2002) repaired the structures in the image by allowing the pixels

on the structure to propagate according to PDE. J. Sun, Yuan, Jia, and Shum (2005) also had

a similar idea and used belief propagation to connect broken structural lines. S. Li and Zhao

(2011) matched end points of the broken structure using the color information in the neighbors

and designed a set of rules to create more crossing during structure propagation. The Image

Melding technique proposed by Darabi et al. (2012) repairs structures with neighbor constraints

in pixels in their energy functions. All of these methods are able to handle simple structures

such as straight lines or simple curves.

For most previous methods, the structure completion relies mainly on the geometric struc-

tures of the broken lines near the cavity, and the task is similar to curve-fitting. However, in

some cases, a simple connection between broken structural lines with a smooth curve is insuffi-

cient to generate reasonable contents within the target areas. Figure 37(b) provides challenging

examples of repairing the limbs of a horse. It is obvious that it is impractical to repair the

contours of the horse limbs simply according to the geometric features (such as curvatures). To

generate the limbs of the horse, we must enable the program to recognize the object it is match-

ing. Thus, prior object knowledge is necessary. To repair a specific object requires prior object

information. Here, instead of developing a general image-repair system, we present a system

to repair horses in the image with priors from the Weizmann Horse Database (Borenstein &

Ullman, 2002, 2004).

The first step to repair the broken contour of an object is to recognize the shape according

to the remaining contours. This recognition task can be converted to the task of partial shape

matching. Figure 37 presents the repaired horse contours generated by our system. We use
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Figure 37: Contour completion results with our approach using DCP. (a) Images of horses

with holes. The target area is masked with magenta. (b) Impaired contours extracted from the

images in (a) are used as input for shape matching. (c) Matched shapes retrieved from the

Weizemann Horse Database. (d) Completed structures generated by our system. By modifying

matched shapes with the estimated transformation, we repaired the missing structure in the

target contours with the segments from the matched shapes.

the broken contours as input and match them with the shapes in the database. After obtaining

the object shape information, the missing structure is reconstructed by applying the estimated

transformation Ψ on the shape template. After the structures are completed, the remaining

region within the cavity is filled with texture synthesis techniques that use information from

the color template. Figure 38 provides some comparison between our repaired images and

those generated by previous methods. It is obvious that the introduction of object information

can effectively avoid structure distortion and unnatural patterns.
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5.5 Discussion

In this chapter, we present a novel shape descriptor called DCP, which uses the point-chord

relationship to extract the geometric structure of the points on a contour. The DCP has signif-

icant discrimination power and can capture fluctuations in the contour curvatures of the shape.

The DCP descriptor takes advantage of the distance and the angular position of chords to fea-

ture a point. It is invariant to translation and scaling, and can be easily made rotation-invariant

according to specific requirements. Based on the designed DCP descriptor, we develop a graph-

matching scheme to match the local features of the sample points between two shapes. To make

our matching preserve the geometric structures within shapes, we estimate the transformation

between shapes using a GMM model equipped with a DCP measure. Experiments on bench-

mark datasets suggest that our shape matching approach is competitive with previous methods.

To further verify the performance of our DCP shape descriptor, we provide an application for

demonstration: an object-aware image repair program. The repaired results show the effective-

ness of our matching scheme based on the DCP.

Although the DCP shape descriptor has shown sufficient discriminating power in the bench-

mark test and actual application, its complete characteristics are waiting for exploration and it

still has room for further improvement. One problem that worths for exploration is the influ-

ence of sample methods on the robustness of DCP. In our experiments, all the contours are

uniformly sampled. The relationship between the distribution of the sampling points and the

DCP still needs careful inspection. In addition, the performance of DCP under different im-

age details still needs further verification. Although our shape descriptor is invariant to certain

transformation, whether the DCP can provide sufficient discriminating power in low-resolution

images remains unknown. In the image with low resolution, the object contour can be very

noisy.

The DCP shape descriptor may have bad performance when the shape contours are noisy.

Because the DCP shape descriptor extracts shape features at each sample point by connecting

neighboring points to construct chords. If the sampled points have serious deviations from the

actual contour position, the constructed chords may be seriously biased and cause false signals
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in DCP. Noises in the contours can be a serious barrier for the application of most contour-based

shape descriptor. Although our approach performs well on the queries with noisy boundary in

the benchmark test on MPEG-7, corresponding solutions for handling noises on the contour

can be important for the DCP to be applied in a real-world situation.

In the future, we will try to develop a solid theoretical foundation for the DCP. One impor-

tant property of the DCP is its sensitivity to contour curvature. It seems that there are some

links between the contour curvature and the discriminating power of DCP. The DCP may be

considered as a certain representation of curvature. H. Liu et al. (2008) provided a unified def-

inition of curvature for curves. We will seek for possibility of expressing the DCP with this

definition or developing a compatible theoretical framework.
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6 Discussion and Conclusions

In this thesis, we study image repair with enhanced structure completion ability. We recon-

struct structures in images with implicit and explicit enhancement. The implicit enhancement

in structure completion is achieved by applying patches of various sizes in the image repair pro-

cess. During the coarse-to-fine image repair, the sizes of patches used to complete the cavity

can vary to capture the structure at different scales. Unlike previous methods that prefer to use

large patches to capture more information, we add constraints upon the patch sizes to achieve

a balance between performance and efficiency. In addition, we explore the potential versatility

of the patch-based image completion framework. We adapt the image completion method with

implicit enhancement to the shadow removal task. This adaptation is based on the insight that

a shadow image can be considered as an image with damaged illumination. In other words, the

cavity exists only in the illuminance field. Following this idea, we repair the illuminance of the

shadow image with a patch-based method and combine it with the optimized reflectance of the

image to obtain shadow-free images.

The explicit enhancement of structure completion is achieved via partial shape matching

with our novel designed shape descriptor DCP. One type of important structure in an images

is the contour of objects. To repair the deficit contour of an object, we need to equip the

completion system with prior knowledge and enable the computer system to recognize the

object. We used the DCP descriptor to retrieve shape via partial shape matching. Our DCP

describes shapes with the spatial relationship between a local point and the chords distributed

in its neighbor. The DCP is invariant to transformation and is highly correlated to contour

curvatures. Equipped with DCP, we can retrieve the object shape from the database according

to the impaired object contours in the image. Completion of the object contours is achieved by

transforming the retrieved contours and combining them with the impaired contours.

6.1 Impact of this thesis

This thesis contains material from previous publications during my PhD program. The most

important contributions of this thesis include:
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Dynamic Patch System Unlike the traditional patch-based method in which used large patches

of fixed size are used to include more information, we use patches of various sizes to capture

the structural information in the completion process. Because structures vary in scale, patches

of various size are retrieved simultaneously, and suitable patches are selected via a competitive

mechanism. In addition, we allow the size of patches to vary according to the coarse level

to maximize the information retrieved by the patches and reduce unnecessary computation.

(Chapter 3. Work appeared in CGI2017 (B. Liu, Li, Sheng, & Wu, 2017; B. Liu et al., 2019))

Shadow Removal via Image Completion We adapt our image completion techniques to the

task of shadow removal task. Based on the idea that shadows in images can be regarded as

holes in their illumination fields, we formulate the shadow removal task into an illumination

recovery task. By dividing the image into its reflectance and illumination, we can directly repair

the illumination without interference of the color information. The damaged illumination is

repaired with a patch-based framework from image completion. The reflectance is optimized

with our image completion approach with DPS. The generated shadow-free images have better

color consistency than those generated with other techniques.

Efficient Partial Shape Matching We propose a novel shape descriptor called DCP for

matching and recognition of 2D shapes. A series of chords are constructed by connecting

sample points with a fixed interval, and each sample point is encoded via the spatial position

related to chords. The proposed descriptor is sensitive to curvature and provides strong signals

at points where contour curvature changes, and it is invariant to geometric transformation such

as translation, rotation, and scaling. Corresponding points on similar shapes will have similar

DCP, and we achieve correspondence between points by matching their DCP using dynamic

time warping. Given the point correspondence, we estimate the transformation between shapes

with a probabilistic model that accounts for both distances in Euclidean and DCP. We test our

shape matching approach on open datasets, and the results demonstrate the effectiveness of our

approach. We also apply our approach to the task of image repair. The image repair system

based on our DCP can properly restore object contours with a prior collected database.



104

6.2 Limitation and future directions

I believe this work, especially the proposed Dynamic Patch System (DPS) and the DCP shape

descriptor, are fundamentally novel. I hope that the systems and concepts presented in this

thesis can be beneficial for studies of image processing and computer vision. Although this

work makes improvements in image completion and goes beyond the previous framework,

many difficulties and challenges still await. In particular, there is potential to improve our

current work from the following aspects:

• Improvement of implicit structure completion

1. Support superpixel patches and patches with arbitrary shape. The patches used in

the completion are usually square. When capturing irregular patterns with square

patches, partial loss of information is inevitable. Superpixel patches or deformed

patches group pixels according to certain criteria, and the shapes of the patches are

not limited to squares. They may help to capture patterns of arbitrary shapes and

provide a foundation to implement completion at a higher level.

2. Optimization of the match propagation paths. The original PatchMatch algorithm

propagates the good matches between patches from the top left to the bottom right

sequentially. It may be more efficient and flexible if match propagation is allowed

to be conducted in multiple directions with different priorities.

• Improvement of explicit structure completion

Generation of missing contents in the damaged object according to the template object

requires further study:

1. Content consistency within objects. In our completion framework, some unique

missing contents of an object are generated by combining the target object and the

matched part from the template object. However, differences may exist in image

resolution, color, and textures. The recovered object requires consistency in the

pre-existing content and repaired contents
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2. Interaction between objects and background. In some situations, the objects are par-

tially blocked and mixed with the image’s background. When repairing these object

contours, a smooth and natural transition between objects and the background is re-

quired.

In addition, explicit structure repair relies on recognition of the object. Thus, improving

the recognition accuracy can help to reconstruct a better structure in the final completion

results. We suggest that recognition can be improved from the following aspects:

1. Database collection for object recognition. The database provides prior knowledge

for our completion approach to recognize the object in the impaired image. The

ability of recognition heavily depends on the object information stored within the

database. We suggest two directions for expansion of the database. One is to in-

crease the number of object categories, which would be helpful for more general

recognition tasks. The other direction is to create a specific database for certain

recognition tasks, such as vehicles and pedestrians. The database should try to in-

clude various views or poses of the objects.

2. Handling multiple objects. In our completion approach, we repair a damaged image

with a single target. However, in many situations, the damaged area covers several

objects. Repair of these images may require separation in the recognizing phase

and proper relocation of the different objects in the repair phase.

3. Consider contents similarity cues. Our shape matching approach takes advantage of

the object contours only. Consideration of the object contents can help to improve

the matching results.

4. Introduce internal structure recognition. Some internal structures within the objects

(such as closed-curves within an object) may provide useful information and extra

discrimination power in recognition.

Although The DCP shape descriptor has shown discriminating power in our experiments,

there are rooms for improvement and problems for investigation:
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1. Develop suitable sampling methods. The relationship between the sample point

distribution and the discriminating power of DCP needs further investigation. Cor-

responding sampling methods should be developed accordingly.

2. Design corresponding noise suppressing approach. Noises on the contour may im-

pair the discriminating power of DCP and cause false signals. An effective smooth-

ing method is necessary for DCP to be put into practical use.

3. Compatibility with the curvature definition. The DCP is sensitive to contour cur-

vature. It seems that there are certain connections between them. The DCP may

be compatible with the definition of curvature or may be a certain representation of

curvature. Corresponding theory on curvature may be used to explain the discrimi-

nating power of DCP.

• Application of our techniques

The techniques we develop in this thesis can be adapted to other image and video process-

ing tasks. For example, our shadow removal approach may be extended to the shadow

removal tasks in the video, such as removing cast shadows in surveillance videos. In ad-

dition to shadow removal, other image processing tasks can also benefit from our image

completion approach if they can be formulated into the patch-based completion frame-

work. For instance, object cloning refers to the task of reproducing a given object in

a specific location in an image. This task can be regarded as a completion task with

already-known contents.

The development of our approach derives several techniques for recognition and match-

ing that can also be applied to computer vision tasks. For instance, our DCP descriptor

can be applied to gesture and pose recognition. The benchmark test of our DCP descrip-

tor shows that our shape descriptor can be used to develope gesture detection and human

pose estimation systems.
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Appendix A: Glossary

This list contains definitions and brief explanations of terms that are important to understand

the contents in this thesis. We provide this list to readers for easy access to the newly defined

concepts and professional terms in this thesis.

Coherent Point Drift A point set registration algorithm proposed by Myronenko and Song

(2010) that considers the alignment problem of two point sets as a probability density estima-

tion. In this algorithm, one point set represents the Gaussian Mixture Model (GMM) centroid,

and the other represents the data points. The algorithm forces the GMM centroids to move co-

herently as a group, maximizing the likelihood and find the posterior probabilities of centroids.

Directed Chord Pattern (DCP): A novel shape descriptor proposed in this study. It extracts

the features of a shape at each sampling point by constructing a series of directed chords in the

point neighbor. The feature of the shape at each point is described with the relative position

between the point and the directed chords. The relative positions are recorded by the point-to-

chord distance and the angle formed by the perpendicular line and the horizontal axis.

Dynamic Patch System (DPS): A system we developed for image completion tasks. The

system enables parallel search for multiple size patches and selection of a suitable one with a

competitive mechanism. The system enables patch sizes to be changed in the multi-scale image

representation to balance the computational workload.

Expectation-Maximization (EM) algorithm: An iterative computation of maximum-likelihood

estimates in which the observations can be viewed as incomplete data. Each iteration of the al-

gorithm consists of an Expectation step followed by a Maximization step (Dempster, Laird,

& Rubin, 1977). It is commonly used to find maximum likelihood parameters of a statistical

model.

Image Completion: An image-editing task. Given an image with a hole, the goal is to gen-

erate contents with in the hole according to the remaining parts of the image.
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Image Pyramid: A type of multi-scale signal representation in which an image is subjected

to repeated smoothing and subsampling. It is a collection of decreasing resolution images

arranged in the shape of a pyramid (Gonzalez & Woods, 2006).

Intrinsic Images: A mid-level description of an image proposed by Barrow and Tenenbaum

(1978). Given an input image, its intrinsic images are a family of images that contain intrin-

sic characteristics in registration with the corresponding input image. Each intrinsic image

contains, in addition to the value of the characteristic at each point, explicit indications of

boundaries due to discontinuities in the value or gradient. Examples of intrinsic images include

surface reflectance, distance, surface orientation, incident illumination, and transparency.

Illumination and Reflectance: A kind of intrinsic image decomposition proposed by Barrow

and Tenenbaum (1978). Assuming that the image intensity is calibrated to give the reflected

flux density at the corresponding scene point, the reflected flux density is the product of the

integrated incident illumination and the reflectance (albedo) at a surface element. This model

illustrates that an image can be viewed as a product of an illumination image and a reflectance

image.

Shape: The external contours of an object. In computer vision tasks, shapes in digital images

are restored as pixels and can be considered as finite point sets.

Shape Descriptor: A shape descriptor is a set of numbers calculated to extract the features

of a given shape. It attempts to quantify a shape in a manner that is coherent with human

perception (Veltkamp & Hagedoorn, 2001).

Shape Matching: The task of shape matching is to match two arbitrary shapes and measure

the similarity (metric) between them. When two shapes are represented in finite point sets, the

shape matching task is to find a correspondence between two point sets.

Shadow Removal: An image editing task. A shadow is a dark area in an image in which the

light from a light source is partially or completely blocked. The task of shadow removal aims
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to transform the dark area into a condition in which sufficient light is received.

Visual Completion: The perceptual filling in of parts of objects that are hidden from viewed

is called visual completion (Palmer, 1999).


