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Abstract 

Computational thinking (CT), a critical competency everyone should possess in the 

digital age, is attracting increasing attention from researchers and educators worldwide. 

Programming education, the most crucial way to foster CT, is being introduced into early 

childhood education (ECE) settings. However, early programming and CT education are still 

in their infancy, with many unresolved issues. The inconsistency in determining "what to 

teach" in early programming and CT curricula stands as a primary concern, alongside 

unexplored challenges in "how to teach, " including the pedagogical issues and selection of 

suitable programming tools for young children. To address these gaps, Study 1 conducted a 

systematic review to propose a CT curriculum framework for ECE that addresses "what to 

teach". This framework clarifies the content that should be included in the early CT 

curriculum, serving as a foundation for developing early childhood CT education. Study 2 

and Study 3 focused on addressing the issue of "how to teach." Building on the CT 

curriculum framework for ECE, study 2 delved into a case study of an early childhood 

teacher to examine her content knowledge (CK) and pedagogical knowledge (PK) in early 

programming and CT education through the analysis of "what was taught" and "how CT was 

taught." By identifying knowledge gaps, misconceptions, and teaching challenges among 

teachers, this study offers insights for improving professional knowledge and teaching 

effectiveness in this burgeoning field. Additionally, Study 3 focused on another critical aspect 
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of programming and CT education, i.e., programming tools. This study validated the 

positive impact of a particular kit in fostering CT skills among young children, offering 

valuable insights for educators in selecting appropriate programming tools. In conclusion, by 

proposing a CT curriculum framework for ECE, exploring the CK and PK of an ECT, and 

investigating the effectiveness of a hybrid kit, this thesis advances our understanding of "what 

to teach" and "how to teach" programming and CT in the early years. 

Keywords: computational thinking, programming, early childhood education 
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Chapter 1: Introduction 

1.1 Defining computational thinking and programming  

This section defines two key concepts that underpin my study: computational thinking 

and programming. 

Computational thinking (CT) can be traced back to the constructionist endeavors of 

Seymour Papert and was initially introduced as a term in a seminal article by Wing (2006). 

Wing elucidated that CT encompasses the capacity to engage in problem-solving, system 

design, and comprehension of human behavior by leveraging the foundational principles of 

computer science. In essence, CT embodies the skill to analyze and subsequently resolve 

various problems. Her assertions introduced a novel viewpoint on the relationship(s) between 

humans and computers, prompting a surge of scholarly inquiry into CT. 

A commonly adopted definition posits that CT delineates the thought processes 

implicated in problem formulation and the construction and/or deconstruction of the 

sequential steps of a solution in a format executable by a computer, a human, or a hybrid of 

both (Aho, 2011; Kim and Lee, 2016; Wing, 2011). In this manner, CT epitomizes a form of 

analytical thinking that bears resemblance to mathematics thinking (e.g., problem-solving), 

engineering thinking (design and assessment of processes), and scientific thinking 

(systematic analysis) (Bers, 2010; Bers, 2021). 

In the context of early childhood education, we define CT as thought processes that 

young children develop through systematic analysis, exploration, and testing of solutions to 

open-ended and often complex problems (Wang et al., 2020). 

Programming refers to developing a set of instructions that a computer can understand 

and execute and debugging, organizing, and applying that code to appropriate problem-

solving contexts (Mills et al., 2021). 
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CT and programming are closely interconnected, with each relying on and enhancing 

the other. Programming necessitates CT skills to create efficient and effective code (Lye & 

Koh, 2014), while programming plays a crucial role in the development of CT (Voogt et al., 

2015). For example, when programming, a programmer often needs to break down a complex 

task into smaller parts, recognize patterns in data, and identify the most efficient approach for 

each step. This process involves CT skills such as pattern recognition, algorithmic thinking, 

and abstraction, which can then be applied to other domains, such as mathematics, science, 

and engineering. 

1.2 CT and early learning and development 

Since CT points to “the systematic analysis, exploration, and testing of solutions to 

open-ended and often complex problems” (Wang et al., 2020, p. 78), it is critical for children 

to develop practical planning skills, critical thinking, and problem-solving abilities. 

According to Bers (2018), CT plays a vital role in equipping children with problem-solving 

skills and creativity, particularly in an increasingly digital world. Moreover, CT has been 

found to have a significant impact on children's metacognition (Mills et al., 2021), executive 

functions (Di Lieto et al., 2017) and self-regulation (Yang et al., 2022). Beyond enabling 

learners to engage with computers, CT holds wide-ranging implications for children's 

learning across various subjects, including reading, writing, mathematics, and social-

emotional development (Mills et al., 2021; Wing, 2011). Consequently, the cultivation of CT 

has emerged as a crucial educational objective and is progressively being integrated into the 

domain of ECE. 

1.3 Overview of global programming and CT initiatives in ECE1  

Programming and CT education are attracting increasing attention from researchers 

 

1 This section references the following paper: Bers, M. U., Strawhacker, A., & Sullivan, A. (2022). The state of the field of 

computational thinking in early childhood education. https://doi.org/10.1787/19939019  
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and educators in ECE around the world and have been progressively incorporated into ECE 

(Bers et al., 2022). Current nationwide programming and CT initiatives primarily focus on 

primary and secondary school children; however, an increasing number of countries and 

regions have adopted explicit policies and strategies for introducing technology and computer 

programming to young children. This section, categorized by global regions, delineates 

existing CT initiatives in ECE. 

1.3.1 Americas 

In the Americas, the United States is prominently advancing the promotion and 

implementation of CT educational programs, although several other nations are preparing to 

launch CT education within or beyond the school curriculum. The US-based Code.org 

initiative has achieved significant success in encouraging school-aged students to learn 

computer science and coding skills through initiatives like Hour of Code, offering free 

resources for schools to engage students as young as kindergarten in 1-hour curricular 

activities and events. 

While Canadian provincial and territorial early learning frameworks do not explicitly 

mention CT, references to related terms and practices such as "technological competence" in 

kindergarten emphasize the understanding and application of technological tools for problem-

solving. National policy frameworks in Canada, such as the "Digital Action Plan for 

Education and Higher Education" and the "Educating for a Digital World" report, outline 

strategies for integrating coding and robotics into education from an early age. In the 

Canadian territory of British Columbia (BC), children aged 5-8 are supported by the BC 

Early Learning Framework and curriculum, which includes Applied Design, Skills, and 

Technologies to foster CT skills among children. Furthermore, digital literacy frameworks in 

Alberta, BC, and the Northwest Territories, starting from kindergarten, underscore the use of 

technology to foster innovation and exploration in students rather than solely as a teaching 
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aid for educators.  

Other countries in the Americas, including Chile, Argentina, Uruguay, and Brazil, are 

incorporating computational and digital technology proficiencies into their national curricula, 

with a specific focus on CT skills such as decomposition, pattern recognition, and abstraction 

from early childhood. 

1.3.2 Europe 

In Europe, a diverse array of CT initiatives is underway across multiple countries. A 

survey across 21 European nations revealed that coding is integrated into the curriculum at a 

national, regional, or local level in 16 countries, including Austria, Bulgaria, Czech Republic, 

Denmark, Estonia, France, Hungary, Ireland, Israel, Lithuania, Malta, Spain, Poland, 

Portugal, Slovakia, and the United Kingdom (England). The United Kingdom's national 

curriculum framework introduced in 2013 emphasized computing as an educational domain 

from early childhood.  

In Finland, programming is mandated for all primary school students since 2016, 

while Estonia and Italy are actively integrating programming and computer science into their 

curricula. Spain has recognized the significance of CT in education, with various national and 

regional initiatives like the School of Computational Thinking (EPCIA) and the integration of 

CT content into primary education in Navarra, Madrid, and Catalonia. National curriculum 

decrees in Spain stress the development of digital competence and CT throughout 

compulsory education, starting from early childhood. Additionally, Finland and Belgium are 

incorporating CT skills into their curriculum frameworks to enhance children's information 

and communication technology competence from early childhood. 

1.3.3 Asia, Australia, and Pacific Island nations 

In the Asia-Pacific region, countries like Korea, Taiwan, Hong Kong, and China are 

implementing national curricular reforms to address the growing emphasis on CT education. 
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Singapore has launched nationwide projects, such as the PlayMaker initiative, to introduce 

programming and various technologies into early childhood classrooms, while Australia and 

New Zealand are revising their curricula to include computer science and digital 

technologies. Australian childcare services are required to base their educational programs on 

an approved learning framework, enabling educators to cater to individual developmental 

needs and interests, including engaging with information and communication technologies 

for information access and idea exploration. An update to these frameworks is underway to 

ensure alignment with contemporary developments in practice and knowledge. 

1.4 Obstacles hinder programming and CT education in ECE in China 

In 2022, China issued the Compulsory Education Information Technology Curriculum 

Standards (《义务教育信息科技课程标准》), which include CT as one of the core 

literacies of the information technology curriculum (Ministry of Education, 2022). However, 

this policy primarily targets primary and secondary school students. CT education in ECE is 

still in its early stages, lacking necessary policy support. The integration of CT education in 

ECE faces various obstacles. 

1.4.1 Teacher preparedness 

Many early childhood educators may not have received training in teaching 

programming or CT education. Without a solid knowledge of programming and CT 

education, educators may lack confidence in their ability to teach it effectively, which can 

hinder the implementation of a programming curriculum. 

1.4.2 Limited resources 

ECE institutions in China may have limited resources, such as access to computers, 

software, and other educational robots needed for programming education. Without proper 

resources, it can be challenging to teach programming to young children effectively. 
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1.4.3 Cultural attitudes towards technology 

Some parents and educators in China may hold traditional beliefs about the role of 

technology in education, viewing it as a distraction or not essential for young children. These 

cultural attitudes can hinder the effective implementation of programming education in ECE. 

1.4.4 A lack of curriculum alignment 

The existing ECE curriculum in China may not be aligned with programming education, 

making it difficult for teachers to incorporate programming into their lesson plans. Without a 

clear framework for integrating programming education, it can be challenging to teach these 

skills to young children effectively. 

1.4.5 Curriculum overload 

The existing curriculum may already be packed with subjects considered fundamental, 

leaving little room for the addition of programming education. 

1.4.6 Policy and government support 

There may be limited government policy supporting the integration of programming 

education in ECE. Without incentives or support from educational authorities, schools may 

not prioritize adopting programming into their curriculum. 

1.4.7 Societal understanding of programming and perception of relevance 

Educators and parents may lack understanding about the importance of programming 

education and its relevance to young children. The long-term benefits of programming 

education in developing problem-solving skills and CT may not be widely recognized. 

1.4.8 Developmental concerns 

There may be concerns about whether young children are developmentally ready to 

engage with abstract concepts involved in programming. 

1.4.9 Assessment 

There may be a lack of appropriate assessment methods to evaluate young children's 
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progress in programming education. 

To address these obstacles, a multifaceted approach is needed, which includes policy 

reform, teacher training, curriculum development, investment in resources, and efforts to shift 

cultural perceptions about the value of programming education in ECE. Collaboration 

between educators, policymakers, parents, and the wider community is essential to create an 

environment where programming education can be effectively integrated into early childhood 

education in China. 

1.5 Pedagogical Issues Related to Teaching Programming and CT in ECE 

This section summarizes the teaching context, activity structure, pedagogical 

approaches, and pedagogical strategies previously used to foster children’s programming and 

CT skills.  

1.5.1 Teaching Context 

Lee and Junoh (2019) noted the importance of infusing programming and CT into 

children’s daily lives and setting up programming centers/corners in early childhood 

classrooms. Mills et al. (2021) emphasized that integrating programming and CT into other 

learning domains would provide meaningful learning contexts for young children. 

1.5.2 Activity Structure 

There are three categories of programming and CT activity structure: highly 

structured, mixed, and open-ended. Most studies designed highly structured programming 

and CT activities (Khoo, 2020; Nam et al., 2019) and few studies designed open-ended free 

play with programming tools. Newhouse et al. (2017) found that the children appeared more 

engaged and motivated in the high teacher-supported sessions rather than in free play without 

explicit scaffolding. Other studies designed mixed activities (Bers et al., 2014; Bers et al., 

2019). For instance, in the study by Strawhacker and Bers (2015), there was always a “buffer 

lesson” for children to explore the programming materials freely, which allowed them to 
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absorb what they had learned and kept their attention throughout other highly structured 

activities. 

1.5.3 Pedagogical Approaches 

 Early programming and CT education employs a variety of pedagogical approaches. 

One such approach is the task-based approach, where learning activities revolve around tasks 

guided by adults (McCormick & Hall, 2021). Bers (2019) showed how such intentionally 

structured activities can aid young children in developing CT skills. Another notable 

approach is the project-based learning, characterized by its student-centered nature. This 

approach emphasizes students' autonomy, goal-setting, planning, exploration, cooperation, 

and reflection within authentic real-world practices (Kokotsaki et al., 2016). Several studies 

involved activities of the construction of robots, engaging students in design, problem-

solving, decision-making, and investigative tasks (Macrides et al., 2021). Play-based 

learning, on the other hand, presents a playful and child-directed pedagogical approach with 

some adult guidance and predefined learning objectives (Pyle & Danniels, 2017). Critten et 

al. (2022) suggested play-based, pedagogic practices can be used with children as young as 2 

years to learn many of the basic concepts involved in CT skills. Moreover, Lye and Koh 

(2014) suggested designing a problem-solving learning environment, which includes 

authentic problems, information processing, scaffolding and reflection, to enhance students’ 

CT practices and perspectives. 

1.5.4 Pedagogical Strategies 

Previous studies have examined the effectiveness of different pedagogical strategies 

for improving young children’s CT, including unplugged activities, embodied cognition, 

external memory support scaffolding, and pair programming. Unplugged programming uses 

materials like paper, cards, and blocks and has been shown to improve CT skills through 

embodied learning, lower cognitive load, and concrete analogies (Otterborn et al., 2020; 
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Romero et al., 2018). While for embodied cognition, there are two kinds of embodiment 

according to the source of body movement: direct embodiment, which refers to moving 

bodies to perform solution steps; and surrogate embodiment, which refers to manipulating an 

external surrogate without engaging their bodies (Fadjo, 2012b). External memory support 

scaffolding is used to help children cope with working memory limitations and reduce 

cognitive load during programming (Angeli & Valanides, 2020). Pair programming, a 

collaborative programming approach in which two students work together on a single 

computer to complete the same programming task, positively improved students’ 

programming and CT skills, learning motivation, metacognition, and collaboration (Denner et 

al., 2014; Papadakis, 2018). Besides these experimental studies, Wang et al. (2020) video 

observed various strategies an exemplary teacher used to support preschoolers’ CT skills, 

such as modelling a positive attitude toward error, breaking down problems into small steps, 

and providing different scaffolds according to children’s individual needs. 

However, previous studies were mainly aimed at validating the effectiveness of a 

particular pedagogical strategy in improving children’s CT without examining what 

pedagogical strategies teachers used. Only Wang et al. (2020) investigated the pedagogical 

strategies used by a male teacher; however, this case study was conducted in a higher teacher-

student ratio (1:3) context instead of a large-group context which is common in Asian cultural 

contexts. 

1.6 Tools for early CT learning 

Yu and Roque (2019) classified programming tools into physical, virtual, and hybrid 

kits. Physical kits consist of tangible components. Virtual kits are PC and/or mobile-device-

based applications without tangible components. Hybrid kits combine both tangible and 

virtual parts and can further be divided into two subcategories: “kits with physical robot and 

graphical programming environment” and “kits with virtual sprites and tangible programming 
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environment” (Yu & Roque, 2019, p. 23). Previous studies that investigating the effectiveness 

of programming on young children's CT have primarily employed physical kits, such as Bee-

Bot (Angeli & Valanides, 2020), KIBO (Bers et al., 2019), and Code-a-pillar (Wang et al., 

2020). Additionally, some studies have utilized virtual kits, such as ScratchJr (Strawhacker et 

al., 2018) and Code.Org (Çiftci & Bildiren, 2020). There has also been exploration of hybrid 

kits combining a physical robot with a graphical programming environment, such as LEGO 

WeDo (Elkin et al., 2014). However, no studies have yet examined the effectiveness of hybrid 

kits with virtual sprites and tangible programming environment in promoting CT in young 

children (Yu & Roque, 2019). 

1.7 Research gaps, objectives and questions 

Although both research and policies indicate the significance of teaching 

programming to young children, programming and CT education in early childhood is still in 

its infancy. Many problems of the teaching of programming and CT in ECE settings 

necessitates a thorough investigation using rigorous theoretical and methodological 

approaches (Zapata-C et al., 2021).  

First and foremost, there is inconsistency across early childhood  CT curricula 

regarding the content to be taught, which holds significance across all disciplines (So et al., 

2020). Furthermore, there is a dearth of systematic review that examines the components of 

CT that should be integrated into early childhood curricula. Consequently, a CT curriculum 

framework is highly necessary and important in the field of ECE for several reasons. Firstly, 

such a framework would provide clarity on the essential components to be included in the 

curriculum, thereby making a notable theoretical contribution and facilitating future studies 

conducted within a unified CT curriculum framework for ECE. Secondly, preschool teachers 

often lack the necessary content knowledge to effectively support children's CT learning, 

which hinders their progress (Strawhacker et al., 2018; Wang et al., 2020). A CT curriculum 
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framework for ECE would provide teachers with a comprehensive understanding of the 

content of CT education in early childhood settings, thus guiding teachers to integrate CT 

education into their classrooms. Thirdly, a CT curriculum framework for ECE holds 

importance for policy development. Despite the recognition of CT as a critical skill for the 

21st century, many regions and countries do not currently include it in their policy documents 

for ECE. A refined CT curriculum framework would support the formulation of policy 

guidelines and promote the implementation and dissemination of CT education in early 

childhood settings. 

In addition, no known studies have examined the PCK for programming and CT of 

early childhood teachers (ECTs). Teachers’ pedagogical content knowledge (PCK), which 

“represents the blending of content and pedagogy into an understanding of how particular 

topics, problems or issues are organized, represented, and adapted to the diverse interests and 

abilities of learners, and presented for instruction” (Shulman, 1987, p. 4), has been identified 

as a crucial factor in predicting and improving young children's learning outcomes within 

specific domains (Dunekacke & Barenthien, 2021). 

Finally, the complete exploration of the influence of programming tools on young 

children's programming learning is still lacking. Programming tools can be categorized into 

physical, virtual, and hybrid kits (Yu & Roque, 2019). Previous studies that investigating the 

effectiveness of programming on young children's CT have primarily employed physical kits, 

virtual kits, hybrid kits combining a physical robot with a graphical programming 

environment. However, to date, there is a lack of research investigating the efficacy of hybrid 

kits featuring virtual sprites and tangible programming environments in fostering CT skills 

among young children (Yu & Roque, 2019). 

Based on the above analysis, the overall objective of this study is to investigate “what 

to teach” and “how to teach” programming and CT in the early years. Specifically, the 
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research aims to: 

(1) Propose a CT curriculum framework for ECE that outlines the key components of 

CT that should be emphasized. 

(2) Examine the pedagogical content knowledge (PCK) of early childhood teachers, 

particularly the content knowledge (CK) and pedagogical knowledge (PK), in the 

context of early programming and CT education. 

(3) Examine the effectiveness of a hybrid kit with virtual sprites and tangible 

programming environments in promoting CT in young children. 

1.8 Structure 

This thesis comprises a total of five chapters. Chapter 1 offers an overview of the 

background that led to the conducted research, along with the objectives and structure of the 

thesis. Chapters 2, 3, and 4 present three separate studies, each focusing on a key issue related 

to CT education in ECE. Figure 1 is an overview of the three studies. Study 1 conducted a 

systematic review of empirical studies to establish a CT curriculum framework for ECE, 

thereby addressing the question of "what to teach." This framework serves as the coding 

framework for Study 2 and Study 3. This framework will serve as a coding framework for 

Study 2 and Study 3. Study 2 and Study 3 examined the question of "how to teach" 

programming. Study 2 investigated a preschool teacher's PCK in the field of programming 

and CT education, while Study 3 explored the effects of a hybrid programming tool on young 

children's CT. Lastly, Chapter 5 discusses the implications of the conducted research and 

provides suggestions for future research directions. 
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Figure 1  Overview of the Three Studies 
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Abstract 

Computational thinking (CT) is gaining increasing attention from researchers and 

practitioners all over the world to empower children in the digital era. However, there is no 

consensus on which components of CT to teach beginning coders in early childhood 

education (ECE). To address this issue, we conducted a systematic review of 42 empirical 

studies focused on teaching and assessing CT in ECE. We analyzed the included studies with 

the three-dimensional CT framework proposed by Brennan and Resnick (2012) and 

demonstrated how this framework could be modified to fit the context of ECE. Based on this 

systematic review, we sorted out the CT components that were proven suitable for young 

children to learn by incorporating emerging components and removing components 

inappropriate for young children. We thus proposed a CT curriculum framework for ECE that 

covers CT concepts (i.e., control flow/structures, representation, and hardware/software), CT 

practices (i.e., algorithmic design, pattern recognition, abstraction, debugging, 

decomposition, iteration, and generalizing), and CT perspectives (i.e., expressing and 

creating, connecting, perseverance, and choices of conduct). This systematic review and its 

associated CT curriculum framework provide important theoretical contributions and 

practical implications for early childhood CT education. 

Keywords: programming; computational thinking; early childhood teacher; content 

knowledge; pedagogical knowledge
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Computational thinking (CT), which aligns with 21st-century skills, is vital to 

children’s learning and development. Wing (2008) argued that CT is as important as reading, 

writing, and math and should be learned from the early years. Bers (2018) stated that CT 

assists children in becoming efficient and creative problem solvers in an increasingly digital 

world. In addition, aside from empowering learners to communicate with computers, CT has 

a significant influence on other disciplines (Wing, 2011), as well as children’s metacognition 

(Mills et al., 2021) and self-regulation (Yang et al., 2022). 

Notably, CT is gaining attention among worldwide researchers and educators in the 

field of early childhood education (ECE) and has been progressively incorporated into early 

childhood curriculum (Cho & Lee, 2017; Papadakis et al., 2016; Sung et al., 2017). Early 

childhood, broadly defined as ages 0-8 by the National Association for the Education of 

Young Children (NAEYC), is an essential period of human development. However, the 

answer to the question of “what to teach”, which is important for all disciplines, is 

inconsistent across early childhood CT curricula (So et al., 2020). For example, Angeli et al. 

(2016) proposed a CT framework for K-6 curricula that covered five components: algorithms, 

abstraction, decomposition, debugging, and generalization. However, their framework was 

not based on empirical evidence. In contrast, the TangibleK curriculum used in some studies 

(Bers et al., 2014; García-Valcárcel-Muñoz-Repiso & Caballero-González, 2019) addressed 

sensors, sequencing, loops, branches, action-instruction correspondence, robotic motion, 

debugging and engineering design processes. The KIBO robotics curriculum reported in 

some other studies (Bers et al., 2019; Elkin et al., 2016; Pugnali et al., 2017; Relkin et al., 

2021; Sullivan & Bers, 2018), however, highlighted other concepts, including sequencing, 

conditionals, and repeat control structures, while the card-coded robotics curriculum used in 

Nam et al. (2019) study involved the CT skills of sequences, representation, and being 

iterative and incremental. 
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Moreover, there is no systematic review of what components of CT should be 

embedded in early childhood curricula based on empirical studies. To address this knowledge 

gap, this review aims to propose a CT curriculum framework for ECE articulating what CT 

components a curriculum should promote, by systematically examining relevant empirical 

studies targeting children aged 2-8. 

2.1 Defining CT 

To establish a CT curriculum framework for ECE, working through the definition of 

CT is necessary. Wing (2006) coined the term CT and viewed it as a way of “solving 

problems, designing systems, and understanding human behavior, by drawing on the concepts 

fundamental to computer science” (p. 33). A few years later, Wing (2010) updated the 

definition of CT as “the thought processes involved in formulating problems and their 

solutions so that the solutions are represented in a form that can be effectively carried out by 

an information-processing agent” (p. 1). CSTA and ISTE (2011) developed an operational 

definition of CT, which refers to a problem-solving process, covering core skills such as 

abstraction, problem reformulation, logical thinking, algorithmic thinking, selecting the 

optimal solution, generalization and problem transfer. These skills are further supported and 

enhanced by learning dispositions, such as confidence, persistence, collaboration, tolerance 

for complexity, and the ability to deal with open-ended problems. Shute et al. (2017) defined 

CT as “the conceptual foundation required to solve problems effectively and efficiently (i.e., 

algorithmically, with or without the assistance of computers) with solutions that are reusable 

in different contexts” (p. 151) and categorized CT into six aspects: decomposition, 

abstraction, algorithm design, debugging, iteration, and generalization. In contrast, Bers et al. 

(2019) viewed CT not only as a problem-solving ability but also as “an expressive process 

that allows for new ways to communicate ideas” (p. 131). Bers (2018) described seven key 

components of CT for children aged 4 to 9, including control structures, representation, 
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hardware/software, algorithms, modularity, debugging, and design process. 

As described above, there is not one unanimous definition or model of CT. While 

classical, Wing’s (2006, 2011) definitions are relatively broad. Definitions by other 

institutions or researchers are relatively operational, but these definitions or frameworks vary 

in the dimensions of CT. For example, the definition of CSTA and ISTE (2011) involves CT 

practices (problem-solving process) and CT perspectives (learning dispositions). Differently, 

Shute et al.’s (2017) definition entails a set of CT practices, while Bers’s (2018) definition 

includes CT practices (algorithms, modularity, debugging and design process) and CT 

concepts (control structures, representation, hardware/software). Instead, the present 

systematic review will propose a CT curriculum framework for ECE to embrace CT 

concepts, practices, and perspectives as an organic system. Building upon the commonalities 

of the above definitions (i.e., problem solving), we define CT as an approach to solving 

problems that are often messy, complex and open-ended in various disciplines, with the use 

of computational concepts, practices, and perspectives. 

2.1.1 Previous reviews on CT in school education 

To the best of our knowledge, 20 reviews have examined CT in the school context. 

Among them, 17 reviews have investigated CT in K-16 schools, and three have examined CT 

in ECE.   

Researchers have examined CT in K-16 education from five main facets: CT 

mapping, CT definition and model, CT teaching and learning, CT assessment, and 

interrelations between CT and creativity. Tikva and Tambouris (2021) developed a 

conceptual model which described different CT research areas and their relationships. Shute 

et al. (2017) established a model of CT based on a review of theoretical work. Ezeamuzie and 

Leung (2022) proposed a CT model emphasizing algorithmic solutions drawing on 

programming concepts. Zhang and Nouri (2019) investigated the empirically supported CT 
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abilities that can be learned using Scratch in K-9. Regarding CT teaching and learning, two 

reviews examined teaching CT through programming (Lye & Koh, 2014; Sun et al., 2021a). 

Sun et al. (2021b) and Zhang et al. (2021) separately investigated the effectiveness of 

educational games and robots for improving students’ CT. Huang and Looi (2021) and Lee et 

al. (2022) separately examined how “unplugged” pedagogies and CS education enhance 

students’ CT skills. Other researchers focused on integrating CT into the school curriculum 

(Chan et al., 2022; Kite et al., 2021; Ogegbo & Ramnarain, 2021; Wang et al., 2021). In 

addition, two reviews specifically investigated the assessment of CT (Cutumisu et al., 2019; 

Tang et al., 2020). Furthermore, Israel-Fishelson and Hershkovitz (2022) explored the inter-

dependencies between creativity and CT. 

In the context of ECE, Bakala et al. (2021) examined robot-mediated activities to 

foster preschool children’s CT. McCormick and Hall (2021) examined CT learning 

experiences design, educational outcomes, and CT research design. Bati (2021) investigated 

whether the variables of plugged-in versus unplugged, gender, and age affect CT teaching 

and learning in early childhood.  

Among the aforementioned 20 reviews, three of them (Ezeamuzie & Leung, 2022; 

Shute et al., 2017; Zhang & Nouri, 2019) have proposed a CT framework or model. 

However, they were targeted at K-16 education without focusing on a significantly different 

stage of education-ECE. Based on a meta-review of the existing reviews, we found that no 

review has focused on what CT components can be embedded in ECE. A robust CT 

curriculum framework for ECE will provide researchers and teachers with a better knowledge 

of the content of CT education in early childhood settings. Nevertheless, there is no such 

framework for CT in ECE.  
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2.1.2 The three-dimensional CT framework  

In 2012, Brennan and Resnick developed a groundbreaking CT framework for 

studying and assessing CT. Their framework includes three essential dimensions: CT 

concepts, CT practices, and CT perspectives. CT concepts are the concepts children need to 

master to understand the mechanics of programming, including sequences, loops, parallelism, 

events, conditionals, operators, and data (Brennan & Resnick, 2012). CT practices are skills 

and strategies applied by children while solving problems, which include four main sets: 

being incremental and iterative, testing and debugging, reusing and remixing, and abstracting 

and modularizing (Brennan & Resnick, 2012). CT perspectives are the learning dispositions 

displayed by children when programming, including expressing, connecting, and questioning 

(Brennan & Resnick, 2012). This systematic review will adopt Brennan and Resnick’s (2012) 

three-dimensional framework to identify concrete CT components that can be embedded in 

ECE. The rationales for using this framework are explained below.  

First, the three-dimensional framework provides a comprehensive and integrated 

theoretical framework to frame the components of CT education. Kong (2016) stated that 

Brennan and Resnick’s (2012) CT framework offered “a wide coverage of CT” (p. 379). 

Many curricula focused on teaching what Brennan and Resnick (2012) referred to as “CT 

concepts” (Falloon, 2016); however, rather than only emphasizing CT concepts, Brennan and 

Resnick’s (2012) framework also highlights the process of thinking and learning, i.e., CT 

practices, and the social attribute of CT, i.e., CT perspectives (Allsop, 2019; Zhong et al., 

2016). The three dimensions, just like a cube’s length, width and height, are inextricably and 

organically combined as children’s CT learning content and outcomes.  

Second, Brennan and Resnick’s (2012) CT framework has been used as a basis to 

identify CT components and evaluate the CT learning outcomes in previous studies. Lye and 

Koh (2014) used Brennan and Resnick’s (2012) CT framework to review intervention studies 
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in K-12 contexts. They found that CT concepts were the focus of most studies and suggested 

that future studies should concentrate more on CT practices and perspectives. Zhang and 

Nouri (2019) systematic review showed that Brennan and Resnick’s (2012) framework could 

capture the CT skills K-9 students gained from using Scratch to a great extent. Therefore, 

teachers and researchers can use the framework when planning lessons or designing projects. 

Chalmers (2018) adopted Brennan and Resnick’s (2012) CT framework as a data analysis 

framework to investigate Australian primary school teachers’ perceptions of what students 

learned in robotics-based STEM activities and identified three core themes of computational 

concepts, practices, and perspectives. They further indicated that it would be more effective 

for teachers to incorporate CT into the primary curriculum if they had a deeper understanding 

of CT concepts, practices, and perspectives. Nouri et al. (2019) interviewed Swedish teachers 

to understand what CT skills they perceived K-12 students developed when learning 

programming. They identified three themes related to CT skills that corresponded well with 

the three dimensions described by Brennan and Resnick (2012). In addition to investigating 

what components of CT students learned, researchers also adopted Brennan and Resnick’s 

(2012) framework to assess students’ CT development. For instance, Zhong et al. (2016) 

adopted the framework to develop the Three-Dimensional Integrated Assessment framework 

to assess computational concepts, practices, and perspectives comprehensively.  

Third, consistent with our definition of CT, the three-dimensional CT framework, 

initially proposed for conceptualizing CT in the context of programming with Scratch, can be 

adapted for other learning contexts (Brennan & Resnick, 2012). For example, the CT practice 

of decomposition can be learned or applied in children’s daily routines, such as getting ready 

for school, washing hands, toileting, and making bread. 

However, as Brennan and Resnick’s (2012) framework was constructed based on 

Scratch-based activities of young people aged 8–16 years, some components of this CT 
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framework may not be age-appropriate for children below 8. It needs to be refined to fit the 

context of ECE.  

Informed by Brennan and Resnick’s (2012) three-dimensional CT framework, we 

conducted this systematic review with the primary goal of establishing a CT curriculum 

framework for ECE. Specifically, this systematic review of CT studies in the field of ECE 

aims to address this overarching question: Which CT components involved in the empirical 

studies have been included in the three-dimensional CT framework, and which are newly 

emerging? Based on the findings, we further propose an early childhood CT curriculum 

framework.  

2.2 Method  

To comprehensively gather, evaluate, and synthesize existing evidence and ensure 

review procedures’ reliability, validity, and reproducibility, we conducted a systematic 

review (See Figure 2). A systematic review protocol was developed by the first author and 

reviewed by the second author, who acted as the auditor in advance to pre-specify the 

objectives and approaches of the systematic review (Liberati et al., 2009).  
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Figure 2  PRISMA Diagram for the Search and Selection Processes 

 

2.2.1 Literature search 

We thoroughly searched five widely used digital databases, namely, Web of Science, 

SCOPUS, ProQuest, ERIC, and ScienceDirect, to ensure that the search covers all literature 

related to CT in early childhood.  

First of all, the first author defined the keywords and carried out the search. Two 

keywords, “computational thinking” and “early childhood,” relevant to the review and their 

synonyms were identified. Although CT is related to computing, programming and coding, 
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like Tang et al. (2020), we did not use these terms as alternative keywords because CT refers 

to an approach to solving problems computationally rather than the ability to program (i.e., 

programming skills) (Macrides et al., 2021; Voogt et al., 2015). To specifically focus on CT, 

we reviewed studies that explicitly used the term “computational thinking”. Meanwhile, we 

used preschool*, kindergarten*, pre-K*, prekindergarten*, “early child*” “early age*“, “early 

years”, “young child*“, “young learners”, child*, “elementary education”, “lower education”, 

“primary education”, “pre-primary education” as synonyms for “early childhood”. 

In terms of the search filters, we set the start of the timeline as the year 2006, when 

Wing (2006) first used the term CT in her seminal article, signaling the beginning of a new 

area of research. Notably, the literature search was conducted at the end of October 2021. In 

addition, the search scope was limited to papers published in English and available in full 

text. Regarding the literature type, we included peer-reviewed articles, conference papers, 

books, and dissertations. Detailed information about the search strings, search parameters, 

search date, and the number of items found is given in the Appendix. 

2.2.2 Inclusion and exclusion criteria  

After completing the literature search, we deleted the duplicate papers caused by the 

same papers appearing in different databases. We then applied the following inclusion and 

exclusion criteria to identify the eligible papers.  

Game-Based Unplugged and Plugged-in Activities in Primary School” (only 

programming curriculum were introduced) were excluded. 

Inclusion Criteria (ICs) include the following:  

IC1. The research should focus on teaching, learning, or assessing CT.  

IC2. We only focused on children’s CT development in the school scenario, 

regardless of the context being formal or informal.  
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IC3. Participants of the research were children aged 2–8. Those papers whose 

participants were partly in this age group or part of the activities (e.g., a separate subsection) 

about children in this age group can also be included in this review.  

IC4. The paper reports an empirical study. Included studies must report the 

methodology, participants, and findings specifically.  

Exclusion Criteria (ECs) include the following:  

EC1. CT was not specifically focused on, such as papers examining the effect of CT 

learning on children’s cognitive skills or other abilities, or papers only addressing robotics, 

artificial intelligence, kindergarten information/computer technology, or mathematics 

learning and teaching.  

EC2. The study focused on parental influence on children’s CT or parent-child 

interaction in CT learning, such as “Parental influence on children’s computational thinking 

in an informal setting,” “Examining the role of parents in promoting computational thinking 

in children: a case study on one homeschool family,” and “Parent-child interaction and 

children’s learning from a coding application”.  

EC3. Only programming tools or curricula are introduced without empirical data in 

the article. For example, “Robots and Robotics Kits for Early Childhood and First School 

Age” (only programming tools were introduced) and “Training Computational Thinking: 

Game-Based Unplugged and Plugged-in Activities in Primary School” (only programming 

curriculum were introduced) were excluded. 

There are several rationales for the inclusion and exclusion criteria. First, because our 

goal was to develop a CT curriculum framework for teaching and learning in ECE, we only 

included studies related to the teaching and learning of CT. Second, studies on CT assessment 

need to be included since they involve measuring children’s learning outcomes which are the 

components of CT. Third, since our goal was to create a CT curriculum framework to inform 
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CT education in ECE, we only focused on studies conducted in school contexts, and the 

studies on parental influence on children’s CT or parent-child interaction in CT learning were 

excluded. Fourth, because we targeted the early childhood stage and found in the literature 

search that the youngest age of children in related studies was 2 years old, we determined the 

age range as 2–8 years old. Fifth, our goal was to develop a CT curriculum framework, and 

the approach to establishing such a framework is to incorporate evidence-based CT 

components. Therefore, the eligible papers must be empirical studies.  

According to the selection criteria, the first two authors independently screened the 

titles and abstracts of the records. We then compared the included papers and calculated 

Cohen’s kappa coefficient to measure the inter-rater reliability (Cohen, 1960). The coefficient 

was 0.93, which indicated a highly satisfactory level of agreement (McHugh, 2012). We 

downloaded and read the full text of papers classified differently between reviewers to decide 

on inclusion/exclusion. Specifically, the first two authors analyzed the questionable items, 

and differences were resolved through discussion. After completing the search and selection 

process, we identified 40 studies.  

2.2.3 Snowballing  

To further reduce the probability of missing relevant studies, we conducted the 

snowballing selection procedure. Four well referenced literature reviews were used as the 

snowballing seeds. These four literature reviews are respectively about CT assessment, robot-

mediated activities to foster CT, CT learning experience design and evaluation, and the 

relationship between CT and coding experiences (see the Appendix for more details). The 

search of papers in Google Scholar yielded 150 citations based on forward snowballing and 

502 references based on backward snowballing (652 papers in total). Using the eligibility 

criteria above, we found two new papers.  

2.2.4 Data extraction and synthesis  
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The data extraction and synthesis process included 42 papers in total (See Figure. 1). 

The three-dimensional CT framework (Brennan & Resnick, 2012) was used as the coding 

framework (See the Appendix). The first two authors reviewed and coded 11 identical 

randomly chosen articles (about 25% of all articles). The interrater reliability reached 0.90, 

and disagreements were solved through discussion. The first author then coded the remaining 

papers independently as the interrater reliability was high (McHugh, 2012).  

2.3 Results  

2.3.1 Overview of the included studies  

An overview of the included studies can be found in the Appendix, covering 

information about the authors, country, participants’ age, sample size, research methods, CT 

assessment instrument(s), intervention tool(s), and intervention duration.  

The included studies were all published from 2013 to October 2021, while the most 

frequent publication years were 2019 (9) (The number in parentheses represents the number 

of papers), 2021 (8) and 2020 (7). Among the 42 papers, around half of the studies (22) were 

conducted in the USA, and the rest were scattered in Spain (4), the UK (2), Australia (2), 

Hong Kong (2), Mainland China (1), Singapore (1), Netherlands (1), Greece (1), Turkey (1), 

the Republic of Korea (1), Uruguay (1), and Cyprus (1). Two papers do not specify a 

concrete country, only stating their location as the Midwest and Southern European Country. 

Notably, more than 20% of the studies were conducted by Bers and her team at Tufts 

University’s DevTech Research Group (9).  

The articles include a variety of preschool-age subgroups, with the age range of 2–8 

years old. All but four of the papers had multiple age groupings. There were 15 papers with a 

sample size of fewer than 30 children and 27 papers with a sample size of 30 or more. A 

study by Relkin et al. (2021) had the largest sample size (848 children). Three studies had a 

sample of only three children (García-Valcárcel-Muñoz-Repiso & Caballero-González, 2019; 
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Metin, 2020; Wang et al., 2020). Of the 42 papers, 25 used quantitative methods, 10 used 

mixed methods, and 7 used qualitative methods. 

Different CT learning tools were found in the literature. These CT learning tools can 

be classified into four categories: tangible robotics, digital or screen-based applications, 

unplugged kits and hybrid kits. More than half of the studies (22) in this systematic review 

used tangible robotics to develop children’s CT. There were 11 different kinds of robots (two 

of the studies did not specify the type of robots) out of the 22 studies, with the most 

significant number of studies using Bee-Bot robotics (6), followed by KIBO (5). Eight 

studies used digital or screen-based applications, and half used ScratchJr (4). Seven studies 

used hybrid kits, and all these hybrid kits used CHERP as the programming software. Four 

studies designed unplugged CT activities, and one used both robotics and digital or screen-

based applications. Studies also used different CT measurements, which can be broadly 

divided into five categories (see Table 1).  

Table 1  Types of CT Measurements 

Types  Description of the method The use of these methods in studies 

Test (5 

studies)  

A test consisting of single or 

multiple choice, fill-in-the-

blank or open-ended questions, 

usually evaluated by 

completeness and correctness 

(Tang et al., 2020) 

TechCheck (Relkin et al., 2021) 

Paper-based programming skill test 

(Ahn et al., 2021; Sung & Black, 2021) 

Test consisting of items from the 

“International Bebras Contest” (del 

Olmo-Muñoz et al., 2020) 

Test adapted from Tran’s (2019) CT 

questionnaire (Gerosa, 2021) 

Project or task 

assessment 

Evaluation of children’s 

projects or performances 

Solve-Its task-based assessment (Bers et 

al., 2019; Elkin et al., 2016; Pugnali et 
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(21 studies) during CT tasks al., 2017; Strawhacker & Bers, 2015; 

Strawhacker & Bers, 2019; Strawhacker 

et al., 2018; Sullivan & Bers, 2016; 

Sullivan & Bers, 2018) 

The robot and/ or program assessment 

with a scale (Bers et al., 2014; Pila et 

al., 2019; Saxena et al., 2020; Sullivan 

& Bers, 2013; Sung et al., 2017) 

Story/ picture sequencing task 

(Kazakoff et al., 2013; Nam et al., 2019) 

The “SSS” rubric used in the TangibleK 

program (Muñoz-Repiso & Caballero-

González, 2019) 

The “Hokey-Pokey” program 

completeness assessment rubric 

(Flannery & Bers, 2014) 

The Coding Development (CODE) Test 

3-6 (Critten et al., 2021) 

Korean version (Ryu, 2003) of Ward’s 

(1993) original problem-solving 

performance instrument (Nam et al., 

2019) 

Self-developed CT rubric (Angeli & 

Valanides, 2020; Georgiou & Angeli, 

2019) 
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Evaluation based on the number of CT 

tasks completed and the time taken to 

complete them (Rijke et al., 2018) 

Classroom 

observation (8 

studies) 

Observe children’s behavior 

during CT activities with a 

checklist 

The PTD checklist (Bers et al., 2019; 

Pugnali et al., 2017; Sullivan & Bers, 

2018) 

Children communication checklist 

(Critten et al., 2021) 

Self-developed CT behavior observation 

system (Terroba et al., 2021) 

Checklist of behaviors drawing upon 

Bird and Edwards (2014) (Newhouse et 

al., 2017) 

The Basic Coding Skills Observation 

Form and the Basic Robotic Coding 

Skills Observation Form (Metin, 2020)  

CT rubric designed by Leonard et al. 

(2016) (Qu & Fok, 2021) 

Interview (1 

study) 

Interview the children while 

they are performing a problem-

solving task 

Moore et al. (2020) 

 

Self-

evaluation (1 

study) 

Self-evaluation of skill level 

after class 

Cho and Lee (2017) 
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According to the results of this systematic review, previous studies have examined 

different components of CT unevenly, as shown in Table 2 (See the Appendix for more 

details about CT concepts, practices and perspectives emphasized by each study). In the 42 

reviewed literature, the number of papers studying CT concepts is the largest, followed by CT 

practices and CT perspectives. Below, we report the CT components involved in the studies. 

Table 2  Frequency of Each CT Component in the Included Studies 

CT Concepts  CT Practices  CT Perspectives  

Classic CT Concepts 

Sequences (31 studies) 

Loops (18 studies) 

Events (16 studies) 

Conditionals (10 studies) 

Parallelism (1 study) 

Operators (0) 

Data (0) 

Classic CT Practices  

Testing and debugging (23 studies) 

Modularizing/ Decomposition/ 

Problem reformulation (16 

studies) 

Abstraction (7 studies) 

Being iterative and incremental/  

Design process (6 studies) 

Reusing and remixing (0) 

Classic CT Perspectives  

Connecting (15 studies) 

Expressing (12 studies) 

Questioning (0) 

Emerging CT Concepts 

Representation (9 studies) 

Control flow/ structures (4 

studies) 

Hardware/ Software (4 

studies) 

Automation (1 study) 

Emerging CT Practices 

Algorithmic Design (13 studies) 

Pattern recognition (7 studies) 

Generalizing (2 studies) 

Logical thinking (2 studies) 

Simulations (1 study) 

Spatial reasoning (1 study) 

Emerging CT 

Perspectives 

Choices of conduct (4 

studies) 

Perseverance (2 studies) 
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2.3.2 Classic CT concepts  

Although Brennan and Resnick’s (2012) framework includes seven concepts, ECE 

researchers mainly focused on the concepts of sequences (31 papers, 73.8%), loops (18 

papers, 42.86%), events (16 papers, 38.1%) and conditionals (10 papers, 23.81%). The 

concept of parallelism is only briefly mentioned in one study when introducing the 

programming intervention (i.e., Gordon et al., 2015). No studies mentioned the concepts of 

data and operators. The mainly focused CT concepts are explained below one by one.  

2.3.2.1 Sequences  

Sequences is that “a particular activity or task is expressed as a series of individual 

steps or instructions that can be executed by a man or a computer” (Brennan & Resnick, 

2012, p. 3). Sequences learning activities in the reviewed studies can be broadly categorized 

into robotic activities, graphical programming activities, and unplugged activities. In robotic 

activities, children are usually asked to program a robot to complete pre-designed tasks. For 

example, in Angeli and Valanides’s (2020) study, children were asked to program the Bee-

Bot to leave the hive, collect and carry pollen from flowers of a specific color, and visit the 

Bee-Bot’s friends before returning to the hive. In Bers et al.’s (2014) study, one task was to 

program the KIBO to dance. In graphical programming activities, children are usually asked 

to complete tasks or create their projects in a graphical programming environment (e.g., 

Code.org, ScratchJr) by creating programs to control virtual characters on the screen to move 

(Del Olmo-Muñoz et al., 2020). In unplugged activities, different approaches are used to 

teach or learn sequences. One way is like the robotics activity, but instead of programming a 

robot, the students themselves act like robots and “programmed” by their partners or teachers 

(Critten et al., 2022; Saxena et al., 2020). Students could also manipulate an object to follow 

the arrows or walk on a map with their fingers (Critten et al., 2022). Another way is to get 
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children to do something in the correct order, e.g., dressing the baby (Critten et al., 2022) or 

sequencing pictures correctly (Saxena et al., 2020).  

All these 31 studies confirmed that young children could master the concept of 

sequences. Elkin et al. (2016) found that three-year-old children could program KIBO robots 

in the syntactically correct order, and Critten et al. (2022) stated that even children aged two 

years old could learn sequences through play-based learning practices. However, research 

indicated that older preschoolers (about five years old) significantly outperformed younger 

preschoolers (under five years) on “Easy sequencing” and “Hard sequencing” (Elkin et al., 

2016; Sullivan & Bers, 2013, 2016). In addition, it was more challenging to sequence a more 

extended program than a shorter one, even though both tasks utilized the same programming 

concepts (Elkin et al., 2016; Sullivan & Bers, 2016). 

2.3.2.2 Events  

Events is “one thing causing another thing to happen” (Brennan & Resnick, 2012, p. 

4). Events was often described as “action-instruction correspondence” (Bers et al., 2014; 

Flannery & Bers, 2013; García-Valcárcel-Muñoz-Repiso & Caballero-González, 2019; 

Sullivan & Bers, 2013). Researchers also referred to events as “trigger-action relationships”; 

for example, a child used a flashlight to trigger a light sensor (Sullivan & Bers, 2016) or a 

child interacted with the robot by triggering the rules (Gordon et al., 2015).  

To teach children about events, teachers taught cause and effect when they pressed 

buttons on a programming platform (Sullivan & Bers, 2013) or encouraged children to press 

different buttons and observe the results (Angeli & Valanides, 2020; Bers et al., 2019). The 

most preliminary learning of events occurs when children learn the relationship between 

cause and effect. Children, however, may randomly input commands when they are unable to 

observe and interpret this relationship (Newhouse et al., 2017). Therefore, events is a crucial 

concept that children need to master in CT learning (McCormick & Hall, 2021).  
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2.3.2.3 Loops 

 Loops refers to repeating the same instruction multiple times (Brennan & Resnick, 

2012). In some studies, researchers equate loops with repeat (Elkin et al., 2016; Pila et al., 

2019; Sullivan & Bers, 2018), while in others, researchers argue that loops is different from 

repeat in that students first identify repeated patterns and then use loops to represent this 

repeat (Del Olmo-Muñoz et al., 2020).  

Like sequences, children usually learn loops in robotic, graphical programming, or 

unplugged activities. For example, one robotic activity asked children to practice estimation 

to choose the correct numerical parameters needed to make their robot travel a certain 

distance (Elkin et al., 2016). One of the graphical programming activities supported students 

in understanding loops when asking students to use loops to help the bee collect more nectar 

(Del Olmo-Muñoz et al., 2020). Moreover, one of the unplugged activities required children 

to find repeated patterns in the code and write algorithms to represent these patterns with 

loops (Del Olmo-Muñoz et al., 2020).  

Compared to sequences and events, loops is a more advanced concept. Elkin et al. 

(2016) found it challenging for children aged 3–5 to understand loops. Because loops involve 

not only keeping a new piece of syntax in their working memory but also requires children to 

make mathematical estimates and reason with numerical parameters (Elkin et al., 2016). 

(Sullivan & Bers, 2016) found that the first and second graders could spend time using loops 

to create complex programs for their robots while the pre-kindergarteners could not. In Bers 

et al.’s (2019) KIBO curriculum, understanding loops is the learning objective only for 

children older than four. Pila et al.’s (2019) study also involved learning about loops, but the 

children who participated were all over four years old.  
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2.3.2.4 Conditionals  

Conditionals is “the ability to make decisions based on certain conditions, which 

supports the expression of multiple outcomes” (Brennan & Resnick, 2012, p. 5). Like loops, 

conditionals is also a challenging concept for children. Pila et al. (2019) used two tablet-

based apps to teach conditionals, but the children in this study were all at least four years old, 

and their CT knowledge on sequencing and loops all significantly increased except for 

conditionals. Strawhacker and Bers (2015) also found that 5–6 years old children had trouble 

learning conditionals. In Bers et al.’s (2019) study, the learning goal of understanding 

conditional instruction was only for children aged five, and in Relkin et al.’s (2021) study, 

conditional statements were included in the second-grade curriculum, not in the first grade. 

However, contradicting these results, other researchers demonstrated that 3–6 years old 

children could have an excellent understanding of Conditional If Statements (Sullivan & 

Bers, 2018) and four-year-old children can master conditional statements (Kazakoff et al., 

2013; Sullivan & Bers, 2016).  

2.3.3 Emerging CT concepts  

Some concepts appeared in the literature but were not covered in the three-

dimensional CT framework, including representation (9 papers, 21.43%), control 

flow/control structures (4 papers, 9.52%), hardware/software (4 papers, 9.52%) and 

automation (1 paper, 2.38%). 

2.3.3.1 Representation  

The notion that symbols represent concepts is essential for early learning, including 

reading and mathematics (Bers, 2018). Although many studies do not directly mention 

“representation”, the learning of the concept of representation is prevalent in CT experiences. 

Because when children “program” an object’s behavior, they must understand that each 
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instruction represents an action to be taken by an object (Bers, 2018; Bers et al., 2014; Relkin 

et al., 2021). 

Murcia and Tang (2019) indicated that iconic representations are crucial in making 

abstract concepts or symbolic representations easier for children to understand. Nam et al. 

(2019) provided worksheets to have children create a visual representation of their solution 

before coding. Likewise, Critten et al. (2022) provided photographs, symbols, and images as 

codes to form algorithms in route planning and coding activities. Moore et al. (2020) 

examined how children resolved CT tasks by translating between representations and found 

that children used concrete representations to simplify the translation, language as a scaffold 

between translations, and concrete actions to represent or assist the translation. Relkin et al.’s 

(2021) study suggested that representation improved significantly after the CAL-KIBO 

curriculum. 

2.3.3.2 Control flow/structures  

The terms “control flow” and “control structures” share the same meaning. Control 

flow/structures refers to the concept that a programmer can control the order in which a robot 

follows to achieve a goal (Bers et al., 2014). Control flow/structures determine the order in 

which instructions are followed or executed in a program (Bers, 2018). Control 

flow/structures involve some other CT concepts, such as sequences, loops, conditionals, and 

events (Bers, 2018).  

Researchers found that older students can use more complex control structures than 

younger children, probably because older students are more likely to understand complex 

programming blocks (Portelance et al., 2016). Similarly, Strawhacker and Bers (2019) found 

that while 5–6 years old children struggled with the concept of control flow, first and second 

graders would spend more time working on these complex instructions and strategies to 

program stories and games.  
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2.3.3.3 Hardware/software  

Software and hardware work in tandem to perform tasks (Bers, 2018). The software 

provides instructions to the hardware and the hardware receives and executes these 

instructions (Bers, 2018). Students can understand this relationship between hardware and 

software during the programming process. There are also other ways to learn the concept of 

hardware/software, such as playing games about what a robot is and is not (Relkin et al., 

2021), exploring the basic robotic parts of the robot (Sullivan & Bers, 2016), and learning the 

Robot Parts song (Elkin et al., 2016).  

2.3.3.4 Automation  

Automation is to achieve the automatic operation of a process or system (Shute et al., 

2017). By inputting algorithms or programs into machines/computers and seeing 

machines/computers execute the algorithms or programs, children can understand the concept 

of automation. However, in the reviewed studies, only Khoo (2020) explicitly examined 

automation and illustrated automation with the OZO-Bot.  

2.3.4. Classic CT practices  

Testing and debugging (23 papers, 54.76%) is the CT practice that arises most often 

in the literature, followed by decomposition (16 papers, 38.10%), abstracting (7 papers, 

16.67%), and being iterative and incremental (6 papers, 14.29%), while reusing and remixing 

is not examined.  

2.3.4.1 Testing and debugging  

Testing and debugging is the skill of identifying and addressing problems that impede 

task completion (Bers et al., 2014; Georgiou & Angeli, 2019; Moore et al., 2020). In some 

studies, it was referred to as “problem-solving” (Gerosa et al., 2021) and “trouble shooting” 

(Bers et al., 2014; Ehsan et al., 2021; Sullivan & Bers, 2013, 2016). The debugging process 

consists of four steps: (1) recognize that something is wrong, (2) maintain the initial goal or 
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change to a suitable alternative, (3) make assumptions about the reason for the problem, and 

(4) try to solve the problem (Bers et al., 2014; Sullivan & Bers, 2013).  

According to studies, explicit instructions and scaffolding are necessary for children 

to master debugging skills (Newhouse et al., 2017; Terroba et al., 2021). One of the key 

strategies is to provide pre-fixed errors that children need to identify and fix before they can 

do the natural debugging that occurs during the programming activities (Bers et al., 2014; 

Gerosa et al., 2021; Wong & Jiang, 2018).  

Other strategies included: (1) reminding kids to stop and evaluate, (2) modeling the 

process of detecting errors, (3) motivating children to explore different approaches (Wang et 

al., 2020), and (4) discussing potential solutions with peers (Sullivan & Bers, 2013). Critten 

et al. (2022) found that a friendly and informal approach effectively fostered team cohesion 

and encouraged children to find and fix errors. 

Studies show that plugged programming tools could support debugging learning 

because they allow students to observe the actions of virtual characters or robots; when the 

objects do not move as expected, children would find out the error and try to modify the 

program (Gerosa et al., 2021; Moore et al., 2020; Qu & Fok, 2021). However, Pugnali et al. 

(2017) found that children aged 4–7 in the KIBO robot group showed significantly better 

debugging skills than the ScratchJr group; they explained this is because, in the early stages 

of development, children depend on interacting with physical objects to learn. Children in the 

KIBO group could physically manipulate blocks and observe the robot’s motion in physical 

space. Children can also practice their debugging skills in unplugged activities. Ehsan et al. 

(2021) observed children’s behavior in the engineering design process and found that 

children exhibited debugging in the design evaluation and revision process. 

Studies confirmed that children’s debugging skills improved after learning CT 

curricula. Bers et al. (2014) discovered that children could partially to mostly understand and 
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apply debugging skills after the TangibleK curriculum. Bers et al. (2019) found that children 

(3–5 years old) scored highly on debugging skills after the KIBO curriculum. Strawhacker et 

al. (2018) found that children aged 5 to 8 could all grasp the debugging skill after the 

ScratchJr curriculum.  

2.3.4.2 Decomposition/problem reformulation  

Decomposition, or problem reformulation, refers to “the skill of reformulating a 

difficult problem as a familiar one or breaking it down into smaller parts in order to make the 

problem easier to solve” (Wang et al., 2020, p. 4). Plugged and unplugged activities were 

employed to foster decomposition skill in the reviewed studies. One example of the plugged 

decomposition task is programming simulations of storybook characters (Relkin et al., 2021). 

One example of the unplugged decomposition task is making as many decompositions of 

dance movements as possible to make it clear that other students can dance with only the 

design sheet (Rijke et al., 2018). Wang et al. (2020) summarized strategies to scaffold 

children’s decomposition skills, such as linking problems to things children are familiar with, 

modeling decomposition, providing verbal hints by thinking aloud and embodied instruction 

with gestures and body movements.  

Studies also found that young children were able to cope with complex problems 

through decomposition (Angeli & Valanides, 2020; Dietz et al., 2019; Murcia & Tang, 2019). 

For example, Ehsan et al. (2021) found that children (7–8 years) decomposed the overall 

problem (building a space for a puppy) into smaller tasks, which helped them identify the 

main parts of the task and the key criteria. 

2.3.4.3 Abstraction  

Abstraction is considered the essence of CT (Wing, 2008); it allows people to 

simplify and manage complexity by focusing on relevant information (and discarding 

irrelevant detail) to identify patterns and commonalities among different representations. 
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Researchers argued that early exposure to abstraction during kindergarten is necessary 

(Gibson, 2012; Khoo, 2020).  

Both plugged and unplugged activities are beneficial to developing children’s 

abstraction ability. Regarding plugged activities, Qu and Fok (2021) found that student-robot 

interactions play a critical role in children’s abstraction since the robot serves as a visible and 

tangible agent between the real and abstract worlds. In other words, children’s interaction 

with the robot allows them to transfer the real-world situation to the process of programming. 

Regarding unplugged activities, in Moore et al.’s (2020) study, children were asked to 

translate concrete objects on the physical route into abstract representations on the map. In 

another unplugged abstraction task, the students paired up and received cards containing 

words to portray. When portraying the objects, children had to abstract the most important 

details of the concept and ignore unimportant details (Rijke et al., 2018).  

2.3.4.4 Being iterative and incremental/(engineering) design process  

Seven studies have integrated “being incremental and iterative” by teaching students 

to build artifacts using the Engineering Design Process (EDP). The EDP is an iterative design 

process that engineers use to design products to satisfy specific requirements (Bers et al., 

2014; Sullivan & Bers, 2013). Rather than expecting immediate success or getting it right the 

first time, it stresses the need to keep working on and improving the work without giving up 

and accept failure as part of learning (Bers et al., 2014; Sullivan & Bers, 2013). The EDP is 

adapted for ECE by Bers (2018) into six steps: asking, imagining, planning, creating, testing 

and improving, and sharing. In the TangibleK curriculum, the EDP was a central component; 

it was introduced in the first class and practiced throughout the course (Bers et al., 2014; 

Sullivan & Bers, 2013). In the KIBO and CAL-KIBO robotics curriculum, children were 

required to create a final KIBO project applying the EDP (Bers, 2019; Elkin et al., 2016; 

Relkin et al., 2021). 
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2.3.5 Emerging CT practices  

There are six CT practices not included in the three-dimensional CT framework, 

namely algorithms (13 papers, 30.95%), pattern recognition (7 papers, 16.67%), generalizing 

(2 papers, 4.76%), logical thinking (2 papers, 4.76%), simulation (1 paper, 2.38%), and 

spatial reasoning (1 paper, 2.38%).  

2.3.5.1 Algorithmic design  

The defining features of algorithmic design are as follows: (1) Algorithmic design is 

to solve a specific problem or complete a task (Khoo, 2020; Shute et al., 2017); (2) 

Algorithmic design is composed of a series of ordered steps (Khoo, 2020) that involve not 

only the most basic sequential concepts (Angeli et al., 2016; Shute et al., 2017) but also other 

concepts such as loops, conditionals, and parallelism (Lu & Fletcher, 2009; Qu & Fok, 2021); 

(3) A computer or human can carry out the instructions (Shute et al., 2017); (4) Algorithmic 

design is related to the efficiency of creating optimal solutions and automation (Shute et al., 

2017).  

Scaffolding is necessary for young children to learn algorithmic design. Newhouse et 

al. (2017) found that students were unlikely to exhibit any actions indicative of understanding 

algorithmic design without explicit scaffolding. As an example of algorithmic design 

activities, Shute et al. (2017) shared a maze activity in which students had to find the shortest 

route that met specific criteria. Angeli and Valanides (2020) proposed two methods to 

develop children’s algorithmic design skills, and they found that boys benefited more from 

individualistic, kinesthetic, space-oriented, and action-based card activities, while girls 

benefited more from collaborative writing activities. In Khoo’s (2020) study, children worked 

collaboratively, figured out the algorithmic design on the worksheets and then tested the 

Mouse Robot and compared it with their answers. In addition to robot programming 

activities, researchers also used unplugged activities to teach algorithmic design. In Critten et 
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al.’s (2022) study, children were asked to place pictures of clothes in order of dressing, and if 

there were mistakes, they were encouraged to figure out together the correct order of the 

algorithms. To extend children’s algorithmic design skills, teachers can increase the difficulty 

of the directional game (e.g., adding additional obstacles/treasures) (Saxena et al., 2020) and 

the complexity of the algorithms (Angeli & Valanides, 2020).  

2.3.5.2 Pattern recognition  

Pattern recognition is “observing patterns, trends, and regularities in data” (Hsu et al., 

2018, p. 25). The skill of pattern recognition is related to the concept of loops. To use loops 

to repeat patterns, one must identify repeated patterns first (Del Olmo-Muñoz et al., 2020). 

Pattern recognition is also the sub-processes of abstraction (Shute et al., 2017).  

Researchers found that hands-on practice is a good way for children to learn pattern 

recognition. According to Lee et al. (2014), children participating in CTArcade provided 

remarkably less pattern recognition examples than students participating in paper-based 

games. Sung and Black (2021) found that the embodied approach significantly improved 

students’ pattern recognition skills. Saxena et al. (2020) used LEGO pattern as a hands-on 

pattern-building activity for students to learn pattern recognition. The pattern recognition skill 

was also observed in an unplugged engineering design activity, especially in the process of 

idea generation, idea representation and design evaluation (Ehsan et al., 2021). 

2.3.5.3 Generalizing  

Generalizing is the ability to transfer a specific problem-solving strategy into a 

different context (Qu & Fok, 2021). (Del Olmo-Muñoz et al., 2020) assessed children’s 

generalization skills following the Bebras learning model. Qu and Fok (2021) assessed 

children’s generalizing skills according to three levels (emerging, moderate, substantive) and 

found that student-robot interactions significantly improved children’s generalizing skills.  
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2.3.5.4 Logical thinking  

Logical thinking refers to the ability to arrange and analyze data (International Society 

for Technology in Education, 2011). Students who are good at logical thinking were more 

likely to succeed in CT activities, for example, by using terms such as “because … so …” or 

“if … then …” to express their ideas (Qu & Fok, 2021). Qu and Fok (2021) indicated that 

three types of S-R interaction (Programming-computing, Observational investigation, and 

Participatory investigation) might all involve children’s logical thinking skills. Critten et al. 

(2022) found that children could develop logical thinking skills through guided play 

activities.  

2.3.5.5 Simulation  

Simulation refers to developing a (computational) model to imitate real-world 

processes (Dasgupta et al., 2017). In the study by Ehsan et al. (2021), the child became a 

model, imitating the natural process of a dog playing in a puppy playground to detect and 

debug problems.  

2.3.5.6 Spatial reasoning  

Although spatial reasoning is not a component of most CT frameworks, Clarke-

Midura et al. (2021) incorporated it into the CT framework. They stated that many newly 

emerging tools and educational toys used for kindergarten CT instruction entail navigating an 

agent through two-dimensional grid space, which involves spatial reasoning (Clarke-Midura 

et al., 2021).  

2.3.6 Classic CT perspectives  

Among the reviewed studies, 12 (28.57%) were designed to enhance children’s 

expressing perspective and 15 (35.71%) to enhance connecting perspective. The questioning 

perspective is not involved in the reviewed studies.  
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2.3.6.1 Expressing  

For a computational thinker, computation is not just about consumption but also a 

means of creating and self-expression (Brennan & Resnick, 2012). Researchers have 

developed different tools and curricula to support children’s creative expression. For 

example, the wooden platforms with the KIBO robotics kits are designed to facilitate content 

creation (Bers et al., 2019; Elkin et al., 2016; Sullivan & Bers, 2018). ScratchJr allows kids to 

create animations, collages, stories, and games (Portelance et al., 2016). The CAL-KIBO 

curriculum taught programming as a symbolic representation system for expression and 

creativity rather than problem-solving (Relkin et al., 2021). Children were usually 

encouraged to create at the end of the course, which allowed them to apply programming 

concepts they learned earlier toward a personally meaningful project (Bers et al., 2019; 

Portelance et al., 2016; Strawhacker & Bers, 2015; Sullivan & Bers, 2018).  

2.3.6.2 Connecting  

Brennan and Resnick (2012) indicated two ways of connecting with others. One is 

creating with others through communication and collaboration, which makes children do 

more than they could have on their own. Another way is creating for others, i.e., sharing the 

work they have created with others. Bers et al. (2014) found that this could promote 

children’s motivation. 

Researchers suggested various approaches to foster children’s connecting perspective. 

In studies by Bers et al. (2019) and Pugnali et al. (2017), students attended a Technology 

Circle at the end of each activity, which enabled them to communicate and share their ideas. 

In Sullivan and Bers’s (2018) study, the school community was invited to attend a 

presentation made by children, which allowed children to share works with others. Murcia 

and Tang (2019) demonstrated that children displayed positive emotional and social 

outcomes from jointly constructing a computational product or solving a problem. Critten et 
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al. (2022) showed that even two years old children could communicate and collaborate 

through guided play activities.  

2.3.7 Emerging CT perspectives  

Perseverance (2 papers, 4.76%) and choices of conduct (4 papers, 9.52%), which 

emerged in our review, were not included in the three-dimensional CT framework.  

2.3.7.1 Perseverance  

Perseverance in the face of difficulty is critical to children’s CT learning and 

problem-solving skills development (Sullivan & Bers, 2018; Wang et al., 2020). In Wang et 

al.’s (2020) study, the exemplary teacher inspired children to persist by using the intimate 

relationships between children and the robot, modeling an attitude of treating errors as part of 

the problem-solving process and giving positive feedback on children’s small-steps progress. 

In Sullivan and Bers’s (2018) study, the teacher interviews and reflective journals indicated 

that students could persevere in the face of challenges, which is preliminary proof that 

robotics helps students form the “can-do spirit needed in innovation”.  

2.3.7.2 Choices of conduct  

Choices of conduct refer to the ability of self-regulating and making conscious 

decisions about one’s behavior (Pugnali et al., 2017). Examples of choices of conduct such as 

following classroom rules and using materials responsibly (Sullivan & Bers, 2018). Three 

studies evaluated children’s choices of conduct by using the Positive Technological 

Development Engagement Checklist (Bers et al., 2019; Pugnali et al., 2017; Sullivan & Bers, 

2018). Nevertheless, none of the studies indicated whether their curricula significantly 

influenced children’s choices of conduct. 

2.4 Discussion  

The main findings of our systematic review are: (1) The existing literature in ECE 

reported different components of CT unevenly; (2) While the three-dimensional CT 
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framework covers some of the CT components involved in ECE studies, there are some 

emerging components that are essential for young children; (3) Based on the studies we 

examined, some classic components of the three dimensional CT framework might not be 

appropriate for young children. According to these findings, the three-dimensional CT 

framework needs to be refined to construct the CT curriculum framework for ECE.  

2.4.1 The CT curriculum framework for ECE: combining classic and emerging 

components  

To develop a CT curriculum framework for ECE, we retained the CT components in 

the three-dimensional CT framework which were proven appropriate for children, 

incorporated the emerging CT components, and removed the CT components that were 

inappropriate for young children. For CT concepts, we retained sequences, loops, events, and 

conditionals in our CT curriculum framework, for they were proved age-appropriate for 

young children by empirical studies. We removed operators and data since these were not the 

primary component of CT in ECE and no empirical studies examined them. Meanwhile, we 

incorporated representation, control flow/ structures, and hardware/software for they emerged 

in the empirical studies and were proved developmentally appropriate for young children. For 

CT practices, we retained testing and debugging, being iterative and 

incremental/(engineering) design process, abstraction, modularizing/decomposition/problem 

reformulation in our CT curriculum framework for empirical studies proved their age 

appropriateness for young children. We removed reusing and remixing for no empirical 

studies explored these components in the context of ECE. Instead, we incorporated 

algorithms, pattern recognition, and generalizing, for they emerged in the empirical studies 

and were proved age-appropriate for young children. For CT perspectives, we retained 

connecting and expressing in our CT curriculum framework since empirical studies showed 

that they are age-appropriate for young children. The component of questioning was excluded 
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due to its irrelevance and a lack of empirical studies examining it. We incorporated 

perseverance and choices of conduct because they were identified in empirical studies and 

were found to be age-appropriate for children.  

It should be noted that we have combined some related components or slightly 

modified several concepts in our CT curriculum framework. First, sequence, loops, events, 

and conditionals were subsumed under control flow/structures since researchers indicated that 

these concepts are sub-concepts of control flow/structures (Bers, 2018; Bers et al., 2014; 

Sullivan & Bers, 2013). Second, we grouped “problem reformulation” and “decomposition” 

into one, as they express the same idea (Wang et al., 2020), and used “decomposition” in our 

CT curriculum framework since decomposition arose most often. Third, we combined “being 

iterative and incremental” and “engineer design process” into one, as they all refer to a 

continual process of improving the work to achieve the optimal solution or product. And we 

used “iteration” to refer to these two concepts in our CT curriculum framework. Lastly, we 

adjusted “expressing” to “expressing and creating”. Although expressing has the idea of 

creating in Brennan and Resnick’s (2012) framework, we use “expressing and creating” to 

highlight the component of creating in our CT curriculum framework.  

In addition, we excluded some CT components, although they have been examined in 

the empirical studies. These components include (1) Logical thinking: although two studies 

(i.e., Critten et al., 2022; Qu & Fok, 2021) used logical thinking as a component of CT, it is a 

broad term and often incorporates the concepts of abstraction and decomposition (Selby & 

Woollard, 2013); and (2) Parallelism, spatial reasoning, simulation, automation: among the 

reviewed studies, only Gordon et al.’s (2015) study briefly mentioned parallelism, Clarke-

Midura et al.’s (2021) study involved spatial reasoning, Ehsan et al.’s (2021) study involved 

simulation, and Khoo’s (2020) study involved automation. Due to the underrepresentation of 

these four components, we did not include them in our CT curriculum framework.  
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We combined classic and emerging components to develop the CT curriculum 

framework for ECE through this systematic review, as presented in Figure 3. Detailed 

descriptions of the CT curriculum framework can be found in Table 3.  

Figure 3  CT curriculum framework for ECE: A three-dimensional model 
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Table 3  The Early Childhood CT Framework 

CT concepts Description CT practices Description 

CT 

perspectives 

Description 

Control 

flow/structures 

The sequence in which 

instructions/commands 

are followed and 

executed (Bers, 2018) 

Control flow/structures 

in ECE include 

sequence, loops, 

events, and 

conditionals. 

Algorithmic 

thinking 

Designing a series of ordered commands 

to accomplish a task or reach a goal 

effectively (Bers, 2018) 

Expressing 

and creating 

Treating computation as a way 

to create and express ideas 

(Brennan & Resnick, 2012) 

Pattern 

recognition 

Finding patterns or similar 

characteristics to simplify the solution 

(Hsu et al., 2018) 

Connecting 

Communicating and 

cooperating with others to 

accomplish a task or solve a 

problem together, and sharing 

works with others to get 

feedback (Brennan & Resnick, 

2012) 

 

Abstraction 

Exclude unnecessary or unneeded details 

when solving a problem (Lee et al., 

2022) 

Representation 

 

 

Symbols can represent 

Debugging 

Finding and fixing errors when solutions 

failed to function as expected (Wang et 

Perseverance 

Being persistent when 

encountering difficulties or 
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concepts, actions, 

sounds, and more 

(Bers, 2018) 

 

al., 2020) failures, and treating failures 

as a natural process of 

achieving a goal (Wang et al., 

2020) 
Decomposition 

Breaking down a complex problem or 

system into smaller, easier-to-manage 

pieces (Wing, 2011) 

Iteration 

Repeating the design process to seek 

improvements until the ideal solution is 

found (Shute et al., 2017) Choices of 

conduct 

 

 

Conscious decision-making 

about one’s behavior (Pugnali 

et al., 2017) 

Hardware/ 

Software 

The hardware follows 

the instructions set in 

the software to 

accomplish tasks as a 

system (Bers, 2018) 

Generalizing 

Transferring solutions used to solve 

specific problems to new contexts 

(ISTE, 2011) 
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2.4.2 Limitations of the systematic review and the CT curriculum framework  

We construct a CT curriculum framework for ECE based on the systematic review 

and the three-dimensional framework proposed by Brennan and Resnick (2012). Therefore, it 

is supposed to be clearly structured and relatively comprehensive. However, this framework 

may also have some possible omissions because it only focuses on Brennan and Resnick’s 

(2012) framework and does not compare with other CT frameworks. In the future, we can 

compare the similarities and differences between different CT frameworks for K-12 

education to verify the comprehensiveness of the early childhood CT curriculum framework 

and improve it further.  

In addition, understanding CT learning trajectories is critical to improving the 

implementation and effectiveness of CT education. However, this framework does not 

specify which concepts, practices and perspectives children of different ages (between 2 and 

8 years old) should learn and what developmental level they can achieve. Therefore, future 

research should focus on learning trajectories in CT to help practitioners understand young 

children’s learning and developmental characteristics in CT.  

2.4.3 Implications for research, policy, and practice  

The refined CT curriculum framework for ECE is of great theoretical and practical 

importance for research, policy, and practice.  

First, this robust framework clarifies what components should be included in the CT 

curriculum framework for ECE, thus making a significant theoretical contribution. It can also 

facilitate subsequent investigations to be conducted within a unified CT curriculum 

framework for ECE.  

Second, this framework provides an essential reference for policymakers in 

developing a guideline for CT education in early childhood. Although CT is recognized as an 

essential skill for the 21st century, it is not currently included in the policy documents for 
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ECE in many regions/countries. Many CT education programs for young children are often 

provided as after-school programs (Ahn et al., 2021; Sung & Black, 2021) or summer camp 

programs (Pila et al., 2019; Pugnali et al., 2017; Qu & Fok, 2021). One of the key reasons is 

that CT education in early childhood is still not yet supported by educational authorities, 

especially when there is not yet a unified CT curriculum framework for ECE. The refined CT 

curriculum framework will support the development of the policy guidelines and promote the 

development and dissemination of CT education in early childhood settings.  

Third, this framework can guide teacher educators and professional development 

providers to train teachers to integrate CT education into their classrooms. Strawhacker et al. 

(2018) found that teachers with more content knowledge could facilitate children’s CT 

learning more effectively. However, preschool teachers lack the content knowledge to 

support children’s learning of CT (Strawhacker et al., 2018; Wang et al., 2020). The proposed 

CT curriculum framework for ECE enables teacher educators to provide teachers with a 

comprehensive understanding of the content of CT education in early childhood settings.  
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Abstract 

Programming and computational thinking (CT) have been progressively incorporated into 

early childhood education to prepare children for the digital age. However, little is known 

about the content knowledge (CK) and pedagogical knowledge (PK) possessed by early 

childhood teachers in this domain. To address this gap, we conducted a case study of an early 

childhood teacher in China who had experience developing and implementing an unplugged 

programming and CT curriculum. The triangulation of data sources was established to collect 

evidence from videotaped observations, interviews, and lesson plans. For the CK, analysis of 

these findings revealed that the teacher had a more robust understanding of CT concepts (e.g., 

sequences, conditionals, and loops) compared to CT practices (e.g., decomposition, 

debugging) and CT perspectives (e.g., perseverance, choices of conduct). In terms of PK, the 

teacher could apply the general pedagogical knowledge but was relatively weak in using 

content-specific pedagogical knowledge. As the first endeavor to investigate an early 

childhood teacher’s CK and PK in teaching programming and CT, this study provides 

significant implications for improving teachers’ professional knowledge and teaching 

effectiveness in this burgeoning area. 

Keywords: programming; computational thinking; early childhood teacher; content 

knowledge; pedagogical knowledge 

 

3.1 Introduction 

Globally, an increasing focus has been placed on teaching programming and 

computational thinking (CT) in early childhood education (ECE) (Bers et al., 2022; Yang et 

al., 2023). CT, viewed as a core competency in the 21st century, is related to solving problems 

that are often open-ended and complex in various disciplines with the use of the concepts 

fundamental to computer science (Wing, 2006). CT involves the ability to break down 
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complex problems into smaller parts, identify similarities among and within problems, 

develop step-by-step solutions and so on (Zeng et al., 2023a). Programming, on the other 

hand, is the process of writing codes to implement a particular task or solve a particular 

problem (Mills et al., 2021). CT and programming are closely intertwined, with each relying 

on and enhancing the other. Programming necessitates CT skills to create efficient and 

effective code (Lye & Koh, 2014), while programming plays a crucial role in the 

development of CT (Voogt et al., 2015). For example, when programming, a programmer 

often needs to break down a complex task into smaller parts, recognize patterns in data, and 

identify the most efficient approach for each step. This process involves CT skills such as 

pattern recognition, algorithmic thinking, and abstraction, which can then be applied to other 

domains, such as mathematics, science, and engineering. 

Teachers’ pedagogical content knowledge (PCK), which represents the incorporation 

of content and pedagogy into an understanding of how to make the teaching content easily 

understood by students with diverse abilities and interests (Shulman, 1987), is critical in 

predicting and enhancing young children’s learning in domain-specific areas (Dunekacke & 

Barenthien, 2021). Previous research indicated that providing support for teachers' PCK had a 

positive impact on their teaching practices and children’s development (Gözüm et al., 2022). 

However, few studies have examined early childhood teachers’ PCK for teaching 

programming and CT. To fill this gap, this study aims to investigate early childhood teachers’ 

content knowledge (CK) and pedagogical knowledge (PK) in teaching programming and CT. 

Specifically, we employed two frameworks to analyze an early childhood teacher’s CK and 

PK that is demonstrated in planning, implementing, and reflecting on programming and CT 

activities. This investigation is crucial for providing training that focuses on addressing the 

areas of weak CK and PK among early childhood teachers, thus enhancing the effectiveness 

of teaching in early programming and CT. 
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3.1.1 Previous Studies on Unplugged Programming and CT Education 

Programming and CT education is primarily conducted through two approaches: the 

plugged approach and the unplugged approach. The plugged approach involves using digital 

devices such as tablets, computers, and the Internet. In contrast, the unplugged approach aims 

to teach programming and CT without any digital devices, instead utilizing materials like pen 

and paper, cards, or engaging in physical activities (Otterborn et al., 2020). 

 Romero et al. (2018) summarized the key benefits of the unplugged approach, 

including embodied learning, reduced cognitive load, and concrete analogies. The unplugged 

approach often incorporates physical actions and tangible manipulation, aligning well with 

the learning styles of young children. Furthermore, compared to digital tools, incorporating 

unplugged materials in programming and CT education could minimize distractions that 

divert children's attention and reduce cognitive load, which refers to information-processing 

(attentional or working-memory) demands (Block et al., 2010). Lastly, unplugged activities 

are built upon the construction of tangible and concrete analogies, facilitating the learning of 

abstract concepts related to programming and CT. Several studies have explored the 

effectiveness of the unplugged approach in promoting learners’ CT (Ahn et al., 2021; Del 

Olmo-Muñoz et al., 2020; Li & Yang, 2023; Saxena et al., 2020). In this study, the way the 

teacher employed to teach programming and CT is the unplugged approach. 

3.1.2 The Content Framework of Computational Thinking in ECE 

The goal of early programming and CT education is not to prepare children to become 

programmers or algorithmic engineers but rather to foster their CT. As argued by Resnick and 

Robinson (2017), children do not simply “Learn to Code” but rather “Code to Learn” and 

“Learn Through Coding”. Thus, our interest lies in identifying the core content of CT covered 

and emphasized in early childhood teachers' instruction of programming and CT. To achieve 

this, we reviewed the CT content framework in ECE. 
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There is a lack of a consistent content framework for CT in ECE (Zhang & Nouri, 

2019). After comparing different CT frameworks, Zeng et al. (2023a) used Brennan and 

Resnick’s (2012) three-dimensional CT framework to identify CT components that were 

proven appropriate for young children to learn and established the CT curriculum framework 

for ECE. This framework articulates the core content in early programming and CT 

education, covers CT concepts (i.e., control flow/ structures, representation, and hardware/ 

software), CT practices (i.e., algorithmic design, pattern recognition, abstraction, debugging, 

decomposition, iteration, and generalizing), and CT perspectives (i.e., expressing and 

creating, connecting, perseverance, and choices of conduct) (Zeng et al., 2023a) (see Table 4).
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Table 4  The CT Content Knowledge Framework in ECE (Zeng et al., 2023a) 

CT dimensions CT components Descriptions 

CT concepts Sequences A specific task or activity is conveyed as a succession of separate commands or steps that a human or 

machine can carry out (Brennan & Resnick, 2012) 

Loops A mechanism of repeatedly executing the same instructions (Brennan & Resnick, 2012) 

Conditionals Allowing for the expression of different outcomes by making decisions based on certain 

circumstances (Brennan & Resnick, 2012) 

Events “One thing causing another thing to happen” (Brennan & Resnick, 2012, p. 4) 

Representation In programming, representation refers to the use of symbols to represent instructions (Bers, 2018) 

Hardware/ Software Hardware and software operate in tandem to complete tasks; the software gives the hardware 

instructions, and the hardware executes those instructions (Bers, 2018) 

CT practices Algorithmic design A set of sequential, organized steps used to solve a problem or complete a task (Bers, 2018) 

Pattern recognition Identifying patterns and trends (commonalities) between and within problems to simplify the solution 

(Hsu et al., 2018) 

Abstraction The conscious effort to ignore irrelevant details and focus only on the important information, thus 

making problem solving easier (Lee et al., 2022) 
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Debugging Identifying and repairing mistakes when solutions do not work as expected (Wang et al., 2020) 

Decomposition Breaking down a complex problem or system into smaller easily solved or managed parts (Wing, 

2011) 

Iteration Seeking upgrades of solutions using design processes repeatedly until the optimum solution is 

obtained (Shute et al., 2017) 

Generalizing Transferring approaches used to address particular issues to new situations (CSTA & ISTE, 2011) 

CT perspectives Expressing and 

creating 

Seeing computation as a way for designing and conveying ideas (Brennan & Resnick, 2012).  

Connecting Cooperating, communicating with others and sharing works with others (Brennan & Resnick, 2012) 

Perseverance Persevering in the face of challenges or failures and seeing failures as usual to reach a goal (Wang et 

al., 2020) 

Choices of conduct Deciding what to do and what not to do in a specific situation by oneself (Pugnali et al., 2017) 
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3.1.3 Pedagogical Issues Related to Teaching Programming and CT in ECE 

This section summarizes the teaching context, activity structure, pedagogical 

approaches, and pedagogical strategies previously used to foster children’s programming and 

CT skills (see Table 5). 

Table 5  The Programming and CT Pedagogical Knowledge Framework in ECE 

Dimensions Indicators Description 

Teaching 

context 

Group activity Purposeful, planned activities organized by the teacher in 

which many children in the class participate 

Learning center Different learning areas in the classroom self-chosen and 

-directed by children 

Daily lives and 

routines 

Children’s daily lives and routines such as having meals, 

washing hands, and tidy up toys 

Integrative learning 

contexts 

Connecting programming and CT with other learning 

domains such as art, math and literacy 

Activity 

structure 

Highly structured Objectives pre-defined by teachers, and the activities 

primarily initiated by teachers  

Open-ended Activities that allow children to freely explore  

Mixed Activities that include both structured activities and open-

ended activities and/or free play (Bakala et al., 2021) 

Pedagogical 

approaches 

Task-based 

learning 

Teacher-directed pedagogical approach in which learning 

activities are organized around adult-guided tasks 

(McCormick & Hall, 2021) 
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Project-based 

learning 

Activities that allow children to explore relatively 

independently for long periods and yield real works or 

presentations (Kokotsaki et al., 2016) 

Problem-solving 

learning 

environment 

A learning environment proposed by Lye and Koh (2014) 

that can enhance students’ CT practices and perspectives, 

which include authentic problem, information processing, 

scaffolding and reflection 

Play-based 

learning 

A playful, child-directed pedagogical approach with some 

adult direction and learning goals (Pyle & Danniels, 

2017) 

Others Other pedagogical approaches not covered in this list 

Pedagogical 

strategies 

 

Unplugged activity Learning programming and CT without a computer and is 

often conducted through bodily activity or with other 

learning materials (Otterborn et al., 2020) 

Embodied 

cognition 

Using embodied activities to help children understand 

abstract CT concepts (Moore et al., 2020; Saxena et al., 

2020) 

External memory 

support scaffolding 

Providing supplementary materials to turn abstract 

algorithms into visible and concrete representations to 

help children cope with working memory limitations and 

reduce cognitive load (Macrides et al., 2021) 

Pair programming A collaborative programming approach in which two 

students work together to complete the same 

programming task (Denner et al., 2014) 
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Differentiated 

Instruction 

Providing children with appropriate scaffolding based on 

each child’s individual abilities and needs (Wang et al., 

2020) 

Demonstration Modelling the necessary skills and attitudes to children 

(Wang et al., 2020) 

Others Other pedagogical strategies not covered in this list 

3.1.3.1 Teaching Context 

Lee and Junoh (2019) noted the importance of infusing programming and CT into 

children’s daily lives and setting up programming centers/corners in early childhood 

classrooms. Mills et al. (2021) emphasized that integrating programming and CT into other 

learning domains would provide meaningful learning contexts for young children. 

3.1.3.2 Activity Structure 

There are three categories of programming and CT activity structure: highly 

structured, mixed, and open-ended. Most studies designed highly structured programming 

and CT activities (Khoo, 2020; Nam et al., 2019) and few studies designed open-ended free 

play with programming tools. Newhouse et al. (2017) found that the children appeared more 

engaged and motivated in the high teacher-supported sessions rather than in free play without 

explicit scaffolding. Other studies designed mixed activities (Bers et al., 2014; Bers et al., 

2019). For instance, in the study by Strawhacker and Bers (2015), there was always a “buffer 

lesson” for children to explore the programming materials freely, which allowed them to 

absorb what they had learned and kept their attention throughout other highly structured 

activities. 

3.1.3.3 Pedagogical Approaches 

 Early programming and CT education employs a variety of pedagogical approaches. 

One such approach is the task-based approach, where learning activities revolve around tasks 
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guided by adults (McCormick & Hall, 2021). Bers (2019) showed how such intentionally 

structured activities can aid young children in developing CT skills. Another notable 

approach is the project-based learning, characterized by its student-centered nature. This 

approach emphasizes students' autonomy, goal-setting, planning, exploration, cooperation, 

and reflection within authentic real-world practices (Kokotsaki et al., 2016). Several studies 

involved activities of the construction of robots, engaging students in design, problem-

solving, decision-making, and investigative tasks (Macrides et al., 2021). Play-based 

learning, on the other hand, presents a playful and child-directed pedagogical approach with 

some adult guidance and predefined learning objectives (Pyle & Danniels, 2017). Critten et 

al. (2022) suggested play-based, pedagogic practices can be used with children as young as 2 

years to learn many of the basic concepts involved in CT skills. Moreover, Lye and Koh 

(2014) suggested designing a problem-solving learning environment, which includes 

authentic problems, information processing, scaffolding and reflection, to enhance students’ 

CT practices and perspectives. 

3.1.3.4 Pedagogical Strategies 

Previous studies have examined the effectiveness of different pedagogical strategies 

for improving young children’s CT, including unplugged activities, embodied cognition, 

external memory support scaffolding, and pair programming. Unplugged programming uses 

materials like paper, cards, and blocks and has been shown to improve CT skills through 

embodied learning, lower cognitive load, and concrete analogies (Otterborn et al., 2020; 

Romero et al., 2018). While for embodied cognition, there are two kinds of embodiment 

according to the source of body movement: direct embodiment, which refers to moving 

bodies to perform solution steps; and surrogate embodiment, which refers to manipulating an 

external surrogate without engaging their bodies (Fadjo, 2012b). External memory support 

scaffolding is used to help children cope with working memory limitations and reduce 
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cognitive load during programming (Angeli & Valanides, 2020). Pair programming, a 

collaborative programming approach in which two students work together on a single 

computer to complete the same programming task, positively improved students’ 

programming and CT skills, learning motivation, metacognition, and collaboration (Denner et 

al., 2014; Papadakis, 2018). Besides these experimental studies, Wang et al. (2020) video 

observed various strategies an exemplary teacher used to support preschoolers’ CT skills, 

such as modelling a positive attitude toward error, breaking down problems into small steps, 

and providing different scaffolds according to children’s individual needs. 

However, previous studies were mainly aimed at validating the effectiveness of a 

particular pedagogical strategy in improving children’s CT without examining what 

pedagogical strategies teachers used. Only Wang et al. (2020) investigated the pedagogical 

strategies used by a male teacher; however, this case study was conducted in a higher teacher-

student ratio (1:3) context instead of a large-group context which is common in Asian cultural 

contexts. 

3.1.4 The PCK Theory 

PCK was first introduced by Shulman to emphasize the fundamental role of subject 

matter in (research in) teacher education and teaching in 1985. In subsequent years, PCK has 

been defined by different researchers in multiple ways. Despite the various definitions, 

researchers have identified three essential components of PCK: CK, PK, and knowledge of 

students’ understanding (McCray & Chen, 2012; Rojas, 2008; Zhang, 2015). Figure 4 

illustrates how these three components are interrelated to the construct of PCK (McCray & 

Chen, 2012). This study specifically examined teachers’ CK and PK of programming and CT. 
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Figure 4  Pedagogical Content Knowledge (PCK) (McCray & Chen, 2012, redrawn) 

 

CK is the knowledge of what to teach. It encompasses knowledge of the discipline to 

be taught, a thorough understanding of that knowledge, and an understanding of the 

relationships between topics of the discipline (Krauss et al., 2008). In this study, we focused 

specifically on the first two aspects, i.e., whether the teachers knew the programming and CT 

knowledge to be taught and whether teachers had a deep understanding of them. 

PK is the knowledge of how to teach. There are two types of PK: general pedagogical 

knowledge (GPK) and content-specific pedagogical knowledge (CPK). GPK comprises 

comprehension of various educational philosophies and learning theories, general knowledge 

of learners and basic teaching rules, and familiarity with classroom management principles 

and strategies (Grossman & Richert, 1988). CPK is the knowledge of instructional strategies 

unique to a particular subject or topic (Zhang, 2015). In this study, we examined both the 

GPK and CPK. 

3.1.5 Teachers’ PCK of Programming and CT 

Given the scant existing literature in this field, we conducted a comprehensive review 

focusing on the PCK of both preservice and in-service teachers across all educational levels. 
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Several researchers have discovered that both pre-service and in-service teachers possess 

limited knowledge of CT and little knowledge of how to teach programming and CT (Bower 

& Falkner, 2015; Chalmers, 2018; Sands et al., 2018). 

Accordingly, it has been suggested by researchers that there is a pressing need to 

enhance teachers' PCK through pre-service and in-service training programs to facilitate the 

integration of CT into their classrooms (Chalmers, 2018; Haines et al., 2019; Yadav et al., 

2017). Chalmers (2018) specifically emphasized that a deeper understanding of CT concepts, 

practices, and perspectives is crucial for teachers to effectively incorporate CT into the 

primary curriculum. Çakıroğlu and Kiliç (2020) proposed a course model and evaluation 

tools aimed at improving teachers’ PCK for teaching CT via robotic programming. 

Within the context of ECE, Strawhacker et al. (2018) found that teachers who 

possessed a solid foundation of CK exhibited more purposeful use of the programming tool 

and gave more explicit support. Similarly, Wang et al. (2020) found that the case teacher 

intentionally employed various strategies in his programming and CT instruction because of 

his clear understanding of CT skills that young children need to develop. 

3.1.6 The Present Study 

Previous research has indicated a need to improve teachers’ PCK through training to 

help them implement programming and CT education (Chalmers, 2018; Haines et al., 2019; 

Yadav et al., 2017). To provide targeted training to help teachers acquire the necessary PCK 

and effectively deliver programming and CT education, it is crucial to clearly understand the 

status of teachers’ PCK in programming and CT education. However, based on our thorough 

review of the existing literature, there is a lack of research specifically examining the status 

of CK and PK of programming and CT among early childhood teachers. As teachers’ CK and 

PK can be demonstrated in their teaching (Zhang, 2015), to examine early childhood 

teachers’ CK and PK, we proposed the following questions: 
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RQ1. What CT concepts, practices and perspectives were covered and emphasized in 

the early childhood teacher’s teaching of programming and CT? 

RQ2. How did the early childhood teacher support children’s programming and CT 

learning? 

3.2 Method 

We employed a case study method, which allows people to gain a greater insight into 

a specific case by investigating it in depth and within its actual context (Yin, 2009). Our case 

study examined an early childhood teacher’s CK and PK in teaching programming and CT. 

3.2.1 The Research Site 

This study was conducted in a provincial first-class public kindergarten located in 

Wenzhou, China. In 2022, when I conducted my research, few kindergartens in Wenzhou 

were involved in programming and CT education. Upon learning that this kindergarten had 

initiatives in this field, I contacted the principal and secured her informed consent. 

This kindergarten has been committed to science education since 2004. With the 

introduction of STEM education, the school recognized its benefits in cultivating problem-

solving skills and interdisciplinary competencies among young children. Consequently, they 

took the lead in implementing STEM curricula. In 2017, the kindergarten was selected as one 

of Wenzhou's first STEM pilot schools. During this period, the kindergarten collaborated with 

experts in the STEM field, who emphasized the importance of incorporating programming 

education in early childhood learning. Recognizing the increasing importance of 

programming and CT education, the kindergarten embarked on a new educational initiative to 

integrate programming and CT into its curriculum.  

As an initial step, instead of implementing programming and CT education across all 

classes, the kindergarten decided to initiate a pilot program. They selected one class from 

each of the age groups: K1 (3-year-olds), K2 (4-year-olds), and K3 (5-year-olds), led by one 



   

 

68 

 

teacher in each class. We chose the K3 class for observation because the teaching content of 

the unplugged curriculum in the K3 class was built upon that of K1 and K2 and covered all 

the CT skills of the unplugged curriculum, thus allowing us to examine RQ1 

comprehensively. The K3 class consisted of 32 children aged 5-6 years, along with two 

teachers and a nurse. For each class, only one teacher was assigned to conduct the 

programming activities, with the other teacher and nurse not involved in implementing the 

programming curriculum. In the K3 class, Ms. Wu is tasked with implementing the 

programming curriculum. The 32 children in the class are split into two groups for 

programming activities. While Ms. Wu instructed one group of children in programming in 

the classroom, the other group was led by the other teacher to a separate room for games. The 

nurse's primary duties involve maintaining classroom cleanliness, ensuring children's safety, 

and aiding the teacher in preparing materials for activities. That is to say, the other teacher 

and nurse played a supportive role in programming education. For the purposes of this study, 

we selected Ms. Wu, who was responsible for teaching programming and CT in this class and 

who enthusiastically volunteered to join our study.  

Initially, the three experimental classes utilized a plugged-in programming tool named 

MOBLO. MOBLO is a hybrid kit that enables young children to program a virtual character 

on the screen by manipulating tangible programming blocks. While children enjoyed 

MOBLO, parents expressed concerns about screen time and its potential impact on their 

children's eyesight. In 2020, the kindergarten applied for funding to develop unplugged 

programming tools and courses. Upon receiving the grant, they created unplugged 

programming tools based on the existing plugged programming tools. By 2021, the 

kindergarten officially implemented unplugged programming courses, offering a screen-free 

alternative for young learners to explore programming.The three experimental classes 

conducted the unplugged programming curriculum. Notably, Ms. Wu not only implemented 
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the unplugged curriculum but also participated in designing the unplugged programming tool 

and the unplugged curriculum. 

Ms. Wu, a female teacher, possessed 11 years of work experience in the field of ECE. 

She initially graduated from a local normal university with an Associate's degree in ECE. 

Following 7 years of work experience, she pursued a Bachelor's degree in ECE through adult 

correspondence education. However, neither of these programs included any courses related 

to early programming or CT education. Ms. Wu's exposure to programming education came 

exclusively from the MOBLO company. To implement programming education with the 

MOBLO programming tool in the kindergarten, the MOBLO company provided training to 

teachers. This training primarily focused on instructing teachers on the utilization of the 

MOBLO programming tool and how to teach programming using the lesson plans provided 

by the MOBLO company. 

The unplugged programming tool developed by this kindergarten, like other coding 

sets, consists of three parts: (1) The object being programmed: The object being programmed 

in this coding set is a pawn named Qiqi, who is also the protagonist of the stories in the 

unplugged curriculum; (2) Programming tasks: The teacher or children set up programming 

tasks by putting the Tool Blocks (representing tools Qiqi needs to obtain to solve problems) 

and Scenario Blocks (representing the characters, place, and things that happen in the story) 

on a 10 by 10 Grid Map. (3) Programming blocks: Children program the routes Qiqi takes by 

placing wooden Programming Blocks (including Directional Blocks, Number Blocks, Loops 

Block, and Conditional Instruction Card) in the Programming Area. For example, in the 

context of exploring outer space, Qiqi first needs to collect tools such as the spacesuit, 

oxygen kit, and translator. On his journey to other planets, he must avoid meteorites. When 

encountering problems, he needs to use tools (for example, using a translator when meeting 

an alien). Eventually, he reaches other planets (see Figure 5). Appendix 3 shows how to make 
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a similar coding set using readily available materials. 

Figure 5  The Unplugged Coding Set 

 

3.2.2 Data Collection 

As teachers’ PCK can be demonstrated in planning, implementing and reflecting on 

teaching (Zhang, 2015), lesson plans, videotaped programming activities, and audiotaped 

interviews were collected as our data to establish triangulation (Yin, 2009), as well as memos 

following each observation and interview.  

3.2.2.1 Video Observations 

Compared to other data types, video has definite advantages in capturing the teaching 

content and pedagogies in classrooms (Jacobs et al., 1999). In conducting the video 

observation, two cameras were used, one was set in the corner of the classroom to ensure the 

whole class activities were recorded, and the other was held by the researcher to capture Ms. 

Wu’s interaction with children. A total of 12 lessons, each lasting approximately 40 minutes, 

over 6 weeks were video recorded, resulting in 728 minutes of video. 

3.2.2.2 Interviews 

We developed an interview protocol that focused mainly on two themes (in addition to 

a set of background questions): (1) Content Knowledge: Core content covered in the 
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programming and CT course and the early childhood teacher’s understanding of them. (2) 

Pedagogical Knowledge: Pedagogical practices about supporting children’s programming and 

CT learning (including a focus on the teaching context, activity structure, pedagogical 

approaches, and pedagogical strategies), as well as the reasons for adopting these pedagogical 

practices. 

We conducted both formal and informal interviews. The formal interview was 

conducted after all sessions to understand Ms. Wu’s CK and PK in early programming and 

CT (the interview protocol, see Appendix 2). It lasted around an hour. Informal interviews 

were conducted after class (if necessary) to have a deeper understanding of what had been 

observed. 

3.2.2.3 Lesson plans 

This study used lesson plans to supplement the observational and interview data. We 

collected a total of 12 lesson plans from Ms. Wu. 

3.2.3 Data Analysis 

To analyze the CT concepts, practices and perspectives that are covered and 

emphasized in the early childhood teacher’s teaching of programming and CT, we used the 

CT curriculum framework for ECE (Zeng et al., 2023a), which has a detailed and clear 

definition of each CT component, as the CK Framework (see Table 4). The CK Framework 

includes three dimensions: CT concepts, practices, and perspectives. 

To examine how the early childhood teacher supported children’s programming and 

CT learning, we developed the PK Framework (see Table 5). The PK Framework comprises 

four dimensions: teaching context, activity structure, pedagogical approaches, and 

pedagogical strategies. We constructed the indicators under each dimension based on the 

aforementioned literature review. Moreover, we provided a clear definition for each indicator 

in the PK framework (see Table 5). 
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Then the first author and the second author used the two frameworks to analyze the 

video data, the interview data, and the lesson plans. The following explains the process of 

data analysis. Appendix 1 shows a few examples of data analysis. 

3.2.3.1 Video and Interview Data Analysis 

We analyzed recorded videos and interviews with the following steps: 

Step 1. Transcription of selective video clips and interviews.  

We rewatched all videos and selected informative video clips that could reflect Ms. 

Wu’s CK and PK. The first author transcribed the selective video clips manually on her own. 

Before embarking on transcription for this project, she was trained in classroom video 

transcription. She had already transcribed classroom videos sufficiently, demonstrating high 

precision in translating video into text. The recorded interviews were also transcribed with 

utmost care and precision.  

Step 2. Review and labeling of relevant information. 

We carefully reviewed the transcriptions of the videos and interviews and highlighted 

the text related to CK in yellow and underlined the text related to PK. 

Step 3. Identification of CK and PK indicators. 

 According to the CK and PK frameworks, we identified the CK and PK indicators in 

the transcriptions. We examined the CK and PK present in several videos and segments of 

interviews to guarantee the reliability of CK and PK extraction. After reaching 90% accuracy, 

the first author identified the CK and PK indicators involved in the rest of the videos and 

interviews. 

3.2.3.2 Lesson Plan Analysis  

The lesson plans were used for analyzing the teacher’s CK and PK. Together, we first 

read through the 12 lesson plans and labeled vital information related to the research 

questions. Collaboratively, we proceeded to identify the CK and PK indicators involved in 
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the 12 lesson plans according to the CK and PK frameworks.  

3.2.4 Ethical and Validity Issues 

This study was conducted with the ethical approval from the Human Research Ethics 

Committee (HREC), the authors’ university (Reference No. 2021-2022-0334). A letter 

outlining the research and consent forms was provided to the kindergarten principal and Ms. 

Wu, and permission was obtained from them. Since the children in this study were 5-6 years 

old, letters and consent forms were also provided to parents/guardians through kindergarten. 

The findings were validated through data triangulation, member checking and inquiry 

auditing (Creswell, 2014). We collected data from multiple sources for triangulation. Member 

checking was conducted by re-interviewing Ms. Wu to ensure that her ideas stayed in line 

with her previous interview responses and the researchers’ interpretations. In addition, two 

senior researchers in ECE acted as the auditors to ensure the rigor of the research procedure 

and confirm that the findings appropriately reflected important aspects of the observations, 

interviews, and lesson plans. 

3.3 Findings 

3.3.1 CT Concepts, Practices, and Perspectives Taught by the Teacher  

Our evidence revealed that Ms. Wu emphasized CT concepts across her programming 

and CT teaching instead of CT practices and CT perspectives (see Table 6). 

 

Table 6  Frequency of Each CT Skill in Different Data 

CT dimensions CT components Videos  Interviews  Lesson plans  

CT concepts Sequences 12 (100%) 12 (100%) 12 (100%) 

Loops 10 (83.3%) 10 (83.3%) 10 (83.3%) 

Conditionals 10 (83.3%) 10 (83.3%) 10 (83.3%) 
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Events 12 (100%) 0 0 

Representation 12 (100%) 0 0 

Hardware/ Software 0 0 0 

CT practices Algorithmic design 12 (100%) 0 0 

Pattern recognition 10 (83.3%) 0 0 

Abstraction 0 0 0 

Debugging 0 0 0 

Decomposition 0 0 0 

Iteration 0 0 0 

Generalizing 0 0 0 

CT perspectives Expressing and creating 5 (41.7%) 5 (41.7%) 5 (41.7%) 

Connecting 12 (100%) 12 (100%) 12 (100%) 

Perseverance 3 (25%) 0 0 

Choices of conduct 0 0 0 

Note a: The notation "12 (100%)" indicates that the CT skill was present in all 12 PCT 

activities with a frequency of 100%. Similarly, "10 (83.3%)" indicates that the CT skill was 

present in 10 activities with a frequency of 83.3%, and so on. 

Note b: During the interview, the 12 unplugged programming lesson plans were presented to 

the teacher, who was asked to identify the core content covered in each activity. The 

frequency of each CT skill was then calculated based on the teacher's responses. 

3.3.1.1 CT Concepts 

Our analysis found that Ms. Wu primarily focused on teaching CT concepts, 

particularly sequences, loops, and conditionals. These concepts were systematically 

integrated into her lessons, with sequencing introduced in K1, conditionals and loops 

introduced in K2 and further developed in K3.  
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While explicit instruction in the concepts of representation and events was absent 

from her teaching practices and lesson plans, children learned them through activities such as 

using Programming Blocks to represent routes and experiencing the correspondence between 

actions and instructions. The concept of hardware/software was not covered due to the 

constraints imposed by the unplugged programming tool. 

3.3.1.2 CT Practices 

The video data analysis showed a clear focus on algorithmic design and pattern 

recognition in the teaching of programming and CT. Algorithmic design was manifested in 

the development of routes, while pattern recognition was observed in creating repeated 

routes. However, neither of these terms was explicitly referenced during the interviews nor 

present within the lesson plans.  

The teaching of other CT practices, including debugging, decomposition, abstraction, 

iteration, and generalizing, was neither evident in Ms. Wu's teaching practices nor present in 

the lesson plans. An example involved Ms. Wu's observation of an erroneous program created 

by a child. Instead of guiding the child to observe and identify the error, Ms. Wu worked with 

the child to remove the programming blocks from the programming area and let the child 

recreate the programs. This approach missed the opportunity to teach debugging skills to the 

child. Another instance where an opportunity for teaching decomposition emerged was during 

the "Backward Reasoning Task." This task necessitated children to complete a path based on 

information in the programming area and grid map. Although the task provided an 

opportunity to teach decomposition (see Figure 6), Ms. Wu did not introduce this skill. 

Additionally, these CT practices were not mentioned by Ms. Wu in the interview. When asked 

about the core content of early programming and CT education, as well as what children can 

learn from tasks such as "Backward Reasoning Task," Ms. Wu did not reference these CT 

practices. 
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Figure 6  Ms. Wu Presented the “Backward Reasoning Task” with PPT 

 

3.3.1.3. CT Perspectives 

Ms. Wu displayed an awareness of cultivating children's CT perspectives of creating 

and connecting; however, she did not give these aspects prominence in her instructional 

practices. Five activities designed by Ms. Wu involved fostering children's creativity; 

however, these primarily centered on encouraging children to design various routes to 

enhance their creativity, without affording them opportunities to apply their programming and 

CT skills in creating projects or expressing ideas, which could better cultivate children's 

creativity. In fostering connections among children, Ms. Wu employed pair programming; 

nonetheless, during pair programming, her focus was primarily directed towards checking the 

accuracy of the children's devised routes, while aspects of observing and facilitating 

collaboration received limited attention.  

Moreover, she did not intentionally develop the children’s persistence and choices of 

conduct. Throughout the 12 sessions, Ms. Wu showed concern for children's persistence only 

on three occasions; and she did not mention persistence in her interview or lesson plans. 
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Furthermore, while Ms. Wu underscored the importance of cultivating positive behaviors 

among children, her approach primarily relied upon issuing directives and reminders, rather 

than empowering children to make autonomous decisions. 

3.3.2 Pedagogies Employed by the Teacher 

Ms. Wu employed group activities to teach programming and CT with highly 

structured, task-based activities (see Table 7). She integrated CT skills into tasks that 

gradually increased in difficulty and guided children to learn CT skills by completing these 

tasks. Ms. Wu provided ample time and support for the children’s self-exploration and acted 

as a facilitator and collaborator rather than an authority figure.  

Table 7  The Pedagogical Steps of a Programming Activity 

Time Steps  Purpose of each step 

1-2 mins The teacher begins by telling a story 

and setting up a scenario for the 

activity.  

To pique children's curiosity 

and engage their interest  

10 mins or so The teacher introduces Task 1 and 

teaches the key concepts through its 

completion by the children. 

To instruct the core CT skills 

to the entire group 

30 mins or so The children work in pairs to complete 

Task 2 and/or Task 3 and share their 

completed work with the class.  

To allow adequate time for 

children to practice, assess 

their work, offer prompt 

feedback, and explore common 

difficulties during the sharing 

session 

1-2 mins The children tidy up the programming To cultivate positive habits in 
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materials. children 

Ms. Wu utilized a range of pedagogical strategies to support children's programming 

and CT learning. Our analysis identified eight strategies, five of which were effective: the 

unplugged approach, contextualization, embodied cognition, external memory support 

scaffolding, and a step-by-step strategy for teaching loops. Ms. Wu embraced the unplugged 

approach to teaching programming and CT, which involves screen-free and hands-on 

activities. Additionally, she employed contextualization to provide meaningful contexts for 

programming and CT learning, such as integrating loops learning into the narrative of aiding 

Qiqi in exploring planetary mysteries. Furthermore, she utilized embodied cognition. The 

children interacted with an external surrogate named Qiqi, manipulating it to navigate a grid 

map based on provided instructions. They also physically moved within the grid on the floor, 

following the given directives. External memory support scaffolding was another strategy 

Ms. Wu employed, such as using visible Programming Blocks for notating children’s 

algorithms to support their thinking and problem-solving. Furthermore, she implemented a 

step-by-step teaching strategy, drawn from early mathematics, to effectively teach loops. 

However, the strategies of demonstration, pair programming, and differentiated 

instruction were not effectively utilized. While Ms. Wu often used demonstrations to exhibit 

how to identify coordinates, verify routes, and organize materials, she did not model 

problem-solving skills like debugging and decomposition, nor did she exemplify cooperation 

and a positive attitude towards mistakes. In addition, Ms. Wu employed pair programming, 

wherein two children with neighboring school numbers collaborated on programming tasks. 

However, observations indicated that Ms. Wu did not intentionally and actively observe and 

facilitate children’s collaboration. Consequently, pair programming proved ineffective, 

frequently resulting in a lack of genuine interaction and cooperation between the two 

children, or in some instances, one child would assume a dominant role while the other 
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remained disengaged. Furthermore, Ms. Wu implemented differentiated instruction after 

recognizing that less capable children struggled to keep up and remained less engaged during 

programming and CT activities. However, her approach simply involved segregating children 

into two groups based on their abilities, slowing down the teaching pace, removing 

challenging tasks for the less capable group, and failing to provide targeted scaffolding for 

these children to grasp programming and CT concepts. 

3.4 Discussion 

This study represents a groundbreaking endeavor to investigate an early childhood 

teacher's CK and PK in teaching young children programming and CT. Video analysis 

revealed that Ms. Wu did the most intentional and systemic teaching in CT concepts. 

However, it was observed that she missed opportunities to expose children to CT practices 

(e.g., decomposition, debugging) and CT perspectives (e.g., perseverance, choices of 

conduct). This finding suggests that Ms. Wu possessed a robust foundation of knowledge 

regarding CT concepts but had limited knowledge of CT practices and perspectives. This 

conclusion was also supported by evidence from the interviews and lesson plans. Due to Ms. 

Wu's lack of clarity regarding the core CT practices and perspectives that children should 

learn, she did not intentionally integrate CT practices and perspectives into her teaching. As 

stated by Zhang (2015), if teachers lack an understanding of the diverse CK that should be 

taught, they will not devote sufficient time and effort to support children’s learning in certain 

areas. Notably, not only have CT practices and perspectives been neglected in educational 

practice, but there is also a lack of intervention studies on CT practices and perspectives. A 

literature review conducted by Lye and Koh (2014) on intervention studies revealed that the 

majority of studies (85%) solely focused on examining learning outcomes related to CT 

concepts, with only a small fraction (8 studies) reporting on CT practices or perspectives. 

In terms of the learning context, researchers indicated that programming and CT are 
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everywhere in children’s lives; integrating programming and CT into their daily routines and 

tasks, such as brushing teeth, washing hands, or making objects with clay, offers meaningful 

learning contexts (Lee & Junoh, 2019; Mills et al., 2021). However, according to interviews, 

Ms. Wu solely taught programming and CT through whole-group activities and was unaware 

of the learning opportunities present in daily activities and other learning domains. This can 

be attributed to Ms. Wu's limited CK in CT practices and perspectives. As noted by Zhou et 

al. (2006), teachers who possess strong CK can effectively support children’s learning in any 

context.  

Regarding activity structure and pedagogical approaches, it was found that Ms. Wu 

created a highly structured and task-based approach by carefully preparing materials and 

planning activities. This approach enabled Ms. Wu to offer substantial support for children's 

programming and CT learning, keeping them engaged in the assigned tasks. The significance 

of teacher scaffolding in facilitating children's programming and CT learning has also been 

highlighted by Newhouse et al. (2017) and Wang et al. (2020). They emphasized that without 

teachers' guidance, students are prone to losing interest in programming activities and are 

unlikely to demonstrate any actions that could be associated with an understanding of 

“algorithms”. However, it is worth noting that while this approach allows teachers to provide 

sufficient guidance and support for young children, it may not good for fostering their 

autonomy and creativity (Kokotsaki et al., 2016). 

This study identified eight pedagogical strategies Ms. Wu employed to support 

children’s programming and CT learning. Among these, five were notably effective, while 

three showed limited effectiveness. Further analysis suggests that Ms. Wu's effective 

utilization of these strategies stems from her consideration of children's general learning 

characteristics. The unplugged strategy and embodied cognition align with the hands-on 

learning style commonly observed in young children (Macrine & Fugate, 2022). Similarly, 
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the contextualization strategy hinges on the widely recognized principle that children learn 

best when presented within engaging or authentic contexts that capture their interest (Perin, 

2011). Additionally, the application of external memory support scaffolding corresponds with 

the well-established understanding that young children possess limited working memory 

capacity (Macrides et al., 2021). Only the step-by-step strategy for teaching loops considers 

the developmental trajectory of children when learning loops; however, according to Ms. Wu, 

this strategy was transferred from the mathematical domain.  

Regarding the less effectively utilized teaching strategies, we found that their 

successful implementation demands a solid grasp of CK or children's developmental 

knowledge within the programming and CT domain. Effective demonstration, for instance, 

necessitates that teachers possess a strong understanding of the content within the 

programming and CT domains. This understanding enables them to precisely determine what 

aspects to model for young children and where to place emphasis during the modeling 

process. Similarly, successful pair programming requires sensitivity to the core content of 

“connecting” and proactive observation and intervention to facilitate children’s productive 

collaboration in programming and CT learning. Additionally, differentiated instruction relies 

on teachers' awareness of children's developmental trajectory in programming and CT to 

provide tailored scaffolding. 

These findings indicated that Ms. Wu exhibited proficiency in applying general 

pedagogical knowledge (GPK) to programming and CT education but was weak in utilizing 

content-specific pedagogical knowledge (CPK), which necessitates a solid understanding of 

the CK in programming and CT education. This finding supported the PCK theory, which 

Shulman introduced to emphasize the fundamental role of subject matter in teaching 

(Shulman, 1986). Ball and McDiarmid (1989) also pointed out that teachers with a deeper 

understanding of the teaching content were more likely to use effective pedagogical strategies 
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to enhance students' understanding of the subject matter. Moreover, Strawhacker et al. (2018) 

and Wang et al. (2020) also found that teachers with a stronger CK were better equipped to 

provide explicit scaffolding in programming and CT education. 

Furthermore, the kindergarten in this study used an unplugged approach to teaching 

programming and CT. They developed an unplugged coding set consisting of three 

components - the object being programmed, programming tasks, and programming blocks. 

This board game coding set allows children to learn programming and CT. It is simple to 

reproduce, as it can be made using basic materials by following the steps provided in 

Appendix 3. 

3.5 Limitations and Implications 

3.5.1 Limitations 

Although this study is the first to examine an early childhood teacher's CK and PK for 

early programming and CT, it does come with certain limitations. Firstly, this study was 

based on a single teacher as a case study. While this chosen case has provided insights into 

the teaching of programming and CT within the context of Chinese early childhood 

education, caution should be exercised when generalizing the findings to broader contexts or 

other educators. Secondly, this study solely focused on the early childhood teachers' CK and 

PK of programming and CT, without investigating the teacher’s knowledge of students, 

which is a crucial component of teachers' PCK. Future studies should also explore early 

childhood teachers' understanding of students' learning in programming and CT. 

3.5.2 Practical Implications 

This study has important implications for practice. CT encompasses more than just 

CT concepts; it also involves CT practices and perspectives (Brennan & Resnick, 2012). 

When introducing CT in ECE settings, the goal is not simply to teach young children to 

"Learn to Code" but rather to equip them with problem-solving skills and attitudes that can be 
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applied beyond programming (Lye & Koh, 2014). CT practices and perspectives are exactly 

related to problem-solving skills and attitudes. However, it was found that the case teacher's 

intentional teaching in CT practices and perspectives was limited, and her knowledge of CT 

practices and perspectives was weak. Thus, it is crucial to provide teachers with professional 

support to help them understand the goal of programming and CT education and to enhance 

their knowledge of CT practices and perspectives. This will help teachers move from a focus 

on teaching CT concepts to intentionally integrating CT practices and perspectives into their 

teaching practices. 

Furthermore, Ms. Wu's teaching approach was limited to whole-group activities. She 

lacked awareness of providing opportunities for children to learn and apply programming and 

CT in their daily lives. By developing a clear goal for programming and CT education and 

acquiring a strong CK in CT practices and perspectives, teachers can become equipped with 

the awareness, knowledge, and ability to integrate programming and CT into children's daily 

lives. This inclusive approach ensures that programming and CT skills are accessible to all 

children, particularly those from disadvantaged backgrounds. 

Additionally, there are various pedagogical approaches for teaching early 

programming and CT, ranging from a task-based approach, where learning activities are 

centered around tasks guided by adults (McCormick & Hall, 2021), to project-based learning, 

which emphasizes student-centeredness (Kokotsaki et al., 2016). However, Ms. Wu solely 

employed a highly structured task-based approach, which prioritized guidance but overlooked 

students' autonomy and creativity. Therefore, teachers should adopt a flexible way by 

combining different pedagogical approaches to teach programming and CT. This enables the 

provision of necessary guidance while also encouraging students' autonomy and creativity. 

Lastly, based on the unplugged programming tool developed by the case kindergarten, 

a guide for crafting an unplugged coding set has been innovatively proposed. Programming 
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tools play a crucial role in implementing programming and CT education. This age-

appropriate, board game-like coding set extends young children the opportunity to engage in 

programming and CT activities within both formal and informal settings. Additionally, this 

unplugged coding set boasts ease of reproduction, as it can be made following 

straightforward steps and utilizing readily available materials. 

3.5.3 Research Implications 

This study makes an important contribution to the research. The constructed PK 

framework for programming and CT, based on an extensive literature analysis, provides a 

useful tool for analyzing teachers' PK in teaching programming and CT. In addition, the study 

presents a model case showcasing the application of CK and PK frameworks to investigate 

teachers’ CK and PK in early programming and CT education. 

Moreover, this study found that teachers had limited CK in CT practices and 

perspectives and insufficient content-specific pedagogical knowledge (CPK). Therefore, 

further research could explore ways to enhance teachers' pedagogical content knowledge in 

programming and CT education through training programs. It is especially important to 

investigate how teachers can effectively apply the acquired CK and CPK to their own 

teaching context to facilitate the integration of programming and CT into classrooms. 

Previous studies have demonstrated that coaching is critical in facilitating the transfer of 

training content to teachers' specific teaching situations (Neuman & Cunningham, 2009). 

Hence, future researchers could explore transferring the coaching model to the Chinese 

cultural context to enhance teachers' intentional and effective teaching of programming and 

CT.
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Abstract 

Fostering young children's computational thinking (CT) has garnered global interest 

as it aligns with the cultivation of 21st-century skills. Previous studies have focused on 

physical, virtual, and hybrid kits with virtual programming blocks, but rarely explored the use 

of hybrid kits that combine virtual sprites and physical programming environments. We 

conducted a quasi-experimental study to investigate the effect of using a hybrid programming 

kit with which children can program the action of the virtual sprite by manipulating tangible 

programming blocks on young children's CT. Furthermore, we explored the characteristics of 

children's programming engagement and the instructional strategies employed by teachers 

through video analysis and interviews. The results showed that: (1) Children's CT in the 

experimental group significantly improved, compared to peers in the control group. (2) 

Children's programming behavior demonstrated a change from "action preceding thought" to 

"thought preceding action" and from "relying on trial-and-error" to "active debugging" with 

the support of teachers. (3) Teachers used multiple strategies to support young children's 

programming. These findings further indicate the importance of introducing programming in 

early childhood education and emphasize the critical role that teachers play in supporting 

young children's learning of programming. 

Keywords: Computational thinking; programming education; hybrid kit; engagement 

in programming; instructional strategies; early childhood education  
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4.1 Introduction 

Computational thinking (CT), viewed as a 21st-century skillset that future generations 

must develop (Zhang & Nouri, 2019), is the systematic analysis, exploration, and testing of 

solutions to problems (Wing, 2011). CT plays a vital role in fostering the development of 

skills like planning, critical thinking, and problem-solving (Li & Yang, 2023). Furthermore, it 

has a broad impact on children's learning across other disciplines (Wang et al., 2020). 

Programming is writing code to perform a specific action on a software program, 

application, or computer (Mills et al., 2021; Zhang et al., 2023). Programming is an essential 

approach to fostering CT (Voogt et al., 2015). Countries worldwide have been undertaking 

various initiatives to introduce programming in early childhood education to develop 

children's CT (Sullivan & Bers, 2018). 

CT and programming are closely intertwined, with each depending on and reinforcing 

the other (Zeng et al., 2023b). Programming requires the utilization of CT skills (e.g., 

decomposition, pattern recognition, algorithmic thinking, and abstraction) to develop efficient 

and effective code (Lye & Koh, 2014), while CT is predominantly cultivated through 

programming (Voogt et al., 2015). 

The objective of early programming education extends beyond training children to 

become programmers; its primary goal is to foster their CT abilities. As emphasized by 

Resnick and Robinson (2017), the intention is not merely for children to "learn to code" but, 

more importantly, to "code to learn" and "learn through coding". 

The development of "Early Childhood CT Curriculum Framework" (Zeng et al., 

2023a) and TechCheck-K (Relkin & Bers, 2021) provide the foundations for investigating the 

effect of programming on young children's CT. The "Early Childhood CT Curriculum 

Framework" presents the content that should be taught in early programming education and 
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provides guidance for designing programming activities in this study. The TechCheck-K, 

which measures CT in 5-9-year-olds through tasks such as problem-solving, sequence, graph 

decomposition, pattern recognition, shortest path determination, and obstacle course maze, 

resolves the problem of requiring young children to have a foundation in programming for 

CT assessment (Relkin & Bers, 2021), thereby serving as a feasible way of assessing CT in 

young children. 

Yu and Roque (2019) classified programming tools into physical, virtual, and hybrid 

kits. Physical kits consist of tangible components. Virtual kits are PC and/or mobile-device-

based applications without tangible components. Hybrid kits combine both tangible and 

virtual parts and can further be divided into two subcategories: “kits with physical robot and 

graphical programming environment” and “kits with virtual sprites and tangible programming 

environment” (Yu & Roque, 2019, p. 23). Previous studies that investigating the effectiveness 

of programming on young children's CT have primarily employed physical kits, such as Bee-

Bot (Angeli & Valanides, 2020), KIBO (Bers et al., 2019), and Code-a-pillar (Wang et al., 

2020). Additionally, some studies have utilized virtual kits, such as ScratchJr (Strawhacker et 

al., 2018) and Code.Org (Çiftci & Bildiren, 2020). There has also been exploration of hybrid 

kits combining a physical robot with a graphical programming environment, such as LEGO 

WeDo (Elkin et al., 2014). However, no studies have yet examined the effectiveness of hybrid 

kits with virtual sprites and tangible programming environment in promoting CT in young 

children (Yu & Roque, 2019). 

Furthermore, existing research primarily focused on quantitatively validating the 

effectiveness of programming education in fostering children's CT, with limited literature 

exploring children's programming process. Only Wang et al. (2020) noted that 3-4-year-olds 

often required multiple attempts to fix errors; Qu and Fok (2021) observed that some 7-9-
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year-old students made progress in CT skills through critical analysis and careful decision-

making in robotics activities, while others did not; Chevalier et al. (2022) found that 8-9-

year-olds who received immediate feedback without guidance relied on trial-and-error 

without planning and critically evaluating the program's syntax before programming. 

Additionally, previous research has highlighted the importance of teacher guidance in 

learning to code (Angeli & Valanides, 2020; Newhouse et al., 2017; Wang et al., 2020). 

Studies have supported the effectiveness of instructional strategies such as embodied 

cognition (Fadjo, 2012a), external memory support scaffolding (Angeli & Valanides, 2020), 

and pair programming (Papadakis, 2018) in promoting children's CT. However, these studies 

primarily used quantitative research to validate the effectiveness of specific strategies, with a 

limited investigation into the instructional strategies early childhood teachers employed to 

support children's programming and CT learning. Only Wang et al. (2020) used video 

recordings of programming sessions to analyze the scaffolding strategies used by a teacher to 

support young children's CT learning. These strategies included dialogic scaffolding, a 

combination of high- and low-support scaffoldings, adapting scaffoldings to individual needs, 

and tailoring scaffoldings for different CT components. However, this study was conducted in 

a small group setting with one exemplary teacher and three preschoolers. 

To address these gaps, we focused on examining the following questions: 

RQ1. To what extent did learning programming using the hybrid kit with a virtual 

sprite and tangible programming blocks affect the child participants' CT? 

RQ2. What were the characteristics of engagement in programming displayed by 

young children? 

RQ3. What instructional strategies did teachers use to support young children's 

programming? 
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4.2 Method 

4.2.1 Research Design 

This study employed a control-group pretest-posttest design to investigate the impact 

of programming with a hybrid kit on young children's CT. The experimental class 

participated in programming activities designed by the researchers. To provide optimal 

support for each child's learning, the teachers randomly assigned the children in the 

experimental class to two groups. Both groups of children engaged in programming activities 

for approximately 45 minutes per week, working collaboratively in pairs. In contrast, the 

control class was divided into two groups for regular teaching activities. 

Moreover, to capture the characteristics of children's engagement in programming and 

gain a deeper insight into the specific effects of programming on young children's CT, we 

conducted a 12-week video recording of the programming processes of a randomly selected 

group of two children. 

Furthermore, we used both video recording and semi-structured interviews to 

investigate the instructional strategies employed by the teachers during the intervention, as 

they have a significant influence on children's programming and CT learning (Wang et al., 

2020). 

4.2.2 Participants 

Convenience sampling was employed in this study, with children aged 5-6 from two 

classes in a public kindergarten in Wenzhou (China) being selected as the research 

participants. One class was randomly assigned as the experimental class, while the other class 

served as the control class. Each class had 35 children (18 boys and 17 girls) with similar 

mean ages (experimental: 6.16 years, SD = 0.32; control: 6.07 years, SD = 0.35). The 

majority of children (94.3%) had no prior programming experience. 
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Two teachers from the experimental class participated in the study, each responsible 

for teaching programming to a group. Both teachers held a bachelor's degree in early 

childhood education and were certified as Kindergarten Level 1 teachers. They possessed 6 

and 7 years of teaching experience in early childhood education, respectively. Neither had 

received any professional programming/ CT education training before participating in this 

study. 

4.2.3 The Intervention 

4.2.3.1 The Programming Tool 

The programming tool used in this study was MOBLO developed by a Chinese 

company called Mobaole, which consisted of two parts: the tangible programming 

environment and the virtual programming game (see Figure 7). Children can program the 

action of the virtual sprite by manipulating tangible programming blocks. 

Figure 7  The MOBLO Programming Kits 

 

The tangible programming environment included (1) a Sensor Board for inputting 

programs; (2) various programming blocks for creating programs; (3) a Power Block for 

starting programs. The virtual programming game part included (1) a range of pre-designed 
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programming tasks; (2) a virtual sprite that executed the instructions children created; (3) a 

programming instruction record bar that displayed the instructions children created in real-

time in symbolic form. 

This programming tool provides diverse feedback for children's learning, both from 

the physical programming environment and the game interface. Feedback from the tangible 

programming environment is that as the virtual sprite executes the program, the 

corresponding electronic programming blocks illuminate with each step the virtual sprite 

takes, enabling children to visually connect the virtual sprite's actions with their created 

program. Feedback from the game interface mainly includes (1) the virtual sprite's actions 

can indicate the correctness of the program. If the program is right, the virtual sprite 

successfully reaches the destination and completes the task; in cases where errors exist in the 

program, the virtual sprite halts at the point where the program is wrong. (2) The 

programming instruction record bar presents the instructions entered by the child in real-time, 

which helps the child associate the tangible programming blocks with the symbolic 

representations. 

 

4.2.3.2 Objectives and Content of Programming Activities 

The intervention program was designed according to the functions of the 

programming tool used in this study and the "Early Childhood CT Curriculum 

Framework"(Zeng et al., 2023a). It encompassed 12 programming activities covering the 

following content: hardware and software, events, sequences, loops, conditionals, 

representations, pattern recognition, problem decomposition, debugging, and algorithmic 

design. The content and objective of each activity, along with corresponding exemplary 

programming tasks, can be found in the Appendix. 
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4.2.3.3 Implementation Process of Programming Activities 

The programming activities consisted of four segments (see Figure 8):  

Figure 8  Implementation Process of Programming Activities 

 

(1) Story introduction (2 mins). The teacher told a story to stimulate the children's 

interest and set the programming context.  

(2) Collaborative programming (10 mins). The teacher and children collectively 

completed a programming task and learned programming concepts and skills in completing 

the task.  

(3) Paired programming with teacher guidance (20 mins). Children worked in pairs, 

applying programming concepts and skills to complete programming tasks while the teacher 

observed and guided them.  

(4) Reflection and discussion (10 mins). Children reflected and discussed difficulties 

encountered in programming with the teacher. 
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4.2.4 Procedure 

The study received ethical approval (Reference No. 2021-2022-0315) from the 

Human Research Ethics Committee of the researchers' University prior to data collection. 

Informed consent was obtained from the kindergarten principal, the two participating 

teachers, and the children's parents. 

4.2.4.1 The 3-hour Training Session 

Before the intervention, the two teachers in the experimental class received a 3-hour 

training session which aimed to guide them in using the programming tool and conducting 

the programming activities designed by the researchers. 

The training session, lasting three hours, was structured into three sections. The first 

section aimed to introduce teachers to CT by using relatable examples from children's daily 

experiences. For example, to elucidate algorithmic thinking, familiar scenarios such as 

planning a route from home to school, sequencing steps for washing hands, and folding 

clothes were utilized. These CT components were revisited in the subsequent sections, where 

teachers interacted with programming tools and explored lesson plans. 

The second section of the training course focused on acquainting teachers with the 

programming tool and guiding them in its utilization. It was designed to be interactive and 

hands-on, allowing teachers to actively engage with the programming tool. The session began 

with an explanation of the tool's components and functions. The two teachers were then 

encouraged to explore the programming tool collaboratively and complete pre-designed 

programming tasks within it, with demonstrations and guidance provided to help address any 

challenges they encountered. 

The final section introduced the programming course, presenting teachers with twelve 

pre-designed programming activities, each outlining clear objectives, preparations, and step-
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by-step processes. These programming tasks in the 12 activities were aligned with tasks in 

the MOBLO tool, making the implementation of programming activities easy for teachers. 

We asked teachers to read the lesson plans and propose their questions and ideas. 

4.2.4.2 The Weekly Communication  

Furthermore, we kept weekly communication with the two teachers to provide support 

in addressing any challenges encountered during programming instruction. Each week, I 

visited the classroom to videotape the programming activities. Following each session, I 

engaged in discussions with the teachers for approximately 5-10 minutes to review the day's 

instructional activities. During these conversations, I inquired about the teaching strategies 

employed by the teacher to understand the rationale behind specific strategies and worked 

collaboratively to address any challenges they encountered. 

4.2.4.3 Challenges the Teachers Encountered 

Based on observations and interviews, the teachers have encountered several 

challenges: 

(1) The main challenge for teachers was teaching loops. Children could easily identify 

simple loops like "forward, right, forward, right," but faced difficulties when encountering a 

route consisting of a looped path and two segments preceding and following the loop. This 

complexity made it hard for teachers to effectively support children in recognizing such 

complex patterns.  

(2) It is challenging for teachers to provide tailored scaffolding for children with 

varying abilities, particularly in delivering specific assistance to help less proficient children 

challenge complex tasks.  

(3) Promoting communication and collaboration among children is another challenge 

for teachers. In the early stages of the programming activities, teachers noticed that even 
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though students were paired up, they often programed independently without engaging in 

meaningful discussions or collaboration with their partner. 

(4) The teacher-to-student ratio is relatively high (1:18). Some children seek help 

from teachers when they encounter problems during programming activities, allowing 

teachers to identify and address their issues. However, there are also children who struggle 

silently, making it challenging for teachers to identify and guide them effectively. 

4.2.4.4 The Intervention 

We implemented a 12-week programming intervention in the experimental group (one 

session per week), with each session lasting approximately 40 minutes. During the same 

period, the control group children were engaged in learning centre activities without 

programming elements.  

4.2.4.5 Data Collection 

All children's CT was measured individually using TechCheck-K in a quiet, open 

room in the kindergarten before and after the intervention. We recorded the 12 programming 

activities in one of the groups during the intervention and conducted individual semi-

structured interviews with the two teachers from the experimental class upon completion of 

the intervention.  

See Figure 9 for the procedure. 

Figure 9  Procedure 
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4.2.5 Data Collection 

4.2.5.1 Child Assessment 

This study measured children's CT using the TechCheck-K, which consists of 15 

multiple-choice items (1 point each) focusing on six CT components: hardware/software 

control structure, modularity, debugging, representation and algorithms (Relkin et al., 2020). 

Sample items include “Mice cannot pass through blue walls or red lights. Which mouse will 

get the cheese?”. In this study, we transformed the TechCheck-K into a digital version of 

Wenjuanxing (a Chinese version of Qualtrics) to facilitate its implementation. The pre-test 

Cronbach's α was 0.812, and the post-test Cronbach's α was 0.803, with good reliability. 

4.2.5.2 Videotaped Observations 

To investigate children's engagement in programming and teachers' instructional 

strategies during the programming process, we recorded 12 programming activities, resulting 

in approximately 900 minutes of video. In the group teaching session, one camera was fixed 
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in a corner of the classroom to capture the entire teaching process; in the children's 

programming session, another camera was fixed next to a randomly selected group of two 

children to record their programming processes. Additionally, the first author hand-held a 

video camera to track and record the teacher's guidance. 

4.2.5.3 Interviews 

We conducted individual semi-structured interviews with the two teachers from the 

experimental class to understand their instructional strategies. The main interview questions 

were as follows: Do you perceive any challenges in guiding young children to learn 

programming? What is the primary challenge, if any? What instructional strategies do you 

employ during programming activities (Why)? Do you find using this strategy effective 

(How)? The interviews with the two teachers lasted 32 and 35 minutes, respectively, and both 

were audio-recorded. 

4.2.6 Data Analysis 

For RQ1, we used SPSS 27.0 software to analyze quantitative data. We first 

conducted an independent samples t-test to determine if there was a significant difference 

between the experimental and control classes on the CT pre-test scores. To exclude the 

potential influence of pretest scores on post-test scores, we then utilized analysis of 

covariance (ANCOVA) to assess the impact of the intervention on young children's CT.  

For RQ2 and RQ3, we first selected videos capturing children's engagement in 

programming and teachers' instructional strategies (approximately 600 minutes). 

Subsequently, we transcribed these videos as well as interviews for analysis. Lastly, we 

analyzed the characteristics of children's engagement in programming and teachers' 

instructional strategies using the thematic analysis (Braun & Clarke, 2013), which included 

the following steps:  
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(1) Becoming familiar with the collected data: I transcribed the video recordings of 

programming activities related to children's engagement in programming and teachers' 

instructional strategies. 

(2) Generating initial codes: I systematically reviewed the data set to generate initial 

codes. For example, I generated codes such as "place blocks immediately," "rush to place the 

Power Blocks," "fail challenges," "careful observation," "pause and think," "record routes 

using arrows and symbols," "discuss," " simulate the virtual sprite's movements on the 

screen," "check" … in the data set of children's engagement during the program design stage. 

(3) Searching for themes:  I looked for commonalities across the codes and combined 

some codes to form themes. For example, codes such as "place blocks immediately," "rush to 

place the Power Blocks," and "fail challenges" were grouped under the theme of 

"programming without cognitive engagement." On the other hand, codes like "careful 

observation,” “pause and think," "record routes using arrows and symbols," "discuss," " 

simulate the virtual sprite's movements on the screen," and "check" were categorized under 

the theme of " programming with cognitive engagement."  

(4) Reviewing the identified themes: Upon reviewing the initial themes, I found that 

these two themes accurately reflected the two states observed in children during the 

programming process. 

(5) Defining and labeling the themes: I elaborated "action preceding thought" and 

"thought before action." "Action preceding thought" refers to the tendency observed in 

children to manipulate programming blocks without conducting a thorough problem analysis 

or self-checking of their program beforehand. This behavior leads to issues such as reversing 

starting and endpoint positions, overlooking known conditions, missing steps, and 

misidentifying patterns. "Thought before action" is characterized by children's inclination to 



  100 

 

 

engage in problem analysis, pattern recognition, and algorithm design prior to physically 

manipulating programming blocks. This approach results in the creation of more accurate 

programs compared to those developed during the initial phase where problem analysis is 

skipped. 

(6) Producing the report: I presented the results in relation to my research questions 

about children’s characteristics of engagement in programming and instructional strategies 

used by teachers. 

4.2.7 Validity of Qualitative Data Analyses 

To ensure the validity of the qualitative research findings, member checking and 

inquiry auditing were employed (Creswell & Creswell, 2017). Member checking involved 

conducting follow-up interviews with two teachers from the experimental class to ensure 

consistency with researchers' interpretations and initial responses. Additionally, two 

researchers specializing in ECE served as auditors to guarantee the rigor of the research and 

verify the accuracy of the identified video and interview aspects. 

4.3 Results 

4.3.1 Effect of Programming on Young Children's CT 

The results of the independent samples t-test (see Table 8) indicated that there was no 

significant difference in the CT scores between the experimental and control classes before 

the intervention (t=-0.09, p>0.05). 

Table 8  A Comparison of CT Pre-Test Scores Between the Experimental Group and 

Control Group 

 N Mean S. D. t d 

Experimental 

group 

35 8.26 2.43 -0.09 2.65 
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Control group 35 8.31 2.86   

The results of the ANCOVA (see Table 9) indicated that there was a significant effect 

of the intervention on young children's posttest CT scores after controlling for pretest CT 

scores, F (1, 66) = 94.336, p<0.001. 

Table 9  Descriptive Data and ANCOVA of the CT Post-Test Scores 

 N Mean S. D. 

Std. 

Error. 

Adjusted 

Mean 

F value η2 

Experimental 

group 

35 12.20 1.32 0.10 12.21 94.336*** 0.59 

Control 

group 

35 8.71 2.93 0.10 8.69   

*** p<0.001 

4.3.2 Characteristics of Children's Engagement in Programming  

This section analyzed the characteristics of children's engagement in programming, as 

demonstrated by the two target children, during the program design and debugging stages. 

4.3.2.1 Program Design Stage 

During the program design stage, children manipulated programming blocks to create 

instructions. Through an analysis of video recordings of children's programming process in 

the early learning period (initial four weeks), we identified a key characteristic of their 

engagement, which we called "action preceding thought." Specifically, children often skipped 

problem analysis or failed to conduct a detailed problem analysis before manipulating the 

programming blocks. Additionally, they often overlooked self-checking their program before 

executing it. These tendencies resulted in various problems, such as reversing the starting 

point and endpoint positions, overlooking known conditions, missing steps, and 
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misidentifying patterns. The following observation transcription reflects the characteristic of 

"action preceding thought" in the targeted children. 

In the Stage 3 Level 4 task of the "Sequence" software (referring to the programming 

task example in Activity 3 in the Appendix), the objective is to guide a virtual sprite 

along a designated route and reach the destination. However, the route has two 

broken sections. To overcome these obstacles, the children must first obtain the 

'wings' prop and then use it to fly over the obstacles. However, in their initial 

attempts, Child A and Child B neglected to analyze the number of broken sections on 

the path or consider the required number of 'wings' props. Consequently, they made 

incorrect decisions by directly moving forward in the direction the virtual sprite was 

facing, thus missing the first 'wings' prop. Additionally, after arranging the 

programming blocks, both Child A and Child B executed the program without 

conducting a prior check. 

The video analysis revealed a notable shift in the engagement of the target children 

during the later stages of their learning period (the last four weeks) compared to the early 

stages. We labeled this characteristic as "thought before action." In this stage, they tended to 

analyze and decompose problems, recognize patterns, and design algorithms before 

physically manipulating the programming blocks. Consequently, the programs created during 

this stage were more accurate compared to those created during the early intervention. The 

following transcript of observations illustrates this "thought preceding action" characteristic 

in the target children. 

In Stage 3, Level 4 of the "Loops" software (referring to the programming task 

example in Activity 9 in the Appendix), the virtual sprite follows a route consisting of 

a looped path and two segments preceding and following the loop. Instead of 
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immediately reaching for the programming blocks, the two children took a more 

thoughtful approach. They used their index fingers to simulate the virtual sprite's 

movements on the screen while verbally describing them, such as "to the right, up... " 

(demonstrating attentive observation and problem analysis). Subsequently, they took 

out paper and pens, with Child A verbally describing the virtual sprite's path as Child 

B recorded it using arrows and symbols (showcasing their collaborative efforts). 

Then, they audibly read out the recorded arrows and symbols. Consequently, they 

recognized the loop unit, marked it with a line underneath, and noted the number of 

loops (showcasing their ability to recognize the pattern utilizing the paper provided 

by their teacher and employing "rhythmic reading" techniques). Afterward, Child A 

and Child B took out the programming blocks and began coding. They used Direction 

Blocks, Action Blocks, NFC Blocks, and Number Cards to create instructions for the 

looped path. Using stacking, they arranged the blocks for the segments before and 

after the loop. Then, they positioned the three stacks, representing the three segments 

of the route (looped path, segment before it, and segment after it) in order on the 

sensor board (demonstrating their problem decomposition skills). Upon arranging the 

programming blocks, instead of rushing to place the Power Blocks, Children A and B 

simulated the virtual sprite's actions step by step using their extended index fingers 

according to their devised program. After confirming the accuracy of their program, 

they placed the Power Blocks on the Sensor Board (check their designed program 

before starting it).  

4.3.2.2 Program Debugging Stage 

In the program debugging stage, the virtual sprite executes the received instructions, 

and if the instructions fail to execute successfully, the children need to debug the program 
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continuously (by removing redundant instructions, adding missing instructions, adjusting out-

of-order instructions, etc.) and re-validate it until it succeeds. Video analysis revealed that 

during the early learning period (the initial four weeks), the targeted children demonstrated a 

tendency that we labeled as "relying on trial-and-error". Specifically, when the virtual sprite 

executed the program, the children merely "watched" the sprite's actions without intending to 

correlate them with the program they had created; after the virtual sprite stopped moving, the 

children lacked awareness of analyzing the errors based on the sprite's stopping position and 

modifying the program accordingly. Instead, they attempted to complete the task through 

repetitive trial-and-error. The following transcription reflects this characteristic in the targeted 

children. 

When Child A and Child B saw that the virtual sprite did not reach the endpoint, 

Child B exclaimed, "We failed. Let's start again!" So, they immediately removed all 

the blocks from the Sensor Board and made another attempt. After three unsuccessful 

tries, Child A sought assistance from the teacher.  

However, in the later stages (the last four weeks), the targeted children demonstrated 

the ability of "active debugging." Specifically, they exhibited attentive observation of the 

virtual sprite's actions on the screen and compared them consciously with their own created 

programs. When the virtual sprite ceased its movements, the children attempted to identify 

errors in the program based on the position where it stopped and then modified the program 

to verify it until it succeeded. The children experienced an iterative cycle of "observation, 

recognition, modification, and validation" throughout the debugging process. The following 

transcription reflects the characteristic of young children's "active debugging." 

In Stage 3, Level 4 of the "Loops" software (refer to the programming task example in 

Activity 9 in the Appendix), although Child A and Child B had carefully analyzed the 
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problem before arranging the programming blocks, the program they created still had 

some minor issues. Upon observing the virtual sprite stopping after completing the 

looped path, both children expressed a perplexed "hmm..." sound and displayed 

expressions of confusion. Subsequently, they fixed their gaze on the screen, looking at 

the spot where the virtual sprite had stopped. Child A pointed to where the virtual 

sprite had stopped and looked at the programmed blocks they had created. Suddenly, 

Child A exclaimed, "Next, it should go upwards, upwards!" Child B seemed to notice 

something and excitedly shouted, "Yes! Yes!" Child A then rushed off to find the 

Upward Direction Block and inserted it in front of the rightward and downward 

direction blocks. Child B took out the Power Block and put it at the end. Both children 

firmly held the Power Block, their eyes fixed on the screen, carefully watching the 

virtual sprite move step by step according to the program. When the virtual sprite 

reached the endpoint, defeating the Monster, both children joyfully exclaimed, "Ah! 

We did it! " 

4.3.3 Teachers' Instructional Strategies in Programming Activities 

According to the video and interview data analysis, teachers mainly utilized three 

instructional strategies to support children's programming. These strategies were named 

"guiding children to observe closely," "guiding children to pause," and "providing children 

with external scaffolding for thinking." 

4.3.3.1 Guiding Children to Observe Closely 

During the program design stage, teachers guided children to observe closely. They 

used demonstrations and verbal prompts to encourage careful problem analysis before 

manipulating programming blocks. This involved observing starting and ending positions, 

identifying patterns in the route, recognizing obstacles and existing clues on the path and so 
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on. The following observation transcript illustrates the teacher's use of this method. 

(Group Session) Teacher: Today, as usual, we will first plan the route on the 

blackboard and then arrange the programming blocks on the Sensor Board. Now, please 

observe the positions of Kobe and the princess. Kobe is here (pointing to Kobe), and the 

princess is here (pointing to the princess). 

Teacher: This route is a bit different from what you usually see. What does Kobe need 

to pass through to rescue the princess?  

Child: A tunnel.  

Teacher: What tool does he need to pass through the tunnel? 

Child: A mushroom.  

Teacher: So, we need to get the mushroom before passing through the tunnel. Can we 

pass if we don't get the mushroom and try to go through the tunnel directly?  

Child: No, we can't. 

Teacher: So, what should be Kobe's first step?  

Child: Go up.  

Teacher: That's right (The teacher draws "↑" on the blackboard). What comes next?  

Child: Go left (The teacher draws "←" on the blackboard).  

Child: Then go right.  

Teacher: Why do we need to go right?  

Child: Because after getting the mushroom, we must come back out.  

Teacher: You've thought it through carefully (The teacher draws "→" on the 

blackboard) 

... (The teacher guides the children to observe and verbalize each of Kobe's 

movements, and then the teacher records the route on the blackboard using arrows. The final 
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recorded route is: ↑ ← → ↑ → ↓C ↓↓C↓↓C↓) (C represents the Action Block). 

Teacher: Just now, as you said, I recorded, and we have written down the entire route 

Kobe takes to rescue the princess. Now, please look for patterns in this route. Carefully 

observe, which part of this route is repeated. 

(The teacher guides the children to identify the distinctive C, then observe the parts 

before and after C, and finally identify the loop unit "↓C↓". The teacher circles this part, asks 

the children to count how many times it repeats, and records the number.) 

Teacher: Now, I'll have one of you try to arrange the programming blocks following 

the route we recorded on the blackboard... 

In the program debugging stage, teachers guided children to closely observe the 

virtual sprite's actions and the illuminated programming blocks that corresponded to the 

sprite's actions. They used demonstrations and verbal prompts to establish a connection 

between the two. When the virtual sprite stopped, teachers guided the children to identify 

errors based on its stopping position and modify the program accordingly. 

4.3.3.2 Guiding Children to Pause  

During the program design stage, teachers used demonstrations, verbal prompts, and 

other methods to encourage children to pause and simulate the virtual sprite's actions based 

on their created program. This approach allowed children to review and check the programs 

they had created before applying the Power Blocks to run the program. Teachers pointed out 

in the interview that children were often eager to see the virtual sprite execute the program, 

making them less careful and patient in creating the program. By "pausing the placement of 

Power Blocks" and "simulating the virtual sprite's actions", children can better understand the 

correspondence between actions and instructions and check program correctness. 

During the program debugging stage, guiding children to pause involved teachers 
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advising them not to immediately remove blocks or modify the program when the virtual 

sprite ceased its actions on the screen. Instead, teachers encouraged children to identify errors 

in the program based on the feedback provided by the virtual sprite. According to teachers' 

interviews, children initially tended to remove all the blocks and start programming again in 

response to program failure, leading to repetitive mistakes. The practice of pausing the 

removal of blocks proved beneficial as it helped children identify program errors and 

enhanced debugging efficiency. 

4.3.3.3 Providing External Scaffolding for Thinking 

Providing external scaffolding for thinking was an important practice the teachers 

used to support children in learning loops. Firstly, the teachers provided children with paper 

and pens to draw the virtual sprite's path step by step. Afterward, the children examined the 

drawn path, analyzed the loop units, and determined the number of loops in the path. Then, 

they represented these loops by circling, drawing lines, and writing numbers on the paper. 

Finally, they used programming blocks to create programs based on the notes they had made 

on the paper. The utilization of this strategy is also demonstrated in the "Guiding Children to 

Observe Closely" section. 

Teachers explained in interviews that this strategy was employed due to children's 

challenges in accurately identifying loop units within a route. By recording the path on paper, 

children could clearly see each step and identify loop units by comparing, circling, and 

drawing lines. Additionally, video and interview analyses revealed that this strategy fostered 

the development of careful observation and problem analysis before manipulating 

programming blocks. Furthermore, it facilitated communication and discussion among 

children as they engaged in conversations about "whether the paths recorded on the paper are 

correct," "how to find the loop units," and " whether they have placed the programming 
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blocks according to the paper records." 

4.4 Discussion 

The study revealed a significant improvement in young children's CT after 

participating in a 12-week programming program. This aligns with previous research that 

also demonstrated the effectiveness of programming education in fostering CT among young 

children (Angeli & Valanides, 2020; Bers et al., 2019; Relkin et al., 2021; Yang et al., 2023). 

However, prior studies primarily utilized physical, virtual, and hybrid kits with virtual 

programming blocks as programming tools (Yu & Roque, 2019). This study is the first to 

utilize a hybrid kit with tangible programming blocks for teaching programming to young 

children, confirming its positive impact on enhancing children's CT. The values and virtues of 

this hybrid programming kit lie in various forms of feedback it offers, both from the physical 

programming environment and the game interface. In the tangible programming environment, 

the virtual sprite executes the program, and the corresponding electronic programming blocks 

light up at each step, allowing children to visually connect the sprite's actions with their own 

program. The game interface provides feedback through the virtual sprite's execution of the 

program. This helps children to identify errors in their program and practice children's 

debugging skills, an important aspect of CT (Zeng et al., 2023a). Additionally, the 

programming instruction record bar displays instructions entered by the child in real-time, 

which helps the child associate the tangible programming blocks with the symbolic 

representations, thus facilitating the learning of "representation". Furthermore, teachers do 

not have to design programming tasks, since different difficulty levels of programming tasks 

have already been embedded in this hybrid programming kit to develop children's various CT 

skills. After successfully completing a task, the children can seamlessly transition to the next 

level. 
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Moreover, this research focused on the process of young children's programming, 

providing a new perspective for understanding programming as a means to promote CT. We 

found that, initially, at the programming design stage, children's engagement in programming 

was characterized by "action preceding thought", i.e., manipulating programming blocks 

without careful problem analysis. Qu and Fok (2021) also identified a similar trend among 

some students (aged 7-9) who tended to operate programming blocks without critically 

analyzing problems or making thoughtful decisions. Notably, these students demonstrated 

less improvement in their CT scores compared to those who engaged in careful analysis and 

exercised caution in their decision-making. Additionally, during the program debugging 

stage, we observed that children initially relied on a "trial-and-error" approach. Chevalier et 

al. (2022) found similar results in educational robotics learning activities, where children 

dependent on immediate feedback without guidance mainly used trial-and-error strategies, 

reducing their cognitive engagement. 

However, this study revealed that under the guidance of teachers, children's 

engagement in programming transitioned from "action preceding thought" to "thought 

preceding action" and from "relying on trial-and-error" to "active debugging." This finding 

not only validates the positive impact of programming education on children’s CT but also 

highlights the essential role of teachers' guidance in children's programming and CT learning. 

Wang et al. (2020) also emphasized the crucial importance of teachers' scaffolding in 

enabling young children to easily understand and engage with CT. Without teachers' 

guidance, students may lose interest in programming activities and struggle to demonstrate an 

understanding of algorithmic design (Newhouse et al., 2017). Additionally, students may rely 

on trial-and-error rather than actively engage in reflective problem-solving (Biesta & 

Burbules, 2003).  
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We found that the teachers mainly employed three strategies, namely "guiding 

children to observe closely," "guiding children to pause," and "providing children with 

external scaffolding for thinking" to enhance children's programming and learning. This 

finding aligns with the observations made by Wang et al. (2020), who also identified effective 

strategies employed by a teacher to foster children's CT. These strategies included "modeling 

a systematic way of checking and identifying a problem" and "encouraging children to pause 

and assess" (Wang et al., 2020, p. 14), which correspond to the "guiding children to observe 

closely" and "guiding children to pause" strategies implemented by the teachers in our study. 

Furthermore, Angeli and Valanides (2020) demonstrated the efficacy of the "external memory 

scaffolding" strategy in cultivating young children's CT. Likewise, other researchers 

emphasized the importance of providing scaffolding to assist young children in mastering 

challenging commands and longer, more intricate sequences, thereby overcoming their 

memory constraints (Macrides et al., 2021). These findings are consistent with the "external 

scaffolding for thinking" strategy employed by the teachers in this study. 

4.4.1 Limitations and Future Research 

This study exhibits certain limitations that indicate future research directions. Firstly, 

the small sample size of children being observed limits the generalizability of the findings. 

This study involved a 12-week longitudinal observation of a randomly selected group of two 

children, aimed at investigating children's engagement in programming. While the two 

children's programming processes were analyzed rigorously, objectively reflecting the 

characteristics of their engagement in programming, prudence is advised when extrapolating 

the findings to a broader population of children. To address this issue, future research should 

include larger and more diverse samples of young children. 

Moreover, it is essential to note that the findings on the instructional strategies were 
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based on observations of one teacher and interviews with two teachers from the experimental 

class. Although we engaged in weekly dialogues with the two teachers to understand their 

challenges and strategies in programming teaching, and our analysis of observations and 

interviews was comprehensive and rigorous, caution is advised when generalizing these 

research findings to other early childhood educators. Future studies should encompass a 

broader representation of teachers with varying levels of proficiency in early childhood 

pedagogy. Such studies can shed light on the professional development needs of early 

childhood teachers aiming to introduce CT education in their classrooms (Wang et al., 2020). 

4.4.2 Contributions and Implications 

This study makes both methodological and practical contributions. Methodologically, 

the study adopted a mixed-methods approach, combining pre-and post-tests to assess changes 

in children's CT scores, longitudinal observations to understand the characteristics of 

children's engagement in programming, and interviews and observations to gain insights into 

teachers' support for children's programming. The mixed-methods approach addresses a 

common limitation in quasi-experimental research, which often focuses solely on children's 

learning outcomes without considering their learning process or the support provided by 

teachers. 

Practically, this study confirmed the positive impact of using hybrid kits with virtual 

sprites and tangible programming blocks in promoting CT among young children, offering 

insights for educators in selecting appropriate programming tools. Furthermore, it revealed 

the characteristics of children's engagement during program design and debugging stages, 

providing valuable insights for teachers to offer targeted support. Finally, this study 

emphasized the crucial role of teachers in supporting young children's programming and 

demonstrated that, through proper training, teachers could adopt targeted strategies to 
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effectively enhance young children's CT learning. This implies that educational institutions 

and policymakers should offer programming and CT education training programs to integrate 

programming education in early childhood settings and cultivate future generations' essential 

CT skills for the digital age. 
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Chapter 5: General Discussion and Conclusions 

5.1 Limitations and Future Research Directions 

The overarching objective of this research is to investigate the fundamental aspects of 

"what to teach" and "how to teach" in the domain of early programming and CT, which hold 

significance across all disciplines. The first study has developed a CT curriculum framework 

for ECE that addresses the query of "what to teach". The second study explored an early 

childhood teacher's CK and PK in early programming and CT. The identification of teachers' 

areas of weak knowledge, misconceptions, and teaching challenges provides insights into the 

question of "how to teach". Additionally, the third study focuses on another critical aspect of 

programming and CT education, which is the evaluation of programming tools. This study 

also contributes valuable insights into the question of "how to teach". 

However, programming and CT education in ECE is still in its early stages, and there 

are numerous theoretical and practical issues that require further exploration. This section 

outlines a list of possible future works, focusing on what to teach, how to teach, whom to 

teach, how to evaluate, teacher professional development, CT's role in early learning and 

development, and family engagement. 

5.1.1 What to Teach 

Understanding CT learning trajectories for different developmental stages is critical to 

improving the effectiveness of CT education. However, the CT curriculum framework for 

ECE fails to specify which concepts, practices and perspectives children of different ages 

(between 2 and 8 years old) should learn and what developmental level they can achieve. 

Therefore, future research should focus on studying CT learning trajectories for young 

children to help practitioners understand the learning and developmental characteristics of 

young children's CT in order to develop age-appropriate learning goals. 
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5.1.2 How to Teach 

The methods employed in teaching programming and CT significantly impact young 

learners. Future studies should compare the effectiveness of various pedagogical approaches, 

such as project-based learning, game-based learning, and direct instruction. Additionally, 

instructional strategies like unplugged activity, embodied cognition, external memory support 

scaffolding, pair programming should be examined to determine their influence on children's 

CT development. Equally important is evaluating the impact of different programming tools, 

such as plugged versus unplugged and physical kits versus virtual kits, to identify which tools 

best support young learners' understanding and engagement. 

5.1.3 Whom to Teach 

Determining the optimal age for introducing programming and CT education is 

another critical research direction. Studies should investigate the developmental readiness of 

children at various ages, identifying the age at which they can most effectively begin to learn 

these skills. Furthermore, understanding the developmental trajectory and characteristics of 

children's CT learning can help tailor educational approaches to their cognitive abilities. 

Research should also focus on identifying common misconceptions children have about 

programming and CT, allowing educators to address these issues proactively. 

5.1.4 How to Evaluate 

Effective evaluation methods are crucial for comprehending and promoting children's 

programming and CT skills. However, the commonly used tool in current research for 

assessing young children's CT is the TechCheck-K. This tool evaluates CT in children aged 5-

9 through tasks like problem-solving, sequencing, graph decomposition, pattern recognition, 

determining the shortest path, and navigating an obstacle course maze. While this tool 

addresses the issue of young children needing a programming foundation for CT assessment, 
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thus offering a practical approach to assessing CT in young children (Relkin & Bers, 2021), it 

is merely an outcome-based evaluation and does not provide a formative assessment tool to 

observe the development of children's CT and programming abilities in real-life contexts. 

Future research should focus on developing assessment tools that can accurately gauge 

students' CT skills. These tools might include formative assessments, performance-based 

tasks, and observational protocols that provide insights into children's thought processes and 

problem-solving strategies. 

5.1.5 Teacher Professional Development in Early Programming and CT Education 

The research has shown that teachers’ support plays a crucial role in young children's 

programming and CT learning. At the same time, this research have indicated a severe lack of 

PCK and confidence in the field of programming and CT education among teachers (Zeng et 

al., 2024). Therefore, acquiring the relevant PCK and pedagogical skills is gradually 

emerging as a new demand placed on educators (Yadav et al., 2016) and providing 

professional development support for teachers to help them successfully integrate CT 

education into their curriculum has become an urgent need. 

An increasing number of professional development programs aim to provide teachers 

with training in programming and CT instruction, but they often target more primary and 

secondary education teachers rather than those in ECE. An example of professional 

development with a focus on CT is the CT4EDU project in the United States. This initiative, 

supported by the National Science Foundation, involves collaboration between Michigan 

State University, Oakland Schools, and the American Institute for Research. The goal is to 

create and implement a high-quality curriculum and professional development program to 

assist elementary school teachers in integrating CT into their classrooms. In addition to 

creating teaching resources like posters and lesson screeners, the project has also conducted 
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research on effective professional development for CT (Rich, Yadav, and Larimore, 2020; 

Rich, Yadav, and Schwarz, 2019). Future research could focus on developing training 

programs for early childhood teachers in programming and CT education, and conducting 

empirical research on the effectiveness of these programs. 

5.2 Implications 

The three studies contribute to the theoretical understanding of CT education, provide 

practical insights for teachers and teacher educators, and offer recommendations for policy 

development. These contributions collectively enhance the field of CT education in early 

childhood. 

5.2.1 For policymakers 

Clarifying the importance and feasibility of early programming and CT education can 

assist policymakers in promoting policies to advance programming and CT education in early 

childhood education. 

The importance of CT as an essential skill for the 21st century is widely 

acknowledged. However, many regions and countries do not currently include CT in their 

ECE policies. Offering initial guidance on what should be taught and how it should be taught 

can assist policymakers in formulating curriculum guidelines that specify objectives, content, 

implementation strategies, and other relevant aspects. This, in turn, can facilitate the 

advancement and dissemination of CT education in early childhood environments. This will 

also provide practitioners with a strong foundation for their professional endeavors. 

Additionally, the research highlights the importance of programming tools in helping 

young children learn CT. This can guide policymakers in providing the necessary funding and 

resources to support practitioners in implementing programming and CT education in 

kindergarten.  
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Finally, this research underscore the importance of educational institutions and 

policymakers providing training programs in programming and CT education for early 

childhood teachers. This highlights the necessity for policy support and investment in 

professional development to enable teachers to effectively integrate programming and CT 

education in early childhood settings. 

5.2.2 For early childhood practitioners (leaders and teachers) 

The research defined the content of programming and CT education, helping 

practitioners better understand CT education and the importance of implementing it in 

kindergarten. It provides a curriculum framework for programming and CT education, 

analyzes effective and ineffective teaching strategies, and outlines characteristics of children's 

programming learning. All these practical guidelines assist practitioners in implementing 

programming and CT education effectively. 

5.2.3 For teacher educators and teacher education institutions 

The research highlights the crucial role of teachers in supporting young children's 

programming and CT learning and reveals the insufficient knowledge of teachers in 

programming and CT education. Therefore, it provides strong evidence for offering 

professional support to educators. Furthermore, the study clearly identifies specific 

deficiencies in teachers' CK and PK, providing a solid foundation for teacher educators to 

offer targeted and effective professional support.  

5.2.4 For future research 

The CT framework established in this study can serve as a basis for analyzing 

teachers' content knowledge and designing intervention programs in the future. Additionally, 

methods employed in this study can provide insights for future research. For example, the 

second study using the CK and PK framework to analyze individual teachers' CK and PK can 



   

 

 

119 

be a reference for future research to expand the sample size and further explore teachers' CK 

and PK comprehensively and in-depth; the third study adopted a mixed-methods approach, 

addressing a common limitation in quasi-experimental research, which often focuses solely 

on children's learning outcomes without considering their learning process or the support 

provided by teachers. 

In conclusion, this study has provided initial answers to how to conduct programming 

and CT education effectively in the early years, facilitating the advancement of programming 

and CT education in early childhood education as well as research in this field. 

5.3 Extension of Research in ECE and Computing Education 

5.3.1 Extension of Research in ECE 

This research introduces programming and CT education into the realm of ECE, 

significantly extending the line of research in the field of ECE. Firstly, study 1 established a 

CT curriculum framework for ECE. This framework provides a solid foundation for 

developing programming and CT education and research in ECE because it answers the 

question of “what to teach” in early programming and CT and facilitates future studies to be 

conducted within a unified CT curriculum framework for ECE. 

Secondly, Study 2 expands the existing research on PCK of early childhood teachers 

to the domain of programming and CT. While previous studies have examined early 

childhood teachers' PCK in areas such as language, mathematics, science, health, and arts, 

there has been a dearth of research on PCK in the field of programming and CT. The 

construction of CK and PK frameworks for early programming and CT education, established 

through a thorough analysis of existing literature, offers valuable frameworks for future 

research on early childhood teachers' PCK in programming and CT. Furthermore, the 

exploration of early childhood teachers' PCK in early programming and CT provides valuable 
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insights for future research on investigating effective teacher training programs for early 

childhood teachers in early programming and CT. Building upon the weak knowledge areas, 

misconceptions, and teaching difficulties identified among teachers, we can design a training 

program to promote early childhood teachers' PCK of programming and CT and verify the 

effectiveness of the training program through quasi-experimental studies. 

Thirdly, study 3 focused on another crucial factor in programming and CT education: 

programming tools. Specifically, the study investigated the impact of a hybrid programming 

tool on children's CT skills and analyzed the programming behaviors displayed by children 

when using this tool. Future research could compare the effectiveness of different types of 

tools, such as comparing the effects of plugged and unplugged programming tools, on young 

children’s CT. This comparative analysis would provide empirical evidence to guide the 

selection of suitable programming tools for young children.  

In addition, this thesis provides an initial investigation of the learning characteristics 

exhibited by young children during the program design and debugging stages. While previous 

studies have explored the learning characteristics of young children in domains such as 

language, mathematics, science, and arts, there has been a lack of research on the learning 

characteristics of young children in programming and CT. Moreover, previous research has 

primarily focused on the learning outcomes of children's programming education, allocating 

less attention to the learning process itself. This research extends the line of research by 

exploring children’s programming learning processes and learning characteristics. Future 

research can further delve into the learning trajectory, learning characteristics, and the levels 

of learning and development that can be achieved by young children at different age ranges in 

programming and CT. This will provide a foundation for teachers to adopt targeted 

instructional strategies. 
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Lastly, this thesis offers an initial exploration of instructional strategies to facilitate 

young children's learning of programming and CT. Similarly, research in this area remains 

limited. Future studies can delve further into teachers’ instructional strategies to support 

young children's learning of programming and CT. 

5.3.2 Extension of Research in Computing Education 

This thesis further extends the line of research in the field of computing education. 

Firstly, it broadens the scope of computing education research to encompass the realm of 

ECE. While considerable research has been conducted on computing education in primary 

and secondary education, the research on ECE remains relatively limited. Specifically, there 

is a lack of consensus on which components of CT should be taught in ECE. Study 1 

addresses this gap by developing a refined CT curriculum framework for ECE, which 

provides a solid foundation for future research in early programming and CT education. 

Moreover, Study 2 expands the line of research in computing education by examining 

teachers' PCK in early programming and CT. The investigation of teachers' PCK holds 

significant implications for enhancing their professional knowledge and improving their 

teaching effectiveness, thereby advancing the field of computing education. 

Furthermore, Study 3 expands the existing body of research in the field of computing 

education by investigating the programming behaviors exhibited by children during the 

stages of program design and debugging. Previous studies have predominantly focused on 

examining the learning outcomes of children's programming education, with limited attention 

being paid to the actual learning process itself. By specifically examining the process of 

computing education, it is possible to gain a deeper understanding of the trajectory and 

characteristics of computer science learning, as well as the levels of learning and 

development that students at different age groups can achieve. Consequently, this knowledge 
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can be utilized to provide more targeted support for children, thereby facilitating the 

advancement of computing education. 

5.4 Overall Framework for Early Childhood CT Education 

Based on the aforementioned information, I have summarized the following 

framework for early childhood programming and CT education: 

1. What to teach: The content to be taught in early CT education, as delineated in The 

Early Childhood CT Framework (see Table 3), includes the CT concepts, practices, and 

perspectives that are appropriate for young children to learn. 

2. How to teach: The instructional methods encompass the teaching context, 

pedagogical approaches, activity structure, pedagogical strategies, and programming tools 

employed to foster children's programming and CT skills, as presented in The Programming 

and CT Pedagogical Knowledge Framework in ECE (see Table 5). 

3. Whom to teach: This comprises several considerations: a) determining the most 

suitable age to introduce programming and CT education, b) understanding the 

developmental trajectory and unique characteristics of young children's programming and CT 

skills, and c) identifying prevalent misconceptions in children's learning of programming and 

CT. However, these specific areas have not been exhaustively examined in the current thesis. 

Future research endeavors should focus on investigating these aspects to advance our 

comprehension of young children's programming and CT learning, thereby enhancing the 

efficacy of CT instruction for young children. 

4. How to assess: Assessment is a crucial component of teaching, along with 

instructional content, methods, and learners. In this thesis, the TechCheck-K tool was 

employed to evaluate young children's CT. This tool utilizes an unplugged approach, 

effectively addressing the requirement of prior programming experience in previous CT 
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assessments. However, while this tool is suitable for research purposes, its applicability in 

early childhood CT education may be limited. Assessing the CT of the same child at different 

developmental stages using this tool may result in repetitive measurement effects, and the 

measurement results may also be influenced by the ongoing development of children's 

thinking. Employing "formative assessment" to evaluate children may be the most suitable 

approach, as it relies on observation and communication during children's daily activities. 

Through careful observation, teachers can discern children's performance and developmental 

levels in various CT components, thus enabling targeted instruction that aligns with their 

abilities. Consequently, the development an observational scale for teacher to assess CT in 

young children would be advantageous, and it holds promise as a future direction for research 

efforts. 
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Appendix A. Appendix of Study 1 

Appendix A-1 

Search Engine, Search Term, Date of the Search Execution, Number of Items Found and Additional Information 

Search 

Engine 

Search term Note Date 

Nr of 

items 

Web of 

Science 

(“Computational Thinking”) AND (preschool* 

OR kindergarten* OR pre-K* OR prekindergarten 

OR “early child*” “early age*” OR “early years” 

OR “young child*” OR “young learners” OR 

child* OR “elementary education” OR “lower 

education” OR “primary education” OR “pre-

primary education”) 

Search in topic; 

Document type: article+conference paper+early 

access 

01.10.2021 119 

SCOPUS 

TITLE-ABS-KEY (“Computational Thinking”) 

AND TITLE-ABS-KEY(preschool* OR 

Search in title, abstract and 

keywords； 
01.10.2021 96 



   

 

 

145 

Search 

Engine 

Search term Note Date 

Nr of 

items 

kindergarten* OR pre-K* OR prekindergarten OR 

“early child*” “early age*” OR “early years” OR 

“young child*” OR “young learners” OR child* 

OR “elementary education” OR “lower 

education” OR “primary education” OR “pre-

primary education”) 

Document type: article+conference paper+book 

ERIC 

(“Computational Thinking”) AND (preschool* 

OR kindergarten* OR pre-K* OR prekindergarten 

OR “early child*” “early age*” OR “early years” 

OR “young child*” OR “young learners” OR 

child* OR “elementary education” OR “lower 

education” OR “primary education” OR “pre-

Search in title, abstract and identifiers； 

Document type: 

academic journal+report+book+dissertation 

03.10.2021 87 
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Search 

Engine 

Search term Note Date 

Nr of 

items 

primary education” ) 

ScienceDirect 

Term 1: (“Computational Thinking”) AND 

(preschool OR preschooler OR kindergarten OR 

kindergartner OR pre-K OR prekindergarten) 

Term 2: (“Computational Thinking”) AND 

(“elementary education” OR “lower education” 

OR “primary education” OR “pre-primary 

education” OR “early years” OR “early age” OR 

“early child” OR “early childhood”) 

Term 3: (“Computational Thinking”) AND 

(“young child” OR“young children”OR “young 

learners” OR child OR children OR childhood) 

Search in title, abstract and 

Keywords; 

 

ScienceDirect allows maximum eight 

boolean terms in the search term, so we split 

the search term in three to cover all the words 

identified as relevant for the search; 

For wildcards’*’ are not supported by 

ScienceDirect, we added some extension words. 

Document type: Review articles, 

research articles (The literatures in this database 

01.10.2021 8+24+37 
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Search 

Engine 

Search term Note Date 

Nr of 

items 

are all academic ones) 

ProQuest 

TI, AB, IF((“Computational Thinking”) AND 

(preschool* OR kindergarten* OR pre-K* OR 

prekindergarten OR (“early child” OR “early 

childcare” OR “early childhood” OR “early 

children”) (“early age” OR “early ages”) OR 

“early years” OR (“young child” OR “young 

childhood” OR “young children”) OR “young 

learners” OR child* OR “elementary education” 

OR “lower education” OR “primary education” 

OR “pre-primary education” )) 

Search in title, abstract and identifiers； 

 

Document type:  

academic journals, dissertations, conference 

papers, research manuscripts, books 

01.10.2021 252 
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Appendix A-2 

The Snowballing Seeds of Literature Search 

First round Publication Date Journal 

Assessing computational thinking: A systematic review of empirical 

studies 

2020 Computers & Education 

Preschool children, robots, and computational thinking: A systematic 

review 

2021 International Journal of Child-Computer 

Interaction 

Computational thinking learning experiences, outcomes, and research 

in preschool settings: a scoping review of literature 

2021 Education and Information Technologies 

A systematic literature review regarding computational thinking and 

programming in early childhood education 

2021 Education and Information Technologies 
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Appendix A-3 

Coding Framework: The Three-Dimensional CT Framework (Brennan & Resnick, 2012) 

CT concepts Description CT practices Description CT 

perspectives 

Description 

Sequence A set of ordered steps for 

performing a task 

Being iterative 

and incremental 

Problem-solving is an 

iterative process, with plans 

being revised step-by-step 

Expressing Regarding computation as a 

way to create and self-

express  

Loops Repetition of the same 

instruction multiple times 

Testing and 

debugging 

Finding and fixing errors Connecting  Recognizing the value of 

creating with and for others  

Parallelism  Simultaneous running of 

multiple instructions 

Reusing and 

remixing 

Building reusable 

instructions or new products 

based on others’ work  

Questioning  Feeling empowered to raise 

questions about technology 

and use it 

Events  “One thing causing another 

thing to happen” (p.4)  

Abstracting and 

modularizing 

Extract the basic elements 

and patterns of complex 

systems 

Others 

 

 

Other CT perspectives not 

included in the three-

dimensional CT framework 
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CT concepts Description CT practices Description CT 

perspectives 

Description 

Conditionals   “The ability to make 

decisions based on certain 

conditions” (p. 5) 

Others Other CT practices that not 

included in the three-

dimensional CT framework 

Operators  Mathematical and string 

operations 

Data  “Storing, retrieving, and 

updating values” (p. 5) 

Others Other CT concepts that not 

included in the three-

dimensional CT framework 
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Appendix A-4 

Overview of the Included Studies 

Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Ahn et al. (2021) USA 7-9 years 59 

QUANT: between-

participants designs 

(posttest-only control 

design) 

A paper-based 

debugging test 

Maze 

Three 50-

min weekly 

sessions 

Angeli and 

Valanides (2020) 

Southern 

European 

Country 

5-6 years 50 

QUANT: between-

participants designs 

(pretest-posttest control-

group design) 

A self-developed task-

based CT rubric 

Bee-Bot 

Two 40-

min 

sessions 

Bers et al. (2014) USA 4.9-6.5 years 53 A robot and/or program 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

QUANT: one-group, 

with assessment 

continuously or after 

each session 

evaluation Likert scale 

LEGO 

robotics kit 

with CHERP 

Six 60-min 

to 90-min, 

20 h total in 

6 weeks 

Bers et al. (2019) Spain 3-5 years 172 

MIXED: students’ 

projects analysis, 

classroom observations, 

teacher interviews, diary 

journal, and 

questionnaire 

Solve-Its task-based 

assessment, PTD 

Checklist 

KIBO 

3-5 sessions 

ranging 

from 45-

min to 75-

min in 2-3 

weeks  
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Cho and Lee 

(2017) 

UK 5-6 years 12 

QUANT: one-group 

posttest-only design 

A student self-

evaluation scale 

LEGO 

mindstorm 

NXT 

5 50-min 

sessions for 

5 weeks 

Clarke-Midura et 

al. (2021) 

USA 

kindergarten-

aged children 

89 

QUANT: assessment 

development 

N/A 

A Coding 

Robot 

N/A 

Critten et al. (2022) UK 2-4 years 15 

QUANT: children’s 

evaluation by adults after 

each session 

A Coding 

Development Test 3-6 

developed by Marinus 

et al. (2018), Children 

communication 

checklist 

Bee-Bot 

Six 45-60 

min 

sessions 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

del Olmo-Muñoz et 

al. (2020) 

Spain 7-8 years 84 

QUANT: a quasi-

experimental design 

(pre-, mid-, and post test)  

An instrument 

consisting of 10 items 

from the “International 

Bebras Contest” 

Code. Org 

Eight 45-

min 

sessions in 

8 weeks 

Dietz et al. (2019) USA 

Study 1: 4-7 

years 

Study 2: 3-5 

years 

Study 1: 112 

Study 2: 78 

QUANT: experiment N/A Blocks 10-min task 

Ehsan et al. (2020) USA 5-7 years 10 

QUAL: videotaped 

classroom observations, 

teacher interviews 

N/A 

Playground’s 

Big Blue 

Blocks 

30-min 

engineering 

design task 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Elkin et al. (2016) USA 3-5 years 64 

QUANT: one-group 

posttest-only design 

Solve-Its task-based 

assessment 

KIBO 

Six 90-min 

sessions in 

6 days 

Flannery and Bers 

(2014) 

USA 4.4-6.6 years 29 

QUANT: one-group 

pretest-posttest design 

“Hokey-Pokey” 

program completeness 

assessment rubric 

TangibleK 

robotics kit 

with CHERP 

3 individual 

sessions 

Georgiou and 

Angeli (2019) 

Cyprus 5-6 years 180 

QUANT: between-

participants designs 

Self-developed CT 

evaluation rubrics 

Bee-Bot N/A 

Gerosa (2021) Uruguay 5-6 years 102 

QUANT: cross-sectional 

correlational design 

A CT assessment 

adapted from Tran’s 

CT questionnaire 

(Tran, 2019)  

RoboTito 

Elevn 25-

30 min 

sessions 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Gordon et al. 

(2015) 

USA 4-6 years 22 

MIXED: pre-post 

interview 

N/A 

SoRo toolkit 

(Social Robot 

Toolkit) 

30 min 

Kazakoff et al. 

(2013) 

USA 4-6 years 27 

QUANT: quasi-

experimental design 

(pretest-posttest)  

Picture sequencing 

cards created by 

Baron-Cohen et al. 

(1986) 

LEGO WeDo 

robotics with 

CHERP 

1 week 

Khoo (2020) Hong Kong 5 years 3 

QUAL: (multiple-case 

study) classroom 

observations, teacher 

interviews, students’ 

artifacts analysis 

A picture-story 

sequencing task 

Colby Mouse 

and Ozobot 

Bit 

Nine 15-

min 

activities 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Metin (2020) Turkey 5 years 24 

QUANT: one-group 

pretest-posttest design 

The Basic Coding 

Skills Observation 

Form, the Basic 

Robotic Coding Skills 

Observation Form 

Cubetto 

60-90 min 

of daily 

training 

over 8 days 

Moore et al. (2020) Midwest 7-8 years 3 

QUAL: a task-based 

interview; audio and 

video recording 

Task-based interview 

assessment 

Code and 

Go™ Robot; 

Mouse 

Coding 

Activity Set 

Two 1-hr 

weekly 

sessions 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Muñoz-Repiso and 

Caballero-

González  (2019) 

Spain 3-6 years 131 

QUANT: quasi-

experiment (pretest-

posttest) 

The “SSS” rubric used 

in the TangibleK 

program (Bers, 2010) 

Bee-Bot 

7 sessions 

(duration 

unclear) 

Murcia and Tang 

(2019) 

Australia 3-4 years 8 

QUAL: researcher site 

visits, educator 

classroom observations, 

shared collegial 

reflection and review of 

educator generated 

learning stories 

N/A Cubetto 6 months 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Nam et al. (2019) 

The Republic 

of Korea 

5-6 years 53 

QUANT: quasi-

experiment (pretest-

posttest) 

Story sequencing test, 

Korean version (Ryu, 

2003) of Ward’s 

(1993) original 

problem-solving 

performance 

instrument 

TurtleBot 

90 minutes/ 

8 sessions 

with 12 

activities in 

8 weeks  

Newhouse et al. 

(2017) 

Australia 4-6 years 50 

QUAL: classroom 

observations, teacher 

interview 

Checklist of 

behaviours drawing 

upon Bird and Edwards 

(2014) 

Bee-Bot and 

Sphero robots 

6 weeks 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Papadakis et al. 

(2016) 

Greece 5 years  43 

QUANT: one-group 

posttest-only design 

Tas-based paper format 

assessment 

ScratchJr 

13 h in 6 

weeks, two 

60-min 

semiweekly 

sessions 

Pila et al. (2019) USA 4-5 years 28 

MIXED: pre-post 

children interview, pre-

post gameplay 

assessment 

A coding scheme 

adapted from Bers et 

al. (2014)  

Daisy the 

Dinosaur and 

Kodable 

five 3-hr 

sessions in 

1 week 

Portelance et al. 

(2016) 

USA 5-8 years 62 

QUANT: students’ 

projects analysis 

Project based 

assessment 

ScratchJr 

Twelve 1-

hr lessons, 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

twice a 

week 

Pugnali et al. 

(2017) 

USA 4-7 years 28 

MIXED: quasi-

experiment (posttest); 

observations  

Solve-Its task-based 

assessment, PTD 

checklist 

KIBO or 

ScratchJr 

15 h in 1 

weeks 

 

Qu and Fok (2021) China 7-9 years 32 

MIXED: rubric scoring, 

teacher interviews and 

classroom observations 

CT rubric designed by 

Leonard et al. (2016) 

KAZI EV5 

and Scratch 

Twelve 90-

min 

lessons, 

thrice 

weekly  
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Relkin et al. (2021) USA 6-8 years 

The 

experimental 

group 

(N=667) 

The control 

group 

(N=181) 

QUANT: A quasi-

experimental 

longitudinal design  

TechCheck KIBO 

12-15 h in 

6-7 weeks 

Rijke et al. (2018) Netherlands 6-12 years 200 

QUANT: intervention in 

different age groups with 

post test  

The number of cards a 

student could get their 

partner to guess right 

(abstraction 

assessment) and the 

Unplugged 

Two 

unplugged 

lessons 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

number of decomposed 

movements 

(decomposition 

assessment) 

Saxena et al. 

(2020) 

Hong Kong 3-6 years 11 

MIXED: one-group 

posttest-only design, 

classroom observations, 

teacher interviews 

A robot and/or program 

evaluation Likert scale 

designed by Bers et al. 

(2014)  

Bee-Bot 10 h 

Strawhacker and 

Bers (2015) 

USA 5-6 years 35 

MIXED: classroom 

observations and 

quantitative mid- and 

post-test assessments 

Solve-Its task-based 

assessment 

LEGO WeDo 

2.0 with 

CHERP 

13 h 

lessons in 9 

weeks 



   

 

 

164 

Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Strawhacker and 

Bers (2019) 

USA 5-8 years 57 

QUANT: one-group 

posttest-only design 

Solve-Its task-based 

assessment 

 

ScratchJr 6 weeks 

Strawhacker et al. 

(2018) 

USA 5-7 years 

6 teachers 

and 222 

students 

MIXED: one-group 

posttest-only design, 

journal entries and 

surveys 

Solve-Its task-based 

assessment 

 

ScratchJr 

A minimum 

of 2 lessons 

and a 

maximum 

of 7 lessons 

Sullivan and Bers 

(2013) 

USA Kindergarteners 53 

QUANT: one-group, 

with assessment 

continuously or after 

each session 

A robot and/or program 

evaluation Likert scale  

RCX brick 

with CHERP 

20 hours in 

6 lessons 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Sullivan and Bers 

(2016) 

USA 4-8 60 

QUANT: one-group 

posttest-only design 

Robot Parts test, Solve-

Its task-based 

assessment 

KIWI 

robotics with 

CHERP 

8 h in 8 

weeks 

 

Sullivan and Bers 

(2018) 

Singapore 3-6 years 98 

MIXED: one-group 

midtest-posttest design, 

classroom observations, 

teacher interviews and 

journals 

Solve-Its task-based 

assessment, PTD 

Checklists 

KIBO 

7 h in 7 

weeks 

Sullivan et al. 

(2013) 

USA 5 years 37 

QUAL: teacher 

interviews, videos, 

photographs, and 

classroom observations 

N/A 

LEGO WeDo 

robotics with 

CHERP 

10 h over 5 

days 
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Authors (Year) Region/Country Participants’ age Sample size Research method CT measurement(s) 

CT 

Intervention 

tool(s) 

CT 

Intervention 

duration 

Sung and Black 

(2021) 

USA 7-9 years 115 

QUANT: A 2 × 2 

factorial design 

experiment 

A paper-based 

programing skill test 

Hopscotch 

Six 50-min 

sessions 

Sung et al. (2017) USA 5-7 years 66 

QUANT: A 2 × 2 

factorial design 

experiment 

Programming task 

assessment with a 

rubric 

ScratchJr 

Five 1-hr 

sessions 

Terroba et al. 

(2021) 

Spain 5 years 24 

MIXED: classroom 

observations, quasi-

experiment 

A self-developed CT 

behavior observation 

system 

A ground 

robot 

10-12 hours 

Wang et al. (2020) USA 3-4 years 3 

QUAL: videotaped 

classroom observations 

N/A Code-a-pillar 

12 weekly 

20-min 

sessions 
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Appendix A-5 

CT Concepts Emphasized by Each Study 

Study 

CT concepts 

Sequences Events Loops Parallelism Conditionals Operators Data Others 

Ahn et al. (2021) √        

Angeli and Valanides (2020) √ √       

Bers et al. (2014) √ √ √  √   Control flow 

Bers et al. (2019) √ √ √  √    

Cho and Lee (2017)         

Clarke-Midura et al. (2021)         

Critten et al. (2022) √       Representation 

del Olmo-Muñoz et al. (2020) √ √ √     Representation 

Dietz et al. (2019)         

Ehsan et al. (2020)         
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Study 

CT concepts 

Sequences Events Loops Parallelism Conditionals Operators Data Others 

Elkin et al. (2016) √ √ √     Hardware/Software 

Flannery and Bers (2014) √ √       

Georgiou and Angeli (2019) √        

Gerosa (2021) √  √  √    

Gordon et al. (2015) √ √  √     

Kazakoff et al. (2013) √        

Khoo (2020)        

Automation 

Representation 

Metin (2020) √       Representation 

Moore et al. (2020) √       Representation 

Muñoz-Repiso and Caballero-

González (2019) 

√ √      Representation 
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Study 

CT concepts 

Sequences Events Loops Parallelism Conditionals Operators Data Others 

Murcia and Tang (2019) √ √ √     Representation 

Nam et al. (2019) √       Representation 

Newhouse et al. (2017)         

Papadakis et al. (2016) √        

Pila et al. (2019) √  √  √    

Portelance et al. (2016) √ √ √     Control flow 

Pugnali et al. (2017) √  √  √    

Qu and Fok (2021)  √ √  √    

Relkin et al. (2021) √ √ √  √   

Hardware/Software 

Control structures 

Representation 

Rijke et al. (2018)         
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Study 

CT concepts 

Sequences Events Loops Parallelism Conditionals Operators Data Others 

Saxena et al. (2020) √        

Strawhacker and Bers (2015) √  √      

Strawhacker and Bers (2019) √ √ √      

Strawhacker et al. (2018) √  √      

Sullivan and Bers (2013) √ √ √  √   Control flow  

Sullivan and Bers (2016)  √ √  √   Hardware/Software 

Sullivan and Bers (2018) √ √ √  √    

Sullivan et al. (2013) √  √     Hardware/Software 

Sung and Black (2021) √        

Sung et al. (2017) √        

Terroba et al. (2021)         

Wang et al. (2021)         
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Study 

CT concepts 

Sequences Events Loops Parallelism Conditionals Operators Data Others 

Frequency 31 16 18 1 10 0 0 

Representation: 9 

Control flow: 3 

Control structures: 1 

Hardware/Software: 

4 

Automation: 1 
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Appendix A-6 

CT Practices Emphasized by Each Study 

Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Ahn et al. (2021)  √   Pattern recognition 

Angeli and Valanides (2020)  √ 

√ (Decomposition) 

√ (Abstraction) 

 Algorithmic design 

Bers et al. (2014) √ √ √ (Decomposition)   

Bers et al. (2019) √ √    

Cho and Lee (2017)   √  Algorithmic design 

Clarke-Midura et al. (2021)  √ √ (Decomposition)  Algorithmic design 
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Spatial reasoning 

Critten et al. (2022)  √   

Algorithmic design 

Logical thinking 

del Olmo-Muñoz et al. 

(2020) 

 √ √ (Abstraction)  

Algorithmic design 

Pattern recognition  

Generalization 

Dietz et al. (2019)   √ (Decomposition)   

Ehsan et al. (2020)  √ √ (Decomposition)  

Algorithmic design 

Pattern recognition 

Simulations 
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Elkin et al. (2016) √ √    

Flannery and Bers (2014)      

Georgiou and Angeli (2019)  √   Algorithmic design 

Gerosa (2021)  √   Algorithmic design 

Gordon et al. (2015)  √    

Kazakoff et al. (2013)      

Khoo (2020)   

√ (Decomposition) 

√ (Abstraction) 
 Algorithmic design 

Metin (2020)      
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Moore et al. (2020)  √ 

√ (Decomposition) 

√ (Abstraction) 

 

 

Algorithmic design 

Pattern recognition 

Muñoz-Repiso and 

Caballero-González (2019) 

 

√ 

 

   

Murcia and Tang (2019)  √ √ (Decomposition)   

Nam et al. (2019) 

√ 

 

    

Newhouse et al. (2017)  √    
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Papadakis et al. (2016)      

Pila et al. (2019)      

Portelance et al. (2016)      

Pugnali et al. (2017)  √    

Qu and Fok (2021)  √ 

√ (Decomposition) 

√ (Abstraction) 

 

 

Algorithmic design 

Generalizing and problem 

transfer 

Logical thinking 

Relkin et al. (2021)   √ (Decomposition)  Algorithmic design 

Rijke et al. (2018)   √ (Decomposition)   
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

√ (Abstraction) 

Saxena et al. (2020)     

Pattern recognition 

Algorithmic design  

Strawhacker and Bers (2015)      

Strawhacker and Bers (2019)      

Strawhacker et al. (2018)      

Sullivan and Bers (2013) √ √ √ (Decomposition)   

Sullivan and Bers (2016)  √ √ (Decomposition)   

Sullivan and Bers (2018)      
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Sullivan et al. (2013) 

√ 

 

√ 

 

   

Sung and Black (2021)   

√ (Decomposition)  

(Abstraction) 

 Pattern recognition 

Sung et al. (2017)     Pattern recognition 

Terroba et al. (2021)  √ √ (Decomposition)   

Wang et al. (2021)  √ 

√ (Problem 

reformulation/Decomposition) 

  

Frequency 6 23 

Decomposition: 16 

Abstraction: 7 

0 

Algorithmic design:13 

Pattern recognition: 7 
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Study 

CT Practices 

Being iterative 

and 

incremental 

Testing and 

debugging 

Abstracting and 

modularizing 

Reusing 

and 

remixing 

Others 

Generalization: 2 

Logical thinking: 2 

Simulations: 1 

Spatial reasoning: 1 
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Appendix A-7 

CT Perspectives Emphasized by Each Study 

Study 

CT Perspectives 

Expressing Connecting Questioning Others 

Ahn et al. (2021)     

Angeli and Valanides 

(2020) 

    

Bers et al. (2014) √ √  

Choices of 

conduct 

Bers et al. (2019) √ √  

Choices of 

conduct 

Cho and Lee (2017)     

Clarke-Midura et al. 

(2021) 

    

Critten et al. (2022)  √   

del Olmo-Muñoz et al. 

(2020) 

 √   

Dietz et al. (2019)     

Ehsan et al. (2020)     

Elkin et al. (2016) √ √   

Flannery and Bers (2014)     

Georgiou and Angeli 

(2019) 
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Study 

CT Perspectives 

Expressing Connecting Questioning Others 

Gerosa (2021)     

Gordon et al. (2015)     

Kazakoff et al. (2013)     

Khoo (2020)     

Metin (2020)  √   

Moore et al. (2020)     

Muñoz-Repiso and 

Caballero-González 

(2019) 

√ √   

Murcia and Tang (2019) √ √   

Nam et al. (2019)     

Newhouse et al. (2017) √    

Papadakis et al. (2016)     

Pila et al. (2019)     

Portelance et al. (2016) √    

Pugnali et al. (2017) √ √  

Choices of 

conduct 

Qu and Fok (2021)     

Relkin et al. (2021) √ √   

Rijke et al. (2018)     

Saxena et al. (2020)     



   

 

 

182 

Study 

CT Perspectives 

Expressing Connecting Questioning Others 

Strawhacker and Bers 

(2015) 

√ √   

Strawhacker and Bers 

(2019) 

 √   

Strawhacker et al. (2018)    

Choices of 

conduct 

Sullivan and Bers (2013)     

Sullivan and Bers (2016)     

Sullivan and Bers (2018) √ √  Perseverance 

Sullivan et al. (2013) √ √   

Sung and Black (2021)     

Sung et al. (2017)     

Terroba et al. (2021)     

Wang et al. (2021)  √  Perseverance 

Frequency 12 15 0 

Choices of 

conduct: 4 

Perseverance: 

2 
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Appendix B. Appendix of Study 2 

Appendix B-1 

Examples of Data Analysis 

Data 

Types 

Transcripts 

 

CK indicators 

involved 

PK indicators involved 

Teaching 

context 

Activity 

structure 

Pedagogical 

approaches 

Pedagogical 

strategies 

Video 

data 

Teacher: Today, Qiqi will take a 

spaceship to reach the Moon, Jupiter 

and Uranus to explore the mysteries 

of the three planets. Qiqi wants to go 

to the Moon first. [Contextualization] 

Do you know where the Moon is 

located?  

Children: Row 5, column 7. 

Teacher: Qiqi needs to take a route 

with loops to reach the Moon. Have 

Loops, 

Representation  

 

Group 

activity 

Highly 

structured 

Task-based 

learning 

Contextualization, 

External memory 

support 

scaffolding, 

Embodied 

cognition 
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you found a route with loops? 

[Loops] 

(Child 1 raises his hand) 

Teacher: Yes, please share your idea. 

Child 1: One step forward, one step to 

the left, one step forward, one step to 

the left, one step forward, one step to 

the left (Child 1 describes the route 

while gesturing with his hand) (The 

teacher notes down the route 

described by Child 1 on the board 

using arrows).[External memory 

support scaffolding] [Representation] 

Teacher: Let's move our fingers along 

the route XXX described and see if 

it's correct [Embodied cognition] 
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… 

Interview 

data 

Interviewer: What do you consider 

the core content of early 

programming and CT, or what do you 

include in your unplugged 

programming curriculum? 

Teacher: In the first semester of our 

unplugged programming curriculum, 

children learned how to use 

programming blocks to give 

instructions such as “go forward” “go 

backward” “go left” and “go right” 

through floor games. [Representation] 

[Embodied cognition] In the second 

semester, in addition to learning how 

to give instructions of walking in 

Representation, 

Sequences, 

Loops, 

Conditionals, 

Expressing and 

creating  

 

   Embodied 

cognition 
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different directions, children also 

learned how to give instructions for 

walking several steps in different 

directions. [Sequences] In the K2 

class, we introduce board games as a 

medium for learning. [Embodied 

cognition]Children also need to learn 

about conditionals and loops. 

[Conditionals and Loops] In the K3 

class, the routes children need to 

program are longer and more complex 

[Sequences] compared to the K2 

classes. Children learn to use a variety 

of instructions for sequences, 

conditionals, and loops in a single 

route. [Sequences, Conditionals, and 
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Loops] They also design different 

tools on blank Tool Blocks 

[Expressing and creating] to help Qiqi 

solve problems. 

… 

Lesson 

plan 

Activity 2: Exploring the Planets 

Learning Objectives 

1. To use the Loops Blocks 

independently and use the correct 

Number Blocks and Directional 

Blocks to solve problems. 

[Sequences, 

Loops]  

2. To experience the joy of 

cooperative programming. 

[Connecting] 

Sequences, 

Loops, 

Algorithmic 

design, 

Connecting 

Group 

activity 

Highly 

structured 

Task-based 

learning 

Contextualization, 

Pair programming 
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Learning Preparation  

1. Scenario Blocks: Moon Block, 

Jupiter Block, Uranus Block, 

Meteorite Blocks.   

2. Programming Blocks: Directional 

Blocks, Number Blocks, Loops 

Block.  

3. The Outer Space Board.  

4. PPT. 

Learning process 

1. Create a situation of going to 

planets to explore their mysteries. 

[Contextualization]  

--Do you remember Qiqi’s dream? 

(PPT: outer space)  
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-- What equipment does Qiqi need to 

take with him to explore outer space? 

(PPT: spacesuit, oxygen kit, and 

translator)  

--With these equipments, Qiqi can 

take a spaceship to explore outer 

space! Qiqi wants to go to the Moon, 

Jupiter, and Uranus to explore their 

mysteries! (PPT: the Moon, Jupiter, 

and Uranus) 

2. Design routes with loops to the 

Moon  

--Qiqi plans to go to the Moon first. 

--Qiqi has to take a route with loops 

to reach the Moon. Have you found a 

route with loops? [Sequences, Loops]  
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(Ask several children to answer) 

---You designed different routes with 

loops to help Qiqi reach the Moon. 

What is the mystery of the Moon? 

Let’s listen to it. (PPT: the mystery of 

the Moon) 

3. Design routes with loops to 

Jupiter and Uranus 

-- What are the mysteries of Jupiter 

and Uranus? Do you want to know? 

-- We have to find these two planets 

first. Do you know where the two 

planets are located?? 

-- Again, Qiqi has to take routes with 

loops to reach Jupiter and Uranus. 

Can you help Qiqi design different 



 

 

 

191 

 

routes with loops? [Sequences, 

Loops]  

--There are many meteorites in outer 

space. Remember to go around them! 

[Algorithmic design] 

(Children using the unplugged coding 

set in pairs [Pair programming] to 

design routes with loops to Jupiter 

and Uranus while the teacher goes 

around to check and guide them.) 

(Children share their looping routes to 

Jupiter and Uranus.) 

--You designed different routes with 

loops to help Qiqi reach Jupiter and 

Uranus. What are the mysteries 

of Jupiter and Uranus? Let us listen to 
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it. (PPT: the mysteries of Jupiter and 

Uranus) 

--With your help, Qiqi has reached 

the Moon, Jupiter and Uranus. Where 

else will Qiqi go on the spaceship? 

See you next time. 
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Appendix B-2 

Interview Protocol: Teachers’ Content Knowledge and Pedagogical Knowledge in Early 

Programming and CT 

 

Before the interview 

Thank you very much for allowing me to observe and videotape your classes this semester and 

for taking the time to be interviewed. I want to ask you some questions based on my observed 

activities. Since your answers are important to my research, I would like to record our 

conversation, okay? 

Start the audio recording with the consent of the interviewee 

(The following questions are only the outline of the interview, and the actual interview will be 

flexible according to the teacher’s answers) 

Part A Basic Information 

1. Could you briefly introduce yourself, including your age, education, working experience, 

etc.? 

2. How many years of early childhood education experience do you have in total (excluding 

years of study)? 

3. How long have you taught programming and CT? 

Part B Content Knowledge 

4. What do you think is the core content of early programming and CT? 

5. There are 12 programming and CT activities for this semester, and here are the lesson plans 

for these 12 activities (show the lesson plans). Can you tell me the core content covered in each 

activity? 
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6. (If “decomposition” is not mentioned) What could the children learn from the “Backward 

Inference Task”? 

7. How do you understand XXX (XXX stands for the core content mentioned by Ms. Wu)? 

Part C Pedagogical Knowledge 

8. What materials did you provide to help children learn programming and CT? Why did you 

provide these materials? 

9. Have you conducted other forms of programming and CT activities besides group activities 

(such as integrating programming and CT into the learning center, children’s daily routines or 

other learning domains?) 

i.If yes, how? 

ii.If no, do you have any ideas about how to integrate? 

10. What is the basic process of the programming and CT group activities? 

11. What pedagogical approaches did you employ (e.g., task-based learning, play-based 

learning, project-based learning)? Why did you employ this approach? 

12. What pedagogical strategies did you use in teaching programming and CT?  

13. Why did you use XXX (XXX stands for the pedagogical strategies mentioned by Ms. Wu)? 

14. What do you think you did and did not do well in supporting young children to learn 

programming and CT? Why? 

Part D Final Question of the Interview 

15. Do you have any further comments? 
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Appendix B-3 

Steps for Making an Unplugged, Boardgame-Like Coding Set 

Step 1: Create the object to be programmed. Cut out a card (being careful that the card size does 

not exceed the size of the grid on the board) and draw a pawn on the card, or use a toy as the 

object to be programmed. 

Step 2: Make a grid map for the pawn to move. Take a large piece of paper and draw grids on it, 

for example, 10 by 10 grids. 

Step 3: Create chess pieces for programming tasks. Cut some cards (being careful that the size of 

the cards is at most the size of the grid on the board) and draw places and tools that appear in the 

programming tasks on them. Use your imagination to create fun scenarios. When playing, place 

these cards on the grid map according to the designed programming task. 

Step 4: Make programming cards. Cut some cards and write numbers, arrows, and patterns that 

represent loops and conditionals on them to make number cards, directional cards, loops cards, 

and conditional instruction cards. 

Then you can play the board game with your friends! One person designs a programming task, 

one "writes" instructions by placing programming cards on the paper or floor, and one moves the 

pawn on the grid map to verify the instructions. You can also make up other rules to make the 

game more enjoyable! 



 

 

 

196 

 

Appendix C. Appendix of Study 3 

Programming 

activities 

The content of 

programming 

activities 

The objective of programming activities Examples of programming tasks 

Activity 1 Hardware and 

software, 

events, 

sequences (1) 

1. Learn about the components of the 

MOBLO programming kit. 

2. Learn the basic operations of connecting 

the Sensor Board to a tablet, arranging 

electronic blocks, etc. 

3. Comprehend the concept of "sequence". 

4. Recognize the "forward," "backward," 

"left," and "right" Direction Blocks and be able 

to arrange them in a specific sequence to create 

programs that help Kobe complete simple 
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tasks. 

Activity 2 Sequences (2), 

representation, 

decomposition 

(1) 

1. Consolidate the concept of "sequence". 

2. Be able to arrange Direction Blocks in a 

specific sequence to create programs that help 

Kobe complete more complex tasks. 

3. Understand the concept of 

"representation" by observing symbols in the 

Programming Instructions Record Bar. 

4. Decompose complex problems into 

smaller, manageable parts during the program 

creation process. 
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Activity 3 Sequences (3), 

algorithmic 

design 

1. Consolidate the concept of "sequence". 

2. Be able to arrange direction and action 

blocks in a specific sequence to create 

programs that help Kobe complete complex 

tasks. 

3. Design a series of ordered steps or actions 

to solve problems.  

Activity 4 Loops (1), 

pattern 

recognition (1) 

1. Understand the concept of "loop". 

2. Recognize NFC Blocks and Number 

Cards and learn how to use Direction Blocks, 

NFC blocks, and Number Cards to create loop 

instructions. 

3. Identify loop units and loop counts in a 

simple route and create loop instructions using  
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Direction Blocks, NFC Blocks, and Number 

Cards. 

Activity 5 Loops (2), 

pattern 

recognition (2), 

debugging (1) 

 

1. Consolidate the concept of "loop". 

2. Identify loop units and loop counts in a 

more complex route and create loop 

instructions using Direction Blocks, NFC 

Blocks, and Number Cards. 

3. When encountering errors in the program, 

apply different methods to locate and correct 

the errors. 

 



 

 

 

200 

 

Activity 6 Loops (3), 

pattern 

recognition (3), 

debugging (2) 

 

1. Consolidate the concept of "loop". 

2. Identify loop units and loop counts in a 

more complex route and create loop 

instructions using Direction Blocks, NFC 

Blocks, and Number Cards. 

3. When encountering errors in the program, 

apply different methods to locate and correct 

the errors. 

 

Activity 7 Loops (4), 

pattern 

recognition (4), 

debugging (3) 

Same as Activity 6 
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Activity 8 Loops (5), 

pattern 

recognition (5), 

debugging (4) 

Same as Activity 6 

 

Activity 9 Loops (6), 

pattern 

recognition (6), 

debugging (5) 

Same as Activity 6 
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Activity 10 Conditionals 

(1), 

decomposition 

(2) 

 

1. Understand the concept of "conditionals". 

2. Correctly use Direction Blocks, Action 

Blocks, NFC Blocks, and Tool Cards to create 

conditional instructions and solve simple 

problems by making choices based on the 

situation. 

3. During the program creation process, 

decompose complex problems into smaller, 

manageable parts. 
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Activity 11 Conditionals 

(2), 

decomposition 

(3) 

Same as Activity 10 

 

Activity 12 Conditionals 

(3), 

decomposition 

(4) 

 

Same as Activity 10 
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Note: "The content of programming activities" column in this table only provides a list of the primary teaching content for each activity. Each 

programming activity integrates hardware and software, events, representations, algorithmic design, and debugging.  
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Appendix D. The Ethical Approval 
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Appendix E. Consent Forms (English and Chinese Versions) 

Consent Form and Information Sheet for PARENTS 

  

THE EDUCATION UNIVERSITY OF HONG KONG 

Department of Early Childhood Education 

CONSENT TO PARTICIPATE IN RESEARCH 

Effects of Plugged and Unplugged Programming Curricula on Computational 

Thinking, Self-Regulation, Flow Experience and Self-Efficacy of Children Aged 5-6 

  

I ___________________ hereby consent to my child participating in a project supervised by 

Dr. Weipeng Yang and Dr. Alfredo Bautista and conducted by Yue Zeng, who are staff / 

students of the department of Early Childhood Education in The Education University of 

Hong Kong. 

  

I understand that information obtained from this research may be used in future research and 

may be published. However, our right to privacy will be retained, i.e., the personal details of 

my child will not be revealed. 

  

The procedure as set out in the attached information sheet has been fully explained. I 
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understand the benefits and risks involved. My child’s participation in the project 

is voluntary. 

  

I acknowledge that we have the right to question any part of the procedure and can withdraw 

at any time without negative consequences. 

  

Name of participant  

Name of Parent or Guardian  

Signature of Parent or Guardian  

Date  
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INFORMATION SHEET 

  

Effects of Plugged and Unplugged Programming Curricula on Computational 

Thinking, Self-Regulation, Flow Experience and Self-Efficacy of Children Aged 5-6 

 

Your children are invited to participate in a project supervised by Dr. Weipeng Yang and Dr. 

Alfredo Bautista and conducted by Yue Zeng, who are staff / students of the department of 

Early Childhood Education in The Education University of Hong Kong. 

  

  

The introduction of the research 

A) What does the research involve?  

- I will design a series of plug-in and unplugged programming activities for children to help 

them learn sequencing, loops, conditionals, decomposition, debugging, and other programming 

concepts and skills. Unplugged programming curriculum refers to teaching programming 

without digital devices and often involves paper and pencil, cards, sticker books, as well as 

body movements, while plugged programming curriculum refers to teaching programming 

with the use of digital devices. I will use MBOLO in the plugged programming group and use 

unplugged materials in the unplugged programming group. 
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- I will provide training to teachers on what computational thinking is and how to 

develop it in young children; and 

- I will evaluate the impact of plugged and unplugged programming courses on children's 

computational thinking, self-regulation skills, flow experiences, and programming self-efficacy. 

- I will videotape the programming activities (about two months) carried out by the two 

experimental classes. 

- After all programming activities, interviews will be conducted with two teachers and several 

children from the experimental classes, and all interviews will be recorded. 

  

The methodology of the research 

A) Procedure of the research 

- Each child’s computational thinking will be assessed (pre-test and post-test) before and after 

the programming curriculum (intervention). The computational thinking assessment typically 

takes 12 minutes to administer to young children and will be conducted by the researcher in a 

quiet room in the kindergarten.  

- Each child’s self-regulation skills will be assessed (pre-test and post-test) before and after 

the programming curriculum (intervention). The self-regulation assessment usually takes 15 

minutes to administer to young children and will be conducted by the researcher in a quiet 

room in the kindergarten.  
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- Each child’s flow experience will be assessed after the programming program 

(intervention). The assessment will take about two minutes and will be conducted by the 

researcher in a quiet room in the kindergarten.  

- Each child’s programming self-efficacy will be assessed after the programming program 

(intervention). The programming self-efficacy assessment will be completed by the class 

teacher.  

- Focus group interviews will be conducted with respectively ten children from each 

experimental group. The interviews will be videotaped and will last about one hour. 

- The teacher will conduct the programming activities (the details of each programming 

activity see Table 1) and the researcher will videotaped all the programming activities (12 

sessions, 40 mins per session).
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Table 1 

Programming Courses  

Session Plugged activities Unplugged activities 

Activity Objective Activity Objective 

Session 1 Meet the 

MOBLO toys 

Know about the MOBLO toys Meet the 

unplugged 

programming 

toys 

Know about the unplugged programming 

toys 

Sequence (1)  Understand the concept of “sequences”; know about 

the forward and backward Directional Blocks; be 

able to place the forward and backward Directional 

Blocks in sequence and develop a simple 

route/program for Kobe to defeat the monster. 

Sequence (1)  Understand the concept of “sequences”; 

know about the forward and backward 

Directional Blocks; be able to place the 

forward and backward Directional Blocks 

in sequence and develop a simple 

route/program for Qiqi’s tour. 
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Session 2 Sequence (2) 

and 

Decomposition 

(1) 

 

1. Consolidate the concept of “sequences”; know 

about the left and right Directional Blocks; be able to 

place the left and right Directional Blocks in 

sequence and develop a simple route/program for 

Kobe to defeat the monster. 

2. Observe the start and end points and be able to 

break down a route into several single steps. 

Sequence (2) and 

Decomposition 

(1) 

 

1. Consolidate the concept of “sequences”; 

know about the left and right Directional 

Blocks; be able to place the left and right 

Directional Blocks in sequence and 

develop a simple route/program for Qiqi’s 

tour. 

2. Observe the start and end points and be 

able to break down a route into several 

single steps. 

Session 3 Sequence (3) 

and 

Debugging (1) 

 

1. Master the concept of 

“sequences” and be able to use the Directional 

Blocks (forward, backward, left and right) to develop 

a route/program for Kobe to defeat the monster. 

Sequence (3) and 

Debugging (1) 

 

1. Master the concept of 

“sequences” and be able to use the 

Directional Blocks (forward, backward, 

left and right) to develop a route/program 

for Qiqi’s tour. 
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2. When an error occurs in the program, be able to 

check the sequence of Directional Blocks, find the 

wrong part and correct the error. 

2. When an error occurs in the program, be 

able to check the sequence of Directional 

Blocks, find the wrong part and correct the 

error. 

Session 4 Conditional 

(1) and 

Representation 

(1) 

 

 

1. Understand the concept of conditionals; know 

about the Action Blocks and different tools and the 

need to use them when encountering special events; 

be able to use the Directional Blocks, Action Blocks 

and different tools to develop a route/program for 

Kobe to defeat the Monster. 

2. Observe the symbols in the record column and 

understand the concept of representation; be able to 

use the symbols to represent the route Kobe takes. 

Conditional (1) 

and 

Representation 

(1) 

 

1. Understand the concept of conditionals; 

know about the Conditional Instruction 

Card and Tool Blocks and the need to use 

them when encountering special events; be 

able to use the Directional Blocks, 

Conditional Instruction Card and Tool 

Blocks to develop a route/program for 

Qiqi’s tool. 

2. Observe the symbols in the 

programming area and understand the 

concept of representation; be able to use 
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the symbols to represent the route Qiqi 

takes. 

Session 5 Conditional 

(2) and 

Decomposition 

(2) 

 

1. Consolidate the concept of conditionals; be able to 

use the Directional Blocks, Action Blocks and 

different tools to develop a route/program for Kobe 

to defeat the Monster. 

2. Be able to break down a problem into smaller 

easily solved parts. 

Conditional (2) 

and 

Decomposition 

(2) 

 

1. Consolidate the concept of conditionals; 

be able to use the Directional Blocks, 

Conditional Instruction Card and Tool 

Blocks to develop a route/program for 

Qiqi’s tool. 

2. Be able to break down a problem into 

smaller easily solved parts. 

Session 6 Loops (1) and 

Representation 

(2) 

 

1. Understand the concept of loops; be able to 

identify the repeating part and the number of 

repetitions in a route.  

2. Observe the symbols in the record column and 

understand the concept of representation; be able to 

use the symbols to represent the route Kobe takes. 

Loops (1) and 

Representation 

(2) 

 

1. Understand the concept of loops; be able 

to identify the repeating part and the 

number of repetitions in a route.  

2. Observe the symbols in the record 

column and understand the concept of 
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representation; be able to use the symbols 

to represent the route Qiqi takes. 

Session 7 Loops (2) and 

Debugging (2) 

 

1. Consolidate the concept of loops; know about 

NFC Blocks and Number Cards; be able to identify 

the repeating part and the number of repetitions in a 

simple route and use NFC Blocks and Number Cards 

to input loops commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

Loops (2) and 

Debugging (2) 

 

1. Consolidate the concept of loops; know 

about Loops Blocks; be able to identify the 

repeating part and the number of 

repetitions in a simple route and use Loops 

Blocks to input loops commands. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 8 Loops (3) and 

Debugging (3) 

 

1. Further consolidate the concept of loops; be able 

to identify the repeating part and the number of 

repetitions in a complex route and use NFC Blocks 

and Number Cards to input loops commands. 

Loops (3) and 

Debugging (3) 

 

1. Consolidate the concept of loops; be 

able to identify the repeating part and the 

number of repetitions in a complex route 

and use Loops Blocks to input loops 

commands. 
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2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 9 Loops (4) and 

Debugging (4) 

 

1. Master the concept of loops; be able to identify the 

repeating part and the number of repetitions in a 

more complex route and use NFC Blocks and 

Number Cards to input loops commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

Loops (4) and 

Debugging (4) 

1. Master the concept of loops; be able to 

identify the repeating part and the number 

of repetitions in a more complex route and 

use Loops Blocks to input loops 

commands. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 

10 

Loops (5) and 

Debugging (5) 

 

1. Master the concept of loops; be able to quickly 

identify the repeating part and the number of 

repetitions in a more complex route and use NFC 

Blocks and Number Cards to input loops commands. 

Loops (5) and 

Debugging (5) 

1. Master the concept of loops; be able to 

quickly identify the repeating part and the 

number of repetitions in a more complex 
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2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

route and use Loops Blocks to input loops 

commands. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 

11 

The use of 

sequences, 

conditionals 

and loops (1) 

and algorithms 

(1) 

1. Be able to use Directional Blocks, Action Blocks, 

and NFC and Number Cards to develop a 

route/program for Kobe to defeat the Monster. 

2. Understand the concept of algorithms and be able 

to design simple algorithms using sequences, 

conditionals and loops. 

 

The use of 

sequences, 

conditionals and 

loops (2) and 

algorithms (2) 

 

1. Be able to use Directional Blocks, 

Conditional Instruction Card, and Loops 

Blocks to develop a route/program for 

QiQi’s tool. 

2. Understand the concept of algorithms 

and be able to design simple algorithms 

using sequences, conditionals and loops. 

Session 

12 

The use of 

sequences, 

conditionals 

1. Be able to use Directional Blocks, Action Blocks, 

and NFC and Number Cards to develop a 

route/program for Kobe to defeat the Monster. 

The use of 

sequences, 

conditionals and 

1. Be able to use Directional Blocks, 

Action Blocks, and NFC and Number 
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and loops (2) 

and algorithms 

(2) 

2. Understand the concept of algorithms and be able 

to design simple algorithms using sequences, 

conditionals and loops. 

 

loops (2) and and 

algorithms (2) 

Cards to develop a route/program for Kobe 

to defeat the Monster. 

2. Understand the concept of algorithms 

and be able to design simple algorithms 

using sequences, conditionals and loops. 

Note: Each activity takes about 40 minutes.
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C) Potential benefits (including compensation for participation) 

- Your child will receive free and effective computational thinking education in the 

classroom. 

- Your child may benefit from the computational thinking activities with the 

improvement of computational thinking, coding skills, self-regulation, and more 

positive outcomes. 

The potential risks of the research 

- The study will present no more than minimal risk to the participants. 

- The Research Assistant will be well-trained to provide comfortable experiences for 

your child in the assessments.  

- Your child's involvement in the project is entirely voluntary. Both you and your child 

possess the autonomy to withdraw from the study at any point without encountering 

any adverse repercussions. All data pertaining to your child will be treated with utmost 

confidentiality and will be identified solely through unique codes known exclusively to 

the researcher. 

  

How results will be potentially disseminated 

- This project will help the participating children learn and develop early coding skills 

and computational thinking.  

- Research results will be disseminated through thesis and journal article. 
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If you would like to obtain more information about this study, please contact ZENG 

Yue by email at ; Dr. Weipeng Yang by email at 

wyang@eduhk.hk. 

  

If you or your child have/ has any concerns about the conduct of this research study, 

please do not hesitate to contact the Human Research Ethics Committee by email at 

hrec@eduhk.hk or by mail to Research and Development Office, The Education 

University of Hong Kong. 

  

Thank you for your interest in participating in this study. 

  

ZENG, Yue 

November 1, 2022 

mailto:hrec@ied.edu.hk
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香港教育大學  

幼兒教育學系  

  

參與研究同意書（家長）  

插電式和非插電式編程課程對 5 - 6 歲兒童的計算思維、自我調節、心

流體驗和自我效能感的影響  

茲同意___________________（兒童姓名）參加由楊偉鵬博士和 A lf r edo  

Bau t i s t a 博士負責監督 ,曾越負責執行的研究計畫。他 /她們是香港教育

大學幼稚教育系的教員 /学生。  

本人理解此研究所獲得的資料可用於未來的研究和學術發表 °然而本人

有權保護敝子女的隱私 ,其個人資料將不能洩漏 °  

研究者已將所附資料的有關步驟向本人作了充分的解釋 °本人理解可能

會出現的風險 °本人是自願讓敝子女參與這項研究 °  

本人理解本人及敝子女皆有權在研究過程中提出問題 ,並在任何時候決

定退出研究 ,  更不會因此而對研究工作產生的影響負有任何責任。  

參加者姓名  

父母姓名或監護人姓名:  

父母或監護人簽名:  

日期:  
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有關資料  

插電式和非插電式編程課程對 5 - 6 歲兒童的計算思維、自我調節、心

流體驗和自我效能感的影響  

  

誠邀貴子女參加楊偉鵬博士和 A lf r edo  Bau t i s t a 博士負責監督 ,曾越負

責執行的研究計畫。他 /她們是香港教育大學幼稚教育系的教員 /学生。  

 

  

研究計畫簡介  

-  我們將為幼兒設計一系列插電和不插電編程活動，幫助幼兒學習

順序、迴圈、條件、問題分解、調試等編程概念和技能。不插電的

編程課程指的是沒有數字設備的編程教學，通常涉及紙和筆、卡

片、貼紙書以及身體動作，而插電的編程課程指的是使用數字設備

的編程教學。在插電的編程活動中，我們將使用 M BO LO 編程教具

進行編程教學；在不插電的編程活動中，我們將使用無螢幕編程材

料進行編程教學；  

-  我們將為教師提供有關什麼是編程、如何開展編程活動的培訓；  

-  我們將評估插電和不插電的編程課程對幼兒計算思維、自我調節

能力、心流體驗、編程自我效能感的影響；  

-  實驗班的教師將負責開展編程課程，我們將對兩個實驗班進行的
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編程活動（大約兩個月）進行錄影；  

-  在所有的編程活動結束後，我們將對實驗班的兩位老師和個別幼

兒進行訪談，所有的訪談將被錄音。  

  

研究方法  

A) 工作及步驟 

-  每個孩子的計算思維將在編程課程（干預）前後被評估（前測和

後測）。計算思維評估通常需要 12 分鐘，由研究人員在幼稚園的一

個安靜的房間裏進行。   

-  每個孩子的自我調節能力將在編程課程（干預）前後被評估（前

測和後測）。自我調節評估通常需要 15 分鐘，由研究人員在幼稚園

的一個安靜的房間裏對幼兒進行。   

-  每個孩子的流動體驗將在編程課程（干預）後被評估。  評估將需

要大約兩分鐘，由研究人員在幼稚園的一個安靜房間裏進行。   

-  每個孩子的編程自我效能感將在編程專案（干預）後被評估。編

程自我效能評估將由班主任老師完成。  

-  焦點小組訪談將分別與每個實驗組的 10 名兒童進行。訪談將被錄

影，並將持續約一個小時。  

-  老師將進行編程活動（每個編程活動的細節見表 1），研究人員將

對所有的編程活動進行錄影（12 節，每節 50 分鐘）。
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表 1 

編程課程  

  插电式编程活动   

活动目标 

不插电编程活动   

活动目标 

Session 1 《認識 MOBLO玩具》 

 

《順序 1》 

 

瞭解“順序”的概念；認識方向

積木；能夠有順序地擺放方向

積木，編寫科比打敗怪獸神的

路線/程式。  

《認識 unplugged 

programming玩具》 

 

《順序 1》 

瞭解“順序”的概念；認識方向積木；

能夠有順序地擺放方向積木，編寫奇

奇旅遊的路線/程式。 

Session 2 《順序 2》 

《問題分解 1》 

 

 

鞏固“順序”的概念；能夠較為

熟練地運用方向積木編寫路線/

程式。 

《順序 2》 

《問題分解 1》 

 

鞏固“順序”的概念；能夠較為熟練地

運用方向積木編寫路線/程式。 
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在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。  

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 

  

Session 3 《順序 3》 

 

《調試 1》 

 

掌握“順序”的概念；能夠熟練

運用方向積木編寫更長的路線/

程式。  

當編寫的路線/程式出現錯誤

時，能夠檢查方向積木或記錄

欄中的程式，找出錯誤的部分

並糾正錯誤。 

《順序 3》 

《調試 1》 

 

掌握“順序”的概念；能夠熟練運用方

向積木編寫更長的路線/程式。 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。  
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Session 4 《條件 1》 

《表徵 1》 

 

瞭解“條件”的概念；認識“動作

積木”，瞭解在遇到特殊事件時

需要使用動作積木；初步學習

觀察路線，判斷在不同的情境

下需要使用的不同工具，並正

確使用方向積木和動作積木，

編寫科比打敗怪獸神的路線/程

式。 

觀察記錄欄中的符號，理解表

徵的概念：使用抽象的符號來

表示具體的指令。 

《條件 1》 

《表徵 1》 

 

瞭解“條件”的概念；認識“條件指令

卡”和工具積木，瞭解在遇到特殊事

件時需要使用“條件指令卡”和工具積

木；初步學習判斷在不同的情境下需

要使用的不同工具，並正確使用方向

積木、“條件指令卡”和工具積木，編

寫奇奇旅遊的路線/程式。 

觀察編程區的指令，理解表徵的概

念：使用抽象的符號來表示具體的指

令。 
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Session 5 《條件 2》 

《問題分解 2》 

 

鞏固“條件”的概念；能夠較為

熟練地判斷在不同的情境下需

要使用的不同工具，並正確使

用方向積木和動作積木，編寫

科比打敗怪獸神的路線/程式。 

在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。  

《條件 2》 

 

《問題分解 2》 

 

鞏固“條件”的概念；能夠較為熟練地

判斷在不同的情境下需要使用的不同

工具，並正確使用方向積木、“條件

指令卡”和工具積木，編寫奇奇旅遊

的路線/程式。  

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 

Session 6 《條件 3》 

《調試 2》 

 

進一步鞏固“條件”的概念；能

夠熟練地判斷在不同的情境下

需要使用的不同工具，並正確

使用方向積木和動作積木，編

《條件 3》 

《調試 2》 

 

進一步鞏固“條件”的概念；能夠熟練

地判斷在不同的情境下需要使用的不

同工具，並正確使用方向積木、“條
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寫科比打敗怪獸神的路線/程

式。 

當編寫的路線/程式出現錯誤

時，能夠檢查動作積木和方向

積木或記錄欄中的程式，找出

錯誤的部分並糾正錯誤。  

件指令卡”和工具積木，編寫奇奇旅

遊的路線/程式。 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。 

Session 7 《反復 1》 

《表徵 2》 

 

瞭解“反復”的概念；認識 NFC

積木和數字卡片；能夠找出簡

單的反復路線中的反復部分和

反復次數，並利用 NFC積木和

數字卡片，輸入迴圈命令語。 

 

《反復 1》 

《表徵 2》 

 

瞭解“反復”的概念；認識反復積木；

能夠找出簡單的反復路線中的反復部

分和反復次數，並利用反復積木輸入

迴圈命令語。 
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觀察記錄欄中的符號，理解表

徵的概念：使用抽象的符號來

表示具體的指令。  

觀察編程區的指令，理解表徵的概

念：使用抽象的符號來表示具體的指

令。 

Session 8 《反復 2》 

《問題分解 3》 

 

鞏固“反復”的概念；能夠找出

比較簡單的反復路線中的反復

部分和反復次數，並利用 NFC

積木和數字卡片，輸入迴圈命

令語。 

在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。 

《反復 2》 

《問題分解 3》 

 

鞏固“反復”的概念；能夠找出比較簡

單的反復路線中的反復部分和反復次

數，並利用反復積木輸入迴圈命令

語。  

 

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 
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Session 9 《反復 3》 

 

《調試 3》 

 

進一步鞏固“反復”的概念；能

夠找出比較複雜的反復路線中

的反復部分和反復次數，並利

用 NFC積木和數字卡片，輸入

迴圈命令語。  

當編寫的路線/程式出現錯誤

時，能夠檢查方向積木和數字

卡片或記錄欄中的程式，找出

錯誤的部分並糾正錯誤。 

《反復 3》 

 

《調試 3》 

 

進一步鞏固“反復”的概念；能夠找出

比較複雜的反復路線中的反復部分和

反復次數，並利用反復積木輸入迴圈

命令語。  

 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。 

Session 10 《反復 4》 

 

掌握“反復”的概念；能夠比較

快速地找出複雜的反復路線中

的反復部分和反復次數，並利

《反復 4》 

 

掌握“反復”的概念；能夠比較快速地

找出複雜的反復路線中的反復部分和
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用 NFC積木和數字卡片，輸入

迴圈命令語。  

反復次數，並利用反復積木輸入迴圈

命令語。  

Session 11 《順序、條件和反復的

綜合運用 1》 

 

 

 

《演算法 1》 

 

能夠綜合運用順序、條件和反

復等積木編寫程式、解決較為

簡單的問題。 

理解演算法的概念，並能運用

順序、條件和反復等積木進行

較為簡單的演算法設計。  

《順序、條件和反復

的綜合運用 1》 

 

 

《演算法 1》 

 

能夠綜合運用順序、條件和反復等積

木編寫程式、解決較為簡單的問

題。  

 

理解演算法的概念，並能運用順序、

條件和反復等積木進行較為簡單的演

算法設計。 

Session 12 《順序、條件和反復的

綜合運用 2》 

 

能夠綜合運用順序、條件和反

復等積木編寫程式、解決較為

簡單的問題。 

《順序、條件和反復

的綜合運用 2》 

 

能夠綜合運用順序、條件和反復等積

木編寫程式、解決較為簡單的問題。 
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《演算法 2》 

 

理解演算法的概念，並能運用

順序、條件和反復等積木進行

較為複雜的演算法設計。  

《演算法 2》 

 

理解演算法的概念，並能運用順序、

條件和反復等積木進行較為複雜的演

算法設計。 

  

注：每個活動約需 50分鐘。 
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任何利益 (包括對參與者的補償) 

-  貴子女將在幼稚園接受免費有效的編程教育。  

-  貴子女可能會從計算思維活動中受益，提高計算思維、編程技能、自我

調節能力和更多其他積極的結果。  

  

參與期間有可能面對的風險及不適  

-  該研究對參與者的風險極低。  

-  研究助理將接受良好培訓，為您的孩子提供舒適的評估體驗。  

-  閣下及貴子女的參與純屬自願性質。閣下及貴子女享有充分的權利在任

何時候決定退出這項研究 ,更不會因此引致任何不良後果 °凡有關貴子女的

資料將會保密 ,一切資料的編碼只有研究人員得悉 °  

  

將如何發佈研究結果  

-  該專案將幫助參與的兒童學習和發展早期的編程技能和計算思維。  

-  研究成果將通過畢業論文、期刊論文傳播。  

  

如閣下想獲得更多有關這項研究的資料 ,請電郵與曾越 (s1142522@s.eduhk.hk)聯

絡。  

如閣下或  貴子女對這項研究的研究倫理有任何意見 ,可隨時與香港教育大學



 

 

 

234 

 

人類實驗對象研究倫理委員會聯絡 (電郵 : hrec@eduhk.hk ; 地址 :香港

教育大學研究與發展事務處 ) °  

  

謝謝閣下有興趣參與這項研究 °  

曾越 

2022年 11月 1日 

  

 

mailto:hrec@eduhk.hk
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 Consent Form and Information Sheet for PARTICIPANTS 

  

  

THE EDUCATION UNIVERSITY OF HONG KONG 

Department of Early Childhood Education 

CONSENT TO PARTICIPATE IN RESEARCH 

Effects of Plugged and Unplugged Programming Curricula on Computational 

Thinking, Self-Regulation, Flow Experience and Self-Efficacy of Children Aged 5-6 

  

I ___________________ , hereby provide my informed consent to participate in a research 

project under the supervision of Dr. Weipeng Yang and Dr. Alfredo Bautista and conducted by 

Yue Zeng, who are affiliated with the Department of Early Childhood Education at The 

Education University of Hong Kong. 

 

I am aware that the data collected from this research may be utilized in future studies and 

potentially published. However, my privacy will be safeguarded, ensuring that my personal 

information remains confidential. 
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I have been thoroughly briefed on the procedure outlined in the attached 

information sheet. I understand the potential benefits and risks associated with my 

participation. I confirm that my involvement in this project is voluntary. 

 

I acknowledge my right to raise any concerns or queries regarding any aspect of the research 

procedure and retain the freedom to withdraw my participation at any time without 

encountering any adverse consequences. 

  

Name of participant  

Signature of participant  

Date  
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INFORMATION SHEET 

  

Effects of Plugged and Unplugged Programming Curricula on Computational 

Thinking, Self-Regulation, Flow Experience and Self-Efficacy of Children Aged 5-6 

  

You are invited to participate in a project supervised by Dr. Weipeng Yang and Dr. Alfredo 

Bautista and conducted by Yue Zeng, who are staff / students of the department of Early 

Childhood Education in The Education University of Hong Kong. 

  

  

The introduction of the research 

  

- I will design a series of plug-in and unplugged programming activities for children to help 

them learn sequencing, loops, conditionals, decomposition, debugging, and other programming 

concepts and skills. Unplugged programming curriculum refers to teaching programming 

without digital devices and often involves paper and pencil, cards, sticker books, as well as 

body movements, while plugged programming curriculum refers to teaching programming 

with the use of digital devices. I will use MBOLO in the plugged programming group and use 

unplugged materials in the unplugged programming group. 
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- I will provide training to teachers on what computational thinking is and how to 

develop it in young children; and 

- I will evaluate the impact of plugged and unplugged programming courses on children's 

computational thinking, self-regulation skills, flow experiences, and programming self-efficacy. 

- I will videotape the programming activities (about two months) carried out by the two 

experimental classes. 

- After all programming activities, interviews will be conducted with two teachers and several 

children from the experimental classes, and all interviews will be recorded. 

  

The methodology of the research 

A) Procedure of the research 

- You will receive 2 hours of training in the computational thinking program during non-work 

time slots one week before the programming curriculum. 

- The computational thinking course (intervention) will last about two months. Each session 

will last approximately 40 minutes, twice a week (the details of each programming activity 

see Table 1). You will be responsible for teaching the computational thinking activities. 

- At the end of the programming curriculum, you will be interviewed for approximately 60 

minutes. The interview will be used to learn about your attitudes towards teaching 

computational thinking to young children. The interviews will take place in a quiet room at 
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your school. 

- Each child’s computational thinking will be assessed (pre-test and post-test) before and after 

the programming curriculum (intervention). The computational thinking assessment typically 

takes 12 minutes to administer to young children and will be conducted by the researcher in a 

quiet room in the kindergarten.  

- Each child’s self-regulation skills will be assessed (pre-test and post-test) before and after 

the programming curriculum (intervention). The self-regulation assessment usually takes 15 

minutes to administer to young children and will be conducted by the researcher in a quiet 

room in the kindergarten.  

- Each child’s flow experience will be assessed after the programming program 

(intervention).  The assessment will take about two minutes and will be conducted by the 

researcher in a quiet room in the kindergarten.  

- Each child’s programming self-efficacy will be assessed after the programming program 

(intervention). The programming self-efficacy assessment will be completed by you. It will 

take about one hour. 

- Focus group interviews will be conducted with respectively ten children from each 

experimental group. The interviews will be videotaped and will last about one hour.
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Table 1 

Programming Courses  

Session Plugged activities Unplugged activities 

Activity Objective Activity Objective 

Session 1 Meet the 

MOBLO toys 

Know about the MOBLO toys Meet the 

unplugged 

programming 

toys 

Know about the unplugged programming 

toys 

Sequence (1)  Understand the concept of “sequences”; know about 

the forward and backward Directional Blocks; be 

able to place the forward and backward Directional 

Blocks in sequence and develop a simple 

route/program for Kobe to defeat the monster. 

Sequence (1)  Understand the concept of “sequences”; 

know about the forward and backward 

Directional Blocks; be able to place the 

forward and backward Directional Blocks 

in sequence and develop a simple 

route/program for Qiqi’s tour. 
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Session 2 Sequence (2) 

and 

Decomposition 

(1) 

 

1. Consolidate the concept of “sequences”; know 

about the left and right Directional Blocks; be able to 

place the left and right Directional Blocks in 

sequence and develop a simple route/program for 

Kobe to defeat the monster. 

2. Observe the start and end points and be able to 

break down a route into several single steps. 

Sequence (2)  

and 

Decomposition 

(1) 

 

1. Consolidate the concept of “sequences”; 

know about the left and right Directional 

Blocks; be able to place the left and right 

Directional Blocks in sequence and 

develop a simple route/program for Qiqi’s 

tour. 

2. Observe the start and end points and be 

able to break down a route into several 

single steps. 

Session 3 Sequence (3) 

and 

Debugging (1) 

 

1. Master the concept of 

“sequences” and be able to use the Directional 

Blocks (forward, backward, left and right) to develop 

a route/program for Kobe to defeat the monster. 

2. When an error occurs in the 

program, be able to check the 

Sequence (3) and 

Debugging (1) 

 

1. Master the concept of 

“sequences” and be able to use the 

Directional Blocks (forward, backward, 

left and right) to develop a route/program 

for Qiqi’s tour. 
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sequence of Directional Blocks, 

find the wrong part and correct 

the error. 

2. When an error occurs in the program, be 

able to check the sequence of Directional 

Blocks, find the wrong part and correct the 

error. 

Session 4 Conditional 

(1) and 

Representation 

(1) 

 

 

1. Understand the concept of conditionals; know 

about the Action Blocks and different tools and the 

need to use them when encountering special events; 

be able to use the Directional Blocks, Action Blocks 

and different tools to develop a route/program for 

Kobe to defeat the Monster. 

2. Observe the symbols in the record column and 

understand the concept of representation; be able to 

use the symbols to represent the route Kobe takes. 

Conditional (1) 

and 

Representation 

(1) 

 

1. Understand the concept of conditionals; 

know about the Conditional Instruction 

Card and Tool Blocks and the need to use 

them when encountering special events; be 

able to use the Directional Blocks, 

Conditional Instruction Card and Tool 

Blocks to develop a route/program for 

Qiqi’s tool. 

2. Observe the symbols in the 

programming area and understand the 

concept of representation; be able to use 
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the symbols to represent the route Qiqi 

takes. 

Session 5 Conditional 

(2) and 

Decomposition 

(2) 

 

1. Consolidate the concept of conditionals; be able to 

use the Directional Blocks, Action Blocks and 

different tools to develop a route/program for Kobe 

to defeat the Monster. 

2. Be able to break down a problem into smaller 

easily solved parts. 

Conditional (2) 

and 

Decomposition 

(2) 

 

1. Consolidate the concept of conditionals; 

be able to use the Directional Blocks, 

Conditional Instruction Card and Tool 

Blocks to develop a route/program for 

Qiqi’s tool. 

2. Be able to break down a problem into 

smaller easily solved parts. 

Session 6 Loops (1) and 

Representation 

(2) 

 

1. Understand the concept of loops; be able to 

identify the repeating part and the number of 

repetitions in a route.  

2. Observe the symbols in the record column and 

understand the concept of representation; be able to 

use the symbols to represent the route Kobe takes. 

Loops (1) and 

Representation 

(2) 

 

1. Understand the concept of loops; be able 

to identify the repeating part and the 

number of repetitions in a route.  

2. Observe the symbols in the record 

column and understand the concept of 
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representation; be able to use the symbols 

to represent the route Qiqi takes. 

Session 7 Loops (2) and 

Debugging (2) 

 

1. Consolidate the concept of loops; know about 

NFC Blocks and Number Cards; be able to identify 

the repeating part and the number of repetitions in a 

simple route and use NFC Blocks and Number Cards 

to input loops commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

Loops (2) and 

Debugging (2) 

 

1. Consolidate the concept of loops; know 

about Loops Blocks; be able to identify the 

repeating part and the number of 

repetitions in a simple route and use Loops 

Blocks to input loops commands. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 8 Loops (3) and 

Debugging (3) 

 

1. Further consolidate the concept of loops; be able 

to identify the repeating part and the number of 

repetitions in a complex route and use NFC Blocks 

and Number Cards to input loops commands. 

Loops (3) and 

Debugging (3) 

 

1. Consolidate the concept of loops; be 

able to identify the repeating part and the 

number of repetitions in a complex route 

and use Loops Blocks to input loops 

commands. 
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2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 9 Loops (4) and 

Debugging (4) 

 

1. Master the concept of loops; be able to identify the 

repeating part and the number of repetitions in a 

more complex route and use NFC Blocks and 

Number Cards to input loops commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

Loops (4) and 

Debugging (4) 

1. Master the concept of loops; be able to 

identify the repeating part and the number 

of repetitions in a more complex route and 

use Loops Blocks to input loops 

commands. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 

10 

Loops (5) and 

Debugging (5) 

 

1. Master the concept of loops; be able to quickly 

identify the repeating part and the number of 

repetitions in a more complex route and use NFC 

Blocks and Number Cards to input loops commands. 

Loops (5) and 

Debugging (5) 

1. Master the concept of loops; be able to 

quickly identify the repeating part and the 

number of repetitions in a more complex 
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2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

route and use Loops Blocks to input loops 

commands. 

2. When an error occurs in the program, be 

able to check program, find the wrong part 

and correct the error. 

Session 

11 

The use of 

sequences, 

conditionals 

and loops (1) 

and algorithms 

(1) 

1. Be able to use Directional Blocks, Action Blocks, 

and NFC and Number Cards to develop a 

route/program for Kobe to defeat the Monster. 

2. Understand the concept of algorithms and be able 

to design simple algorithms using sequences, 

conditionals and loops. 

 

The use of 

sequences, 

conditionals and 

loops (2) and 

algorithms (2) 

 

1. Be able to use Directional Blocks, 

Conditional Instruction Card, and Loops 

Blocks to develop a route/program for 

QiQi’s tool. 

2. Understand the concept of algorithms 

and be able to design simple algorithms 

using sequences, conditionals and loops. 

Session 

12 

The use of 

sequences, 

conditionals 

1. Be able to use Directional Blocks, Action Blocks, 

and NFC and Number Cards to develop a 

route/program for Kobe to defeat the Monster. 

The use of 

sequences, 

conditionals and 

1. Be able to use Directional Blocks, 

Action Blocks, and NFC and Number 
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and loops (2) 

and algorithms 

(2) 

2. Understand the concept of algorithms and be able 

to design simple algorithms using sequences, 

conditionals and loops. 

 

loops (2) and and 

algorithms (2) 

Cards to develop a route/program for Kobe 

to defeat the Monster. 

2. Understand the concept of algorithms 

and be able to design simple algorithms 

using sequences, conditionals and loops. 

Note: Each activity takes about 40 minutes. 
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B) Potential benefits (including compensation for participation) 

- You will receive free training on computational thinking education in early childhood. 

- The kindergarten will have the opportunity to incorporate the most advanced 

computational thinking education into the school-based curriculum by working with 

the Wenzhou University research team.  

- The kindergarten and teachers will learn how to look for appropriate curriculum 

materials and resources for delivering computational thinking education. 

- You will receive a gift worth 300 RMB. 

  

The potential risks associated with the research include: 

-The study poses minimal risk to participants. 

-Your participation is voluntary, and you have the right to withdraw without facing 

any negative consequences.  

-All information collected will be kept confidential and identifiable only by unique 

codes known solely to the researcher. 

 

How results will be potentially disseminated 

-The project will offer teacher training and curriculum resources to participating 

kindergartens. 

-Research findings will be shared through a thesis and journal articles. 
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For further information about this study, please contact ZENG Yue via email at 

or Dr. Weipeng Yang at wyang@eduhk.hk. 

 

If you have any concerns regarding the ethical conduct of this research study, please 

don't hesitate to contact the Human Research Ethics Committee via email at 

hrec@eduhk.hk or by mail at the Research and Development Office, The Education 

University of Hong Kong. 

 

We appreciate your interest in participating in this study. 

ZENG, Yue 

November 1, 2022 
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香港教育大學  

幼兒教育學系  

參與研究同意書（教師）  

 

插電式和非插電式編程課程對 5 - 6 歲兒童的計算思維、自我調節、心

流體驗和自我效能感的影響  

本人___________________同意參加由楊偉鵬博士和 A lf r edo  Bau t i s t a 博

士負責監督 ,曾越負責執行的研究計畫。他 /她們是香港教育大學幼稚教

育系的教員 /学生。  

本人理解此研究所獲得的資料可用於未來的研究和學術發表 °然而本人

有權保護自己的隱私 ,  本人的個人資料將不能洩漏 °  

研究者已將所附資料的有關步驟向本人作了充分的解釋 °本人理解可能

會出現的風險 °本人是自願參與這項研究 °  

本人理解我有權在研究過程中提出問題 ,並在任何時候決定退出研究 ,  

更不會因此而對研究工作產生的影響負有任何責任。  

參加者姓名:  

參加者簽名:  

日期:  
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有關資料  

  

插電式和非插電式編程課程對 5 - 6 歲兒童的計算思維、自我調節、心

流體驗和自我效能感的影響  

  

誠邀閣下參加楊偉鵬博士和 A lf r edo  Bau t i s t a 博士負責監督 ,曾越負責

執行的研究計畫。他 /她們是香港教育大學幼稚教育系的教員 /学生。  

  

研究計畫簡介  

-  我們將為幼兒設計一系列插電和不插電編程活動，幫助幼兒學習

順序、迴圈、條件、問題分解、調試等編程概念和技能。不插電的

編程課程指的是沒有數字設備的編程教學，通常涉及紙和筆、卡

片、貼紙書以及身體動作，而插電的編程課程指的是使用數字設備

的編程教學。在插電的編程活動中，我們將使用 M BO LO 編程教具

進行編程教學；在不插電的編程活動中，我們將使用無螢幕編程材

料進行編程教學；  

-  我們將為教師提供有關什麼是編程、如何開展編程活動的培訓；  

-  我們將評估插電和不插電的編程課程對幼兒計算思維、自我調節

能力、心流體驗、編程自我效能感的影響；  

-  我們將對兩個實驗班進行的編程活動（大約兩個月）進行錄影；  
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-  在所有的編程活動結束後，我們將對實驗班的兩位老師和個別幼

兒進行訪談，所有的訪談將被錄音。  

 

研究方法  

工作及步驟 

-  在編程課程開始前一周，您將在非工作的時間段接受 2 小時的編

程課程培訓。  

-  編程活動（干預）將持續兩個月。每個星期兩次，每次大約 50 分

鐘。您將承擔編程活動的教學工作（編程課程詳見表 1）。  

-  在編程課程結束之後，您將接受大約 60 分鐘的訪談。訪談將用於

瞭解您對幼兒編程教育的態度。訪談都將在貴校安靜的房間內進

行。訪談將被錄音。  

-  每個孩子的計算思維將在編程課程（干預）前後被評估（前測和

後測）。計算思維評估通常需要 12 分鐘，由研究人員在幼稚園的一

個安靜的房間裏進行。   

-  每個孩子的自我調節能力將在編程課程（干預）前後被評估（前

測和後測）。自我調節評估通常需要 15 分鐘，由研究人員在幼稚園

的一個安靜的房間裏對幼兒進行。   

-  每個孩子的流動體驗將在編程課程（干預）後被評估。  評估將需

要大約兩分鐘，由研究人員在幼稚園的一個安靜房間裏進行。   
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-  每個孩子的編程自我效能感將在編程專案（干預）後被評估。編

程自我效能評估將由你來完成。這將需要大約一個小時。  

-  焦點小組訪談將分別與每個實驗組的 10 名兒童進行。訪談將被錄

影，並將持續約一個小時。
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表 1 

編程課程  

  插电式编程活动   

活动目标 

不插电编程活动   

活动目标 

Session 1 《認識 MOBLO玩具》 

 

《順序 1》 

 

瞭解“順序”的概念；認識方向

積木；能夠有順序地擺放方向

積木，編寫科比打敗怪獸神的

路線/程式。  

《認識 unplugged 

programming玩具》 

 

《順序 1》 

瞭解“順序”的概念；認識方向積木；

能夠有順序地擺放方向積木，編寫奇

奇旅遊的路線/程式。 

Session 2 《順序 2》 

《問題分解 1》 

 

 

鞏固“順序”的概念；能夠較為

熟練地運用方向積木編寫路線/

程式。 

《順序 2》 

《問題分解 1》 

 

鞏固“順序”的概念；能夠較為熟練地

運用方向積木編寫路線/程式。 
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在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。  

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 

  

Session 3 《順序 3》 

 

《調試 1》 

 

掌握“順序”的概念；能夠熟練

運用方向積木編寫更長的路線/

程式。  

當編寫的路線/程式出現錯誤

時，能夠檢查方向積木或記錄

欄中的程式，找出錯誤的部分

並糾正錯誤。 

《順序 3》 

《調試 1》 

 

掌握“順序”的概念；能夠熟練運用方

向積木編寫更長的路線/程式。 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。  
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Session 4 《條件 1》 

《表徵 1》 

 

瞭解“條件”的概念；認識“動作

積木”，瞭解在遇到特殊事件時

需要使用動作積木；初步學習

觀察路線，判斷在不同的情境

下需要使用的不同工具，並正

確使用方向積木和動作積木，

編寫科比打敗怪獸神的路線/程

式。 

觀察記錄欄中的符號，理解表

徵的概念：使用抽象的符號來

表示具體的指令。 

《條件 1》 

《表徵 1》 

 

瞭解“條件”的概念；認識“條件指令

卡”和工具積木，瞭解在遇到特殊事

件時需要使用“條件指令卡”和工具積

木；初步學習判斷在不同的情境下需

要使用的不同工具，並正確使用方向

積木、“條件指令卡”和工具積木，編

寫奇奇旅遊的路線/程式。 

觀察編程區的指令，理解表徵的概

念：使用抽象的符號來表示具體的指

令。 
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Session 5 《條件 2》 

《問題分解 2》 

 

鞏固“條件”的概念；能夠較為

熟練地判斷在不同的情境下需

要使用的不同工具，並正確使

用方向積木和動作積木，編寫

科比打敗怪獸神的路線/程式。 

在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。  

《條件 2》 

 

《問題分解 2》 

 

鞏固“條件”的概念；能夠較為熟練地

判斷在不同的情境下需要使用的不同

工具，並正確使用方向積木、“條件

指令卡”和工具積木，編寫奇奇旅遊

的路線/程式。  

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 

Session 6 《條件 3》 

《調試 2》 

 

進一步鞏固“條件”的概念；能

夠熟練地判斷在不同的情境下

需要使用的不同工具，並正確

使用方向積木和動作積木，編

《條件 3》 

《調試 2》 

 

進一步鞏固“條件”的概念；能夠熟練

地判斷在不同的情境下需要使用的不

同工具，並正確使用方向積木、“條
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寫科比打敗怪獸神的路線/程

式。 

當編寫的路線/程式出現錯誤

時，能夠檢查動作積木和方向

積木或記錄欄中的程式，找出

錯誤的部分並糾正錯誤。  

件指令卡”和工具積木，編寫奇奇旅

遊的路線/程式。 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。 

Session 7 《反復 1》 

《表徵 2》 

 

瞭解“反復”的概念；認識 NFC

積木和數字卡片；能夠找出簡

單的反復路線中的反復部分和

反復次數，並利用 NFC積木和

數字卡片，輸入迴圈命令語。 

 

《反復 1》 

《表徵 2》 

 

瞭解“反復”的概念；認識反復積木；

能夠找出簡單的反復路線中的反復部

分和反復次數，並利用反復積木輸入

迴圈命令語。 
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觀察記錄欄中的符號，理解表

徵的概念：使用抽象的符號來

表示具體的指令。  

觀察編程區的指令，理解表徵的概

念：使用抽象的符號來表示具體的指

令。 

Session 8 《反復 2》 

《問題分解 3》 

 

鞏固“反復”的概念；能夠找出

比較簡單的反復路線中的反復

部分和反復次數，並利用 NFC

積木和數字卡片，輸入迴圈命

令語。 

 

在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。 

《反復 2》 

《問題分解 3》 

 

鞏固“反復”的概念；能夠找出比較簡

單的反復路線中的反復部分和反復次

數，並利用反復積木輸入迴圈命令

語。  

 

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 
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Session 9 《反復 3》 

 

《調試 3》 

 

進一步鞏固“反復”的概念；能

夠找出比較複雜的反復路線中

的反復部分和反復次數，並利

用 NFC積木和數字卡片，輸入

迴圈命令語。  

當編寫的路線/程式出現錯誤

時，能夠檢查方向積木和數字

卡片或記錄欄中的程式，找出

錯誤的部分並糾正錯誤。 

《反復 3》 

 

《調試 3》 

 

進一步鞏固“反復”的概念；能夠找出

比較複雜的反復路線中的反復部分和

反復次數，並利用反復積木輸入迴圈

命令語。  

 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。 

Session 10 《反復 4》 

 

掌握“反復”的概念；能夠比較

快速地找出複雜的反復路線中

的反復部分和反復次數，並利

《反復 4》 

 

掌握“反復”的概念；能夠比較快速地

找出複雜的反復路線中的反復部分和
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用 NFC積木和數字卡片，輸入

迴圈命令語。  

反復次數，並利用反復積木輸入迴圈

命令語。  

Session 11 《順序、條件和反復的

綜合運用 1》 

 

 

 

《演算法 1》 

 

能夠綜合運用順序、條件和反

復等積木編寫程式、解決較為

簡單的問題。 

理解演算法的概念，並能運用

順序、條件和反復等積木進行

較為簡單的演算法設計。  

《順序、條件和反復

的綜合運用 1》 

 

 

《演算法 1》 

 

能夠綜合運用順序、條件和反復等積

木編寫程式、解決較為簡單的問

題。  

 

理解演算法的概念，並能運用順序、

條件和反復等積木進行較為簡單的演

算法設計。 

Session 12 《順序、條件和反復的

綜合運用 2》 

 

能夠綜合運用順序、條件和反

復等積木編寫程式、解決較為

簡單的問題。 

《順序、條件和反復

的綜合運用 2》 

 

能夠綜合運用順序、條件和反復等積

木編寫程式、解決較為簡單的問題。 
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《演算法 2》 

 

理解演算法的概念，並能運用

順序、條件和反復等積木進行

較為複雜的演算法設計。  

《演算法 2》 

 

理解演算法的概念，並能運用順序、

條件和反復等積木進行較為複雜的演

算法設計。  

注：每個活動約需 50分鐘。 
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任何利益 （包括對參與者的補償） 

-  您將接受有關早期編程教育的免費培訓。  

-  幼稚園將有機會與溫大研究團隊合作，將最先進的編程教育納入園本課

程。  

-  幼稚園和教師將學習如何尋找合適的課程材料和資源來設計編程活動。  

-  您將收到價值 300 元的禮品一份。  

  

參與期間可能面臨的風險與不適： 

-這項研究對參與者的風險非常低。 

-貴園學生/教師的參與完全是自願的。所有參與者在研究開始前或結束後都有權利選

擇退出，並不會有任何不良後果。貴園學生/教師的相關資料將被保密，只有研究人員

能夠讀取編碼後的資料。 

研究結果的發佈方式： 

-本項目將為參與的幼稚園提供有关编程教育的教師培訓和課程資源。 

-研究結果將透過畢業論文和期刊論文來傳播。 

 

如果您想獲得更多關於這項研究的資訊，請聯繫曾越（ ）。 

 

如果您對這項研究的研究倫理有任何意見，請隨時聯繫香港教育大學人類實驗對象研
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究倫理委員會（電郵：hrec@eduhk.hk；地址：香港教育大學研究與發展事務

處）。 

 

謝謝您對參與這項研究的興趣。 

曾越 

2022年 11月 1日 
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Consent Form and Information Sheet for SCHOOLS 

  

THE EDUCATION UNIVERSITY OF HONG KONG  

Department of Early Childhood Education 

CONSENT TO PARTICIPATE IN RESEARCH  

  

Effects of Plugged and Unplugged Programming Curricula on Computational 

Thinking, Self-Regulation, Flow Experience and Self-Efficacy of Children Aged 5-6 

  

My school hereby consents to participate in a project supervised by Dr. Weipeng Yang and 

Dr. Alfredo Bautista and conducted by Yue Zeng, who are staff / students of the department of 

Early Childhood Education in The Education University of Hong Kong. 

  

I understand that information obtained from this research may be used in future research and 

may be published. However, our right to privacy will be retained, i.e., the personal details of 

my students’/teachers’ will not be revealed. 

  

The procedure as set out in the attached information sheet has been fully explained. I 

understand the benefits and risks involved. My students’/teachers’ participation in the project 
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are voluntary. 

  

I acknowledge that we have the right to question any part of the procedure and can withdraw 

at any time without negative consequences. 

  

  

Signature: 

 

 

Name of Principal/Delegate*: (Prof/Dr/Mr/Mrs/Ms/Miss*)  

Post:  

Name of School:  

Date:  

 (* please delete as appropriate) 
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INFORMATION SHEET 

  

Effects of Plugged and Unplugged Programming Curricula on Computational 

Thinking, Self-Regulation, Flow Experience and Self-Efficacy of Children Aged 5-6 

  

Your kindergarten is invited to participate in a project supervised by Dr. Weipeng Yang and 

Dr. Alfredo Bautista and conducted by Yue Zeng, who are staff / students of the department of 

Early Childhood Education in The Education University of Hong Kong. 

  

The introduction of the research 

  

- I will design a series of plug-in and unplugged programming activities for children to help 

them learn sequencing, loops, conditionals, decomposition, debugging, and other programming 

concepts and skills. Unplugged programming curriculum refers to teaching programming 

without digital devices and often involves paper and pencil, cards, sticker books, as well as 

body movements, while plugged programming curriculum refers to teaching programming 

with the use of digital devices. I will use MBOLO in the plugged programming group and use 

unplugged materials in the unplugged programming group. 

- I will provide training to teachers on what computational thinking is and how to develop it in 
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young children; and 

- I will evaluate the impact of plugged and unplugged programming courses on children's 

computational thinking, self-regulation skills, flow experiences, and programming self-efficacy. 

- I will videotape the programming activities (about two months) carried out by the two 

experimental classes. 

- After all programming activities, interviews will be conducted with two teachers and several 

children from the experimental classes, and all interviews will be recorded. 

  

The methodology of the research 

A) Procedure of the research 

- The teachers will receive 2 hours of training in the computational thinking program during 

non-work time slots one week before the computational thinking curriculum. 

- The computational thinking course (intervention) will last for two months. Each session will 

last approximately 40 minutes, twice a week (the details of each programming activity see 

Table 1). The teachers of the experimental classes will be responsible for teaching the 

computational thinking activities. 

- At the end of the computational thinking curriculum, the teachers will be interviewed for 

approximately 60 minutes. The interview will be used to learn about your attitudes towards 

teaching computational thinking to young children. The interviews will take place in a quiet 
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room at your school. 

- Each child’s computational thinking will be assessed (pre-test and post-test) before and after 

the programming curriculum (intervention). The computational thinking assessment typically 

takes 12 minutes to administer to young children and will be conducted by the researcher in a 

quiet room in the kindergarten.  

- Each child’s self-regulation skills will be assessed (pre-test and post-test) before and after 

the programming curriculum (intervention). The self-regulation assessment usually takes 15 

minutes to administer to young children and will be conducted by the researcher in a quiet 

room in the kindergarten.  

- Each child’s flow experience will be assessed after the programming program 

(intervention).  The assessment will take about two minutes and will be conducted by the 

researcher in a quiet room in the kindergarten.  

- Each child’s programming self-efficacy will be assessed after the programming program 

(intervention). The programming self-efficacy assessment will be completed by the teacher. It 

will take about one hour. 

- Focus group interviews will be conducted with respectively ten children from each 

experimental group. The interviews will be videotaped and will last about one hour.
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Table 1 

Programming Courses  

Session Plugged activities Unplugged activities 

Activity Objective Activity Objective 

Session 1 Meet the 

MOBLO toys 

Know about the MOBLO toys Meet the 

unplugged 

programming 

toys 

Know about the unplugged programming 

toys 

Sequence (1)  Understand the concept of “sequences”; know 

about the forward and backward Directional 

Blocks; be able to place the forward and backward 

Directional Blocks in sequence and develop a 

simple route/program for Kobe to defeat the 

monster. 

Sequence (1)  Understand the concept of “sequences”; 

know about the forward and backward 

Directional Blocks; be able to place the 

forward and backward Directional 

Blocks in sequence and develop a simple 

route/program for Qiqi’s tour. 
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Session 2 Sequence (2) 

and 

Decomposition 

(1) 

 

1. Consolidate the concept of “sequences”; know 

about the left and right Directional Blocks; be able 

to place the left and right Directional Blocks in 

sequence and develop a simple route/program for 

Kobe to defeat the monster. 

2. Observe the start and end points and be able to 

break down a route into several single steps. 

Sequence (2)  

and 

Decomposition 

(1) 

 

1. Consolidate the concept of 

“sequences”; know about the left and 

right Directional Blocks; be able to place 

the left and right Directional Blocks in 

sequence and develop a simple 

route/program for Qiqi’s tour. 

2. Observe the start and end points and 

be able to break down a route into 

several single steps. 

Session 3 Sequence (3) 

and 

Debugging (1) 

 

1. Master the concept of 

“sequences” and be able to use the Directional 

Blocks (forward, backward, left and right) to 

develop a route/program for Kobe to defeat the 

monster. 

Sequence (3) 

and Debugging 

(1) 

 

1. Master the concept of 

“sequences” and be able to use the 

Directional Blocks (forward, backward, 

left and right) to develop a route/program 

for Qiqi’s tour. 
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2. When an error occurs in the program, be able to 

check the sequence of Directional Blocks, find the 

wrong part and correct the error. 

2. When an error occurs in the program, 

be able to check the sequence of 

Directional Blocks, find the wrong part 

and correct the error. 

Session 4 Conditional 

(1) and 

Representation 

(1) 

 

 

1. Understand the concept of conditionals; know 

about the Action Blocks and different tools and the 

need to use them when encountering special 

events; be able to use the Directional Blocks, 

Action Blocks and different tools to develop a 

route/program for Kobe to defeat the Monster. 

2. Observe the symbols in the record column and 

understand the concept of representation; be able 

to use the symbols to represent the route Kobe 

takes. 

Conditional (1) 

and 

Representation 

(1) 

 

1. Understand the concept of 

conditionals; know about the Conditional 

Instruction Card and Tool Blocks and the 

need to use them when encountering 

special events; be able to use the 

Directional Blocks, Conditional 

Instruction Card and Tool Blocks to 

develop a route/program for Qiqi’s tool. 

2. Observe the symbols in the 

programming area and understand the 

concept of representation; be able to use 
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the symbols to represent the route Qiqi 

takes. 

Session 5 Conditional 

(2) and 

Decomposition 

(2) 

 

1. Consolidate the concept of conditionals; be able 

to use the Directional Blocks, Action Blocks and 

different tools to develop a route/program for 

Kobe to defeat the Monster. 

2. Be able to break down a problem into smaller 

easily solved parts. 

Conditional (2) 

and 

Decomposition 

(2) 

 

1. Consolidate the concept of 

conditionals; be able to use the 

Directional Blocks, Conditional 

Instruction Card and Tool Blocks to 

develop a route/program for Qiqi’s tool. 

2. Be able to break down a problem into 

smaller easily solved parts. 

Session 6 Loops (1) and 

Representation 

(2) 

 

1. Understand the concept of loops; be able to 

identify the repeating part and the number of 

repetitions in a route.  

2. Observe the symbols in the record column and 

understand the concept of representation; be able 

Loops (1) and 

Representation 

(2) 

 

1. Understand the concept of loops; be 

able to identify the repeating part and the 

number of repetitions in a route.  

2. Observe the symbols in the record 

column and understand the concept of 
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to use the symbols to represent the route Kobe 

takes. 

representation; be able to use the 

symbols to represent the route Qiqi takes. 

Session 7 Loops (2) and 

Debugging (2) 

 

1. Consolidate the concept of loops; know about 

NFC Blocks and Number Cards; be able to 

identify the repeating part and the number of 

repetitions in a simple route and use NFC Blocks 

and Number Cards to input loops commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

Loops (2) and 

Debugging (2) 

 

1. Consolidate the concept of loops; 

know about Loops Blocks; be able to 

identify the repeating part and the 

number of repetitions in a simple route 

and use Loops Blocks to input loops 

commands. 

2. When an error occurs in the program, 

be able to check program, find the wrong 

part and correct the error. 

Session 8 Loops (3) and 

Debugging (3) 

 

1. Further consolidate the concept of loops; be 

able to identify the repeating part and the number 

of repetitions in a complex route and use NFC 

Loops (3) and 

Debugging (3) 

 

1. Consolidate the concept of loops; be 

able to identify the repeating part and the 

number of repetitions in a complex route 
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Blocks and Number Cards to input loops 

commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

and use Loops Blocks to input loops 

commands. 

2. When an error occurs in the program, 

be able to check program, find the wrong 

part and correct the error. 

Session 9 Loops (4) and 

Debugging (4) 

 

1. Master the concept of loops; be able to identify 

the repeating part and the number of repetitions in 

a more complex route and use NFC Blocks and 

Number Cards to input loops commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

Loops (4) and 

Debugging (4) 

1. Master the concept of loops; be able to 

identify the repeating part and the 

number of repetitions in a more complex 

route and use Loops Blocks to input 

loops commands. 

2. When an error occurs in the program, 

be able to check program, find the wrong 

part and correct the error. 

Session 

10 

Loops (5) and 

Debugging (5) 

1. Master the concept of loops; be able to quickly 

identify the repeating part and the number of 

Loops (5) and 

Debugging (5) 

1. Master the concept of loops; be able to 

quickly identify the repeating part and 
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 repetitions in a more complex route and use NFC 

Blocks and Number Cards to input loops 

commands. 

2. When an error occurs in the program, be able to 

check program, find the wrong part and correct the 

error. 

the number of repetitions in a more 

complex route and use Loops Blocks to 

input loops commands. 

2. When an error occurs in the program, 

be able to check program, find the wrong 

part and correct the error. 

Session 

11 

The use of 

sequences, 

conditionals 

and loops (1) 

and algorithms 

(1) 

1. Be able to use Directional Blocks, Action 

Blocks, and NFC and Number Cards to develop a 

route/program for Kobe to defeat the Monster. 

2. Understand the concept of algorithms and be 

able to design simple algorithms using sequences, 

conditionals and loops. 

 

The use of 

sequences, 

conditionals and 

loops (2) and 

algorithms (2) 

 

1. Be able to use Directional Blocks, 

Conditional Instruction Card, and Loops 

Blocks to develop a route/program for 

QiQi’s tool. 

2. Understand the concept of algorithms 

and be able to design simple algorithms 

using sequences, conditionals and loops. 
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Session 

12 

The use of 

sequences, 

conditionals, 

and loops (2) 

and algorithms 

(2) 

1. Be able to use Directional Blocks, Action 

Blocks, and NFC and Number Cards to develop a 

route/program for Kobe to defeat the Monster. 

2. Understand the concept of algorithms and be 

able to design simple algorithms using sequences, 

conditionals, and loops. 

 

The use of 

sequences, 

conditionals, 

and loops (2) 

and algorithms 

(2) 

1. Be able to use Directional Blocks, 

Action Blocks, and NFC and Number 

Cards to develop a route/program for 

Kobe to defeat the Monster. 

2. Understand the concept of algorithms 

and be able to design simple algorithms 

using sequences, conditionals, and loops. 

Note: Each activity takes about 40 minutes. 
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C) Potential benefits (including compensation for participation) 

- Teachers will receive free training on computational thinking education in early 

childhood. 

- The kindergarten will have the opportunity to incorporate the most advanced 

computational thinking education into the school-based curriculum by working with 

the Wenzhou University research team.  

- The kindergarten and teachers will learn how to look for appropriate curriculum 

materials and resources for delivering computational thinking education. 

- The teacher in the experimental classes will receive a gift worth 300 RMB. 

  

The potential risks of the research 

- The study will present no more than minimal risk to the participants. 

- Please understand that your students’/teachers’ participation are voluntary. They 

have every right to withdraw from the study at any time without negative 

consequences.  All information related to your students’/teachers’ will remain 

confidential and will be identifiable by codes known only to the researcher. 

  

How results will be potentially disseminated 

- This project will provide the participating kindergarten STEM curriculum-based 

teacher training and curriculum resources.  
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- Research results will be disseminated through thesis and journal article. 

  

If you would like to obtain more information about this study, please contact ZENG 

Yue by email at ; Dr. Weipeng Yang by email at 

wyang@eduhk.hk. 

  

If you have any concerns about the conduct of this research study, please do not 

hesitate to contact the Human Research Ethics Committee by email at hrec@eduhk.hk 

or by mail to Research and Development Office, The Education University of Hong 

Kong. 

  

Thank you for your interest in participating in this study. 

  

  

  

ZENG, Yue 

November, 2022 

 

  

mailto:hrec@ied.edu.hk
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香港教育大學  

幼兒教育學系  

參與研究同意書（學校）  

  

插電式和非插電式編程課程對 5 - 6 歲兒童的計算思維、自我調節、心

流體驗和自我效能感的影響  

  

 本幼稚園同意參與由楊偉鵬博士監督和 A lf r edo  Bau t i s t a 博士並由曾越執

行的研究計劃。他 /她們是香港教育大學幼稚教育系的教員 /学生。  

本人了解所收集的資料可能會用於未來的研究和學術發表，但本人有權保護本

幼稚園學生和教師的隱私，個人資料不得外泄。 

研究者已詳細解釋了相關程序和附帶的資料給本人。本人了解可能存在的風險。

本人自願讓本幼稚園的學生和教師參與這項研究。 

本人理解本人和本幼稚園的學生和教師在研究過程中有權提出問題，並在任何

時候決定退出研究，而不會對研究工作產生任何負面影響。 

簽署: 

 

 

 

園長姓名:   

職位:   

幼稚園名稱:   

日期:   
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有關資料  

  

插電式和非插電式編程課程對 5 - 6 歲兒童的計算思維、自我調節、心

流體驗和自我效能感的影響  

  

誠邀貴園參加楊偉鵬博士和 A lf r edo  Bau t i s t a 博士負責監督 ,曾越負責

執行的研究計畫。他 /她們是香港教育大學幼稚教育系的教員 /学生。  

 

研究計劃簡介  

-  我們將為幼兒設計一系列插電和不插電編程活動，幫助幼兒學習

順序、迴圈、條件、問題分解、調試等編程概念和技能。不插電的

編程課程指的是沒有數字設備的編程教學，通常涉及紙和筆、卡

片、貼紙書以及身體動作，而插電的編程課程指的是使用數字設備

的編程教學。在插電的編程活動中，我們將使用 M BO LO 編程教具

進行編程教學；在不插電的編程活動中，我們將使用無螢幕編程材

料進行編程教學；  

-  我們將為教師提供有關什麼是編程、如何開展編程活動的培訓；  

-  我們將評估插電和不插電的編程課程對幼兒計算思維、自我調節

能力、心流體驗、編程自我效能感的影響；  

-  我們將對兩個實驗班進行的編程活動（大約兩個月）進行錄影；  
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-  在所有的編程活動結束後，我們將對實驗班的兩位老師和個別幼

兒進行訪談，所有的訪談將被錄音。  

  

研究方法  

A) 工作及步驟 

-  在編程課程開始前一周，實驗班的教師將在非工作的時間段接受

2  小時的編程課程培訓。  

-  編程活動（干預）將持續兩個月。每個星期兩次，每次大約 50 分

鐘。實驗班的教師將承擔編程活動的教學工作（編程課程的具體內

容詳見表 1）。  

-  在編程課程結束之後，實驗班的教師將接受大約 60 分鐘的訪談。

訪談將用於瞭解教師對幼兒編程教育的態度。訪談都將在貴校安靜

的房間內進行。訪談將被錄音。  

-  每個孩子的計算思維將在編程課程（干預）前後被評估（前測和

後測）。計算思維評估通常需要 12 分鐘，由研究人員在幼稚園的一

個安靜的房間裏進行。   

-  每個孩子的自我調節能力將在編程課程（干預）前後被評估（前

測和後測）。自我調節評估通常需要 15 分鐘，由研究人員在幼稚園

的一個安靜的房間裏對幼兒進行。   

-  每個孩子的流動體驗將在編程課程（干預）後被評估。  評估將需
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要大約兩分鐘，由研究人員在幼稚園的一個安靜房間裏進行。   

-  每個孩子的編程自我效能感將在編程專案（干預）後被評估。編

程自我效能評估將由班級教師來完成。這將需要大約一個小時。  

-  焦點小組訪談將分別與每個實驗組的 10 名兒童進行。訪談將被錄

影，並將持續約一個小時。  
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表 1 

編程課程  

  插电式编程活动   

活动目标 

不插电编程活动   

活动目标 

Session 1 《認識 MOBLO玩具》 

 

《順序 1》 

 

瞭解“順序”的概念；認識方向

積木；能夠有順序地擺放方向

積木，編寫科比打敗怪獸神的

路線/程式。  

《認識 unplugged 

programming玩具》 

 

《順序 1》 

瞭解“順序”的概念；認識方向積木；

能夠有順序地擺放方向積木，編寫奇

奇旅遊的路線/程式。 

Session 2 《順序 2》 

《問題分解 1》 

 

 

鞏固“順序”的概念；能夠較為

熟練地運用方向積木編寫路線/

程式。 

《順序 2》 

《問題分解 1》 

 

鞏固“順序”的概念；能夠較為熟練地

運用方向積木編寫路線/程式。 
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在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。  

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 

  

Session 3 《順序 3》 

 

《調試 1》 

 

掌握“順序”的概念；能夠熟練

運用方向積木編寫更長的路線/

程式。  

當編寫的路線/程式出現錯誤

時，能夠檢查方向積木或記錄

欄中的程式，找出錯誤的部分

並糾正錯誤。 

《順序 3》 

《調試 1》 

 

掌握“順序”的概念；能夠熟練運用方

向積木編寫更長的路線/程式。 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。  
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Session 4 《條件 1》 

《表徵 1》 

 

瞭解“條件”的概念；認識“動作

積木”，瞭解在遇到特殊事件時

需要使用動作積木；初步學習

觀察路線，判斷在不同的情境

下需要使用的不同工具，並正

確使用方向積木和動作積木，

編寫科比打敗怪獸神的路線/程

式。 

觀察記錄欄中的符號，理解表

徵的概念：使用抽象的符號來

表示具體的指令。 

《條件 1》 

《表徵 1》 

 

瞭解“條件”的概念；認識“條件指令

卡”和工具積木，瞭解在遇到特殊事

件時需要使用“條件指令卡”和工具積

木；初步學習判斷在不同的情境下需

要使用的不同工具，並正確使用方向

積木、“條件指令卡”和工具積木，編

寫奇奇旅遊的路線/程式。 

觀察編程區的指令，理解表徵的概

念：使用抽象的符號來表示具體的指

令。 
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Session 5 《條件 2》 

《問題分解 2》 

 

鞏固“條件”的概念；能夠較為

熟練地判斷在不同的情境下需

要使用的不同工具，並正確使

用方向積木和動作積木，編寫

科比打敗怪獸神的路線/程式。 

在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。  

《條件 2》 

 

《問題分解 2》 

 

鞏固“條件”的概念；能夠較為熟練地

判斷在不同的情境下需要使用的不同

工具，並正確使用方向積木、“條件

指令卡”和工具積木，編寫奇奇旅遊

的路線/程式。  

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 

Session 6 《條件 3》 

《調試 2》 

 

進一步鞏固“條件”的概念；能

夠熟練地判斷在不同的情境下

需要使用的不同工具，並正確

使用方向積木和動作積木，編

《條件 3》 

《調試 2》 

 

進一步鞏固“條件”的概念；能夠熟練

地判斷在不同的情境下需要使用的不

同工具，並正確使用方向積木、“條
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寫科比打敗怪獸神的路線/程

式。 

當編寫的路線/程式出現錯誤

時，能夠檢查動作積木和方向

積木或記錄欄中的程式，找出

錯誤的部分並糾正錯誤。  

件指令卡”和工具積木，編寫奇奇旅

遊的路線/程式。 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。 

Session 7 《反復 1》 

《表徵 2》 

 

瞭解“反復”的概念；認識 NFC

積木和數字卡片；能夠找出簡

單的反復路線中的反復部分和

反復次數，並利用 NFC積木和

數字卡片，輸入迴圈命令語。 

 

《反復 1》 

《表徵 2》 

 

瞭解“反復”的概念；認識反復積木；

能夠找出簡單的反復路線中的反復部

分和反復次數，並利用反復積木輸入

迴圈命令語。 
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觀察記錄欄中的符號，理解表

徵的概念：使用抽象的符號來

表示具體的指令。  

觀察編程區的指令，理解表徵的概

念：使用抽象的符號來表示具體的指

令。 

Session 8 《反復 2》 

《問題分解 3》 

 

鞏固“反復”的概念；能夠找出

比較簡單的反復路線中的反復

部分和反復次數，並利用 NFC

積木和數字卡片，輸入迴圈命

令語。 

 

在編寫程式的過程中，學會觀

察起點和終點，並且能夠把多

個步驟分解成一步一步。 

《反復 2》 

《問題分解 3》 

 

鞏固“反復”的概念；能夠找出比較簡

單的反復路線中的反復部分和反復次

數，並利用反復積木輸入迴圈命令

語。  

 

在編寫程式的過程中，學會觀察起點

和終點，並且能夠把多個步驟分解成

一步一步。 
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Session 9 《反復 3》 

 

《調試 3》 

 

進一步鞏固“反復”的概念；能

夠找出比較複雜的反復路線中

的反復部分和反復次數，並利

用 NFC積木和數字卡片，輸入

迴圈命令語。  

當編寫的路線/程式出現錯誤

時，能夠檢查方向積木和數字

卡片或記錄欄中的程式，找出

錯誤的部分並糾正錯誤。 

《反復 3》 

 

《調試 3》 

 

進一步鞏固“反復”的概念；能夠找出

比較複雜的反復路線中的反復部分和

反復次數，並利用反復積木輸入迴圈

命令語。  

 

“機器人”幼兒在驗證路線的過程中發

現錯誤時，“指令員”幼兒能夠檢查編

程區的指令，找出錯誤的部分並糾正

錯誤。 

Session 10 《反復 4》 

 

掌握“反復”的概念；能夠比較

快速地找出複雜的反復路線中

的反復部分和反復次數，並利

《反復 4》 

 

掌握“反復”的概念；能夠比較快速地

找出複雜的反復路線中的反復部分和
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用 NFC積木和數字卡片，輸入

迴圈命令語。  

反復次數，並利用反復積木輸入迴圈

命令語。  

Session 11 《順序、條件和反復的

綜合運用 1》 

 

 

 

《演算法 1》 

 

能夠綜合運用順序、條件和反

復等積木編寫程式、解決較為

簡單的問題。 

 

理解演算法的概念，並能運用

順序、條件和反復等積木進行

較為簡單的演算法設計。  

《順序、條件和反復

的綜合運用 1》 

 

 

《演算法 1》 

 

能夠綜合運用順序、條件和反復等積

木編寫程式、解決較為簡單的問

題。  

 

理解演算法的概念，並能運用順序、

條件和反復等積木進行較為簡單的演

算法設計。 
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Session 12 《順序、條件和反復的

綜合運用 2》 

 

《演算法 2》 

 

能夠綜合運用順序、條件和反

復等積木編寫程式、解決較為

簡單的問題。 

理解演算法的概念，並能運用

順序、條件和反復等積木進行

較為複雜的演算法設計。  

《順序、條件和反復

的綜合運用 2》 

 

《演算法 2》 

 

能夠綜合運用順序、條件和反復等積

木編寫程式、解決較為簡單的問題。 

 

理解演算法的概念，並能運用順序、

條件和反復等積木進行較為複雜的演

算法設計。 

注：每個活動約需 50分鐘。 
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B) 任何利益 (包括對參與者的補償) 

-  教師將接受有關早期編程教育的免費培訓。  

-  幼稚園將有機會與溫大研究團隊合作，將最先進的編程教育納入

園本課程。  

-  幼稚園和教師將學習如何尋找合適的課程材料和資源來設計編程

活動。  

-  實驗班的教師將收到價值 300 元的禮品一份。  

  

參與期間可能面臨的風險與不適： 

-這項研究對參與者的風險非常低。 

-貴園學生/教師的參與完全是自願的。所有參與者在研究開始前或結束後都有

權利選擇退出，並不會有任何不良後果。貴園學生/教師的相關資料將被保密，

只有研究人員能夠讀取編碼後的資料。 

研究結果的發佈方式： 

-本項目將為參與的幼稚園提供有关编程教育的教師培訓和課程資源。 

-研究結果將透過畢業論文和期刊論文來傳播。 

 

如果您想獲得更多關於這項研究的資訊，請聯繫曾越（ ）。 

 

如果您對這項研究的研究倫理有任何意見，請隨時聯繫香港教育大學人類實驗
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對象研究倫理委員會（電郵：hrec@eduhk.hk；地址：香港教育大學研究與發展

事務處）。 

 

謝謝您對參與這項研究的興趣。 

曾越 

2022年 11月 1日 

 


	Statement of Originality
	Abstract
	Acknowledgments
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Preface
	Chapter 1: Introduction
	1.1 Defining computational thinking and programming
	1.2 CT and early learning and development
	1.3 Overview of global programming and CT initiatives in ECE
	1.3.1 Americas
	1.3.2 Europe
	1.3.3 Asia, Australia, and Pacific Island nations

	1.4 Obstacles hinder programming and CT education in ECE in China
	1.4.1 Teacher preparedness
	1.4.2 Limited resources
	1.4.3 Cultural attitudes towards technology
	1.4.4 A lack of curriculum alignment
	1.4.5 Curriculum overload
	1.4.6 Policy and government support
	1.4.7 Societal understanding of programming and perception of relevance
	1.4.8 Developmental concerns
	1.4.9 Assessment

	1.5 Pedagogical Issues Related to Teaching Programming and CT in ECE
	1.5.1 Teaching Context
	1.5.2 Activity Structure
	1.5.3 Pedagogical Approaches
	1.5.4 Pedagogical Strategies

	1.6 Tools for early CT learning
	1.7 Research gaps, objectives and questions
	1.8 Structure

	Chapter 2: Computational Thinking in Early Childhood Education: Reviewing the Literature and Redeveloping the Three-Dimensional Framework
	2.1 Defining CT
	2.1.1 Previous reviews on CT in school education
	2.1.2 The three-dimensional CT framework

	2.2 Method
	2.2.1 Literature search
	2.2.2 Inclusion and exclusion criteria
	2.2.3 Snowballing
	2.2.4 Data extraction and synthesis

	2.3 Results
	2.3.1 Overview of the included studies
	2.3.2 Classic CT concepts
	2.3.2.1 Sequences
	2.3.2.2 Events
	2.3.2.3 Loops
	2.3.2.4 Conditionals

	2.3.3 Emerging CT concepts
	2.3.3.1 Representation
	2.3.3.2 Control flow/structures
	2.3.3.3 Hardware/software
	2.3.3.4 Automation

	2.3.4. Classic CT practices
	2.3.4.1 Testing and debugging
	2.3.4.2 Decomposition/problem reformulation
	2.3.4.3 Abstraction
	2.3.4.4 Being iterative and incremental/(engineering) design process

	2.3.5 Emerging CT practices
	2.3.5.1 Algorithmic design
	2.3.5.2 Pattern recognition
	2.3.5.3 Generalizing
	2.3.5.4 Logical thinking
	2.3.5.5 Simulation
	2.3.5.6 Spatial reasoning

	2.3.6 Classic CT perspectives
	2.3.6.1 Expressing
	2.3.6.2 Connecting

	2.3.7 Emerging CT perspectives
	2.3.7.1 Perseverance
	2.3.7.2 Choices of conduct


	2.4 Discussion
	2.4.1 The CT curriculum framework for ECE: combining classic and emerging components
	2.4.2 Limitations of the systematic review and the CT curriculum framework
	2.4.3 Implications for research, policy, and practice


	Chapter 3: Teaching Programming and Computational Thinking in Early Childhood Education: A Case Study of Content Knowledge and Pedagogical Knowledge
	3.1 Introduction
	3.1.1 Previous Studies on Unplugged Programming and CT Education
	3.1.2 The Content Framework of Computational Thinking in ECE
	3.1.3 Pedagogical Issues Related to Teaching Programming and CT in ECE
	3.1.3.1 Teaching Context
	3.1.3.2 Activity Structure
	3.1.3.3 Pedagogical Approaches
	3.1.3.4 Pedagogical Strategies

	3.1.4 The PCK Theory
	3.1.5 Teachers’ PCK of Programming and CT
	3.1.6 The Present Study

	3.2 Method
	3.2.1 The Research Site
	3.2.2 Data Collection
	3.2.2.1 Video Observations
	3.2.2.2 Interviews
	3.2.2.3 Lesson plans

	3.2.3 Data Analysis
	3.2.3.1 Video and Interview Data Analysis
	3.2.3.2 Lesson Plan Analysis

	3.2.4 Ethical and Validity Issues

	3.3 Findings
	3.3.1 CT Concepts, Practices, and Perspectives Taught by the Teacher
	3.3.1.1 CT Concepts
	3.3.1.2 CT Practices
	3.3.1.3. CT Perspectives

	3.3.2 Pedagogies Employed by the Teacher

	3.4 Discussion
	3.5 Limitations and Implications
	3.5.1 Limitations
	3.5.2 Practical Implications
	3.5.3 Research Implications


	Chapter 4: Developing Young Children’s Computational Thinking through Programming with a Hybrid Kit
	4.1 Introduction
	4.2 Method
	4.2.1 Research Design
	4.2.2 Participants
	4.2.3 The Intervention
	4.2.3.1 The Programming Tool
	4.2.3.2 Objectives and Content of Programming Activities
	4.2.3.3 Implementation Process of Programming Activities

	4.2.4 Procedure
	4.2.4.1 The 3-hour Training Session
	4.2.4.2 The Weekly Communication
	4.2.4.3 Challenges the Teachers Encountered
	4.2.4.4 The Intervention
	4.2.4.5 Data Collection

	4.2.5 Data Collection
	4.2.5.1 Child Assessment
	4.2.5.2 Videotaped Observations
	4.2.5.3 Interviews

	4.2.6 Data Analysis
	4.2.7 Validity of Qualitative Data Analyses

	4.3 Results
	4.3.1 Effect of Programming on Young Children's CT
	4.3.2 Characteristics of Children's Engagement in Programming
	4.3.2.1 Program Design Stage
	4.3.2.2 Program Debugging Stage

	4.3.3 Teachers' Instructional Strategies in Programming Activities
	4.3.3.1 Guiding Children to Observe Closely
	4.3.3.2 Guiding Children to Pause
	4.3.3.3 Providing External Scaffolding for Thinking


	4.4 Discussion
	4.4.1 Limitations and Future Research
	4.4.2 Contributions and Implications


	Chapter 5: General Discussion and Conclusions
	5.1 Limitations and Future Research Directions
	5.1.1 What to Teach
	5.1.2 How to Teach
	5.1.3 Whom to Teach
	5.1.4 How to Evaluate
	5.1.5 Teacher Professional Development in Early Programming and CT Education

	5.2 Implications
	5.2.1 For policymakers
	5.2.2 For early childhood practitioners (leaders and teachers)
	5.2.3 For teacher educators and teacher education institutions
	5.2.4 For future research

	5.3 Extension of Research in ECE and Computing Education
	5.3.1 Extension of Research in ECE
	5.3.2 Extension of Research in Computing Education

	5.4 Overall Framework for Early Childhood CT Education

	References
	Appendix A. Appendix of Study 1
	Appendix A-1
	Appendix A-2
	Appendix A-3
	Appendix A-4
	Appendix A-5
	Appendix A-6
	Appendix A-7

	Appendix B. Appendix of Study 2
	Appendix B-1
	Appendix B-2
	Appendix B-3

	Appendix C. Appendix of Study 3
	Appendix D. The Ethical Approval
	Appendix E. Consent Forms (English and Chinese Versions)

